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Abstract
The present paper deals with a fractional-order mathematical epidemic model of
malaria transmission accompanied by temporary immunity and relapse. The model is
revised by using Caputo fractional operator for the index of memory. We also
recommend the utilization of temporary immunity and the possibility of relapse. The
theory of locally bounded and Lipschitz is employed to inspect the existence and
uniqueness of the solution of the malaria model. It is shown that temporary immunity
has a great effect on the dynamical transmission of host and vector populations. The
stability analysis of these equilibrium points for fractional-order derivative α and basic
reproduction numberR0 is discussed. The model will exhibit a Hopf-type bifurcation.
The two control variables are introduced in this model to decrease the number of
populations. Mandatory conditions for the control problem are produced. Two types
of numerical method via Laplace Adomian decomposition and Runge–Kutta of
fourth order for simulating the proposed model with fractional-order derivative are
presented. To validate the mathematical results, numerical simulations, sensitivity
analysis, convergence analysis, and other important studies are given. The paper is
finished with some conclusions and discussion.
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1 Introduction
Malaria is a vector-borne disease that affects the developing countries of the world. It is
a life-threatening illness and is caused by a female mosquito plasmodium parasite. As per
World Health Organization (WHO) reports that malaria is deadly to host life and remains
a dangerous infectious epidemic disease [46]. This endemic disease is an economic load on
the countries. From time to time various awareness camps at the international level have
been organized by WHO about these vital diseases. Besides, several national and interna-
tional conferences, seminars, workshops, etc. have also been arranged by different univer-
sities to find out the possible results for the management of this endemic disease. Several
researchers from epidemiological backgrounds have mathematically researched the prop-
agation mechanisms of the disease to understand and capture the complex relationship
between a susceptible host and populations of infected vectors. Mathematical modeling
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of infectious diseases has also played a crucial role in understanding the complex mech-
anisms of control strategies and the different transmission parameters of diseases. Ross
gave the first epidemiological model of malaria [37]. To demonstrate malaria infection dy-
namics between vector and host populations, he used the deterministic compartmental
epidemic models. A review, as well as a full survey on the modeling of malaria infection, is
considered [23]. Since bifurcation is a key rule in computational models of viral diseases
and is studied by a lot of researchers prepared a structure model to show the effects of
relapse rate in malaria disease [2–4, 15, 19, 26, 39, 40]. The fractional-order derivative is
considered as the memory index. The classical epidemic model does not give any infor-
mation about the learning mechanism of the host population or memory which shows
the disease transmission. A periodic mathematical epidemic model has been considered
by Ross-MacDonald [16]. They focus on the effects of spatial and temporal heterogeneity
on illness’s dynamical transmission. Thus the given mathematical epidemic model incor-
porated periodic variation in vector seasonal and ecology host shifting to catch changes
of malaria disease spread among different areas.

The additive compound matrices approach of the endemic equilibrium to show the
global stability analysis. Their numerical simulations show that the endemic equilibrium
approaches the disease-free equilibrium points. A deterministic mathematical compart-
mental model to investigate the effect of drug resistance in malaria infection and some au-
thors formulated an optimal control model for malaria and cholera co-infection [29, 31].
We have observed the effectiveness of drugs in a dynamical transmission of malaria model
[1]. A model to study infectious disease co-infection transmission of malaria and HIV [7].
Furthermore one studied the spread of malaria infection with an optimal control model
[28, 43, 44]. Thus it is formulated as a co-infection model for meningitis and malaria
among children [20]. They observed that in the global sense when the threshold quantity
R0 is less than unity, the disease-free equilibrium might show some stability. Mathemat-
ical modeling of infectious disease’s dynamical process and other main areas of studies
such as finance, engineering, and economics has extensively been explored using the the-
ory and applications of the classical differential equations.

But in modern times, the theory and applications of fractional calculus have become
extremely important and beneficial in modeling biological processes and another field
of studies due to the memory property of fractional derivatives. Many authors have
contributed significantly to compartmental mathematical modeling of infectious disease
dynamics using fractional differential equations. There has been formulated a vector-
transmitted disease model with fractional differential equations. [38]. The fractional-
order mathematical models for malaria disease infection were studied [33]. Further, there
has been analyzed the fractional-order co-infection models for TB and HIV [32]. Also,
the fractional-order models for HIV infection have been studied and analyzed by many
researchers who formulated a fractional-order competition model for the love triangle
[5, 12, 16, 21, 22]. One also studied the backward bifurcation in a fractional-order model
with vaccination parameter [13].

A fractional-order model for the cholera infection was formulated [18]. Moreover, the
homotopy analysis method and Runge–Kutta method of fourth order to evaluate the nu-
merical analytical and results for fractional-order childhood disease models were dis-
cussed [5]. Therefore the epidemic model with fractional order for influenza has been an-
alyzed and formulated and one studied the fractional-order SIRC model with Salmonella
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bacteria infection [14, 17, 36]. The deadly Ebola disease which killed a lot of people in
some parts of Africa has been modeled by a system of fractional-order derivatives [6]. An
endemic model with a constant population has been numerically and analytically studied
by using Caputo fractional derivatives [30].

The rest of the paper is organized as follows. Some basic preliminaries on fractional cal-
culus are presented in Sect. 2. Section 3 is devoted to the model description. The basic
properties of the proposed model are given in Sect. 4. The analysis is discussed in Sect. 5.
Optimality is presented in Sect. 6. The numerical solutions are obtained in Sect. 7. The nu-
merical simulations, sensitivity analysis, and convergence analysis are discussed in Sect. 8.
A discussion is in Sect. 9 and finally, the conclusion is drawn in Sect. 10.

2 Preliminaries on fractional calculus
Some basic definitions of fractional calculus areas are given in the following.

Definition 2.1 The Riemann-Liouville fractional integral of the function f : R+ → R ex-
ists for order α > 0 in two forms, forward and backward. For the closed interval [u, v], the
two integral are defined as [34]

RL
u D–α

t =RL
u Iα

t =
1

�(α)

∫ t

u
(t – ω)α–1f (ω) dω, for t > u,

RL
t D–α

v =RL
t Iα

b =
1

�(α)

∫ v

t
(ω – t)α–1f (ω) dω, for t < v,

where � is the gamma function.

Definition 2.2 The Riemann-Liouville fractional derivative of the function f : R+ → R

have also in two forms, forward and backward. This α is solved by the use of Lagrange’s
rule. To find the nth-order derivative over the integral of (n –α), the derivative is obtained.
If n > α, where n is the smallest integer, then the derivatives are

RL
u Dα

t f (t) =
dn

dtn

RL

u
D–(n–α)

t f (t) =
dn

dtn

RL

u
In–α

t f (t),

RL
t Dα

v f (t) =
dn

dtn

RL

t
D–(n–α)

v f (t) =
dn

dtn

RL

t
In–α

v f (t).

Definition 2.3 Necessitated by the drawback of the Riemann-Liouville fractional deriva-
tive a definition was given [8]:

C
0 Dα

t f (t) =
1

�(n – α)

∫ t

0
f (n)(ω)(t – ω)n–α–1 dω, where α ∈ (n – 1, n), and n ∈N.

Obviously, C
0 Dα

t f (t) approaches towards Dα
t f (t) whenever the fractional order tends

to one. C
0 Dα

t f (t) and C
0 Dα

t g(t) exist almost everywhere [11] and letting ra, rb ∈ R, then
C
0 Dα

t [raf (t) + rbg(t)] exists almost everywhere with

C
0 Dα

t
[
raf (t) + rbg(t)

]
= ra

[C
0 Dα

t f (t)
]

+ rb
[C

0 Dα
t g(t)

]
. (2.1)
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Definition 2.4 Let a constant point e∗ for the Caputo system be its critical point [45],

C
0 Dα

t e∗(t) = f
(
t, e∗(t)

) ⇔ f
(
t, e∗t

)
= 0, where 0 < α < 1.

Definition 2.5 If CDα
t y(t) =0 In–α

t = 1
�(n–α)

∫ t
0 (t – s)n–α–1y(n)(s) ds, where n = [α] + 1, α ∈

(n – 1, n] & n ∈N, then L [CDαi
t y(t)] = snF(s)–sn–1f (0)–sn–2f ′(0)–···–f (n–1)(0)

sn–z .

3 Model description
In this section, we formulate a deterministic mathematical model of malaria epidemic
model by dividing total population into two mutually exclusive classes namely, the vector
(mosquito) and host (human). To make the dynamical transmission of malaria model with
temporary immunity β and relapse εH , two classes of mosquito population are considered,
the mosquito susceptible class, at time t, is denoted by MS(t); mosquito infectious class
MI(t). Hence the total mosquito population �1 is given by

�1 = MS(t) + MI(t).

On the other hand, three classes of host(human) population; human susceptible HS(t),
human infectious HI(t) and human recovered HR(t) are considered so that the total host
population �2 is

�2 = HS(t) + HI(t) + HR(t).

The notations and parametric values of the state variables used in the formulation of dy-
namical transmission of model are given in Tables 1 and 2.

Let �1 be the recruitment rate of the vector population, �2 be the recruitment rate of
the host population, δM be the rate of infection in mosquitoes population, δH be the rate
of infection in humans population, dM be the natural death rate of mosquito population,

Table 1 Description of the system (3.1) with state variables

State variables Description

MS Vectors susceptible class
MI Vectors infected class
HS Hosts susceptible class
HI Hosts infected class
HR Hosts recovered class

Table 2 The description of parameters along with parametric values of the system (3.1)

Parameter Description Parametric values Source

�1 Recruitment rate of female vector population 0.1 year–1 [25]
�2 Recruitment rate of host population 10 year–1 [25]
δM Rate of infection in mosquitoes population 0.001-0.09 [27]
δH Rate of infection in humans population 0.1-0.001 [27]
dM Natural death rate of mosquitoes population 0.00667 [25]
dH Natural death rate of humans population 0.0000457-0.25 [25]
εH Relapse rate of malaria in human population 0.020-0.095 Estimated
φH Vaccination rate in humans population 0.1400-0.2500 Estimated
θH Induced death rate in humans population 0.1 [25]
β The temporary immunity in hosts population 0.05-1 Estimated
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Figure 1 Schematic diagram of malaria with
temporary immunity

dH be the natural death rate of the human population, φH be the vaccination rate in the
host population, εH be the relapse rate of malaria in the host population, and θH be the
induced death rate in the host population. The schematic diagram of malaria with tempo-
rary immunity is portrayed in Fig. 1.

The flows from the susceptible to infected classes of mosquitoes and humans popula-
tions depend on the transmission probabilities δM , δH and the number of infectious and
susceptibles of each species. In MS class, the recruitment rate of mosquitoes population
is �1. δM is the rate of infection between MS to HI . Similarly in HS class the recruitment
rate of the human population is �2. δH is the rate of infection between HS to MI . β is the
rate of flow between HR and HS , φH is the rate of flow between HI and HR and θH is the
rate for HI class, respectively.

3.1 Classical integer model
The classical integer model of epidemic malaria between mosquito-to-human and vice
versa is as follows:

Mosquitoes population

DMS = �1 – δMMSHI – dMMS,

DMI = δMMSHI – dMMI ,

Humans population

DHS = �2 – δHHSMI – dHHS + βHR,

DHI = δHHSMI –
(
dH + θH + φH)

HI + εHHR,

DHR = φHHI –
(
dH + εH + β

)
HR.

(3.1)

The initial conditions are

MS(0) = MS0, MI(0) = MI0,

HS(0) = HS0, HI(0) = HI0 and HR(0) = HR0.
(3.2)
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3.2 Fractional-order mathematical model
In this subsection, we have modified the classical integer system (3.1) into fractional-order
in sense of Caputo. The system of the non-linear fractional differential equations is given
as

Mosquitoes population
CMα

S = �1 – δMMSHI – dMMS,
CMα

I = δMMSHI – dMMI ,

Humans population
CHα

S = �2 – δHHSMI – dHHS + βHR,
CHα

I = δHHSMI –
(
dH + θH + φH)

HI + εHHR,
CHα

R = φHHI –
(
dH + εH + β

)
HR.

(3.3)

The system (3.3) gives the dynamics of host populations, and all state variables and pa-
rameters are assumed to be non-negative.

4 Basic properties of the model
In this section for the well-posedness of the system (3.3), its existence and uniqueness
criteria are given below. Let x = MS, MI , HS, HI , HR, and D is either a Riemann–Liouville
or a Caputo fractional operator, then

t0 Dα
t x(t) = g(t, x) (4.1)

with initial conditions are x(t0). Let α ∈ (0, 1), and g is piecewise continuous in time t and
locally Lipschitz in x on [t0,∞] × V to R

n, where V ∈ R
n is a domain.

4.1 Existence and uniqueness
The fact that g(t, x) is locally bounded and Lipschitz in x implies the existence and unique-
ness of the solution of Eq. (4.1). Thus we have the following.

Lemma 4.1 Let g(t, x) be the real-valued continuous function, α ≥ 0, and ‖ · ‖ be an arbi-
trary norm, then ‖t0 Iα

t g(t, x(t))‖ ≤t0 Iα
t ‖g(t, x(t))‖.

Proof From Definition 2.1, and the properties of the norm function we have

∥∥
t0

Iα
t g

(
t, x(t)

)∥∥ ≤ 1
�(α)

∫ t

t0

‖g(ω, x(ω))‖
(t – ω)1–α

dω =t0 Iα
t
∥∥g

(
t, x(t)

)∥∥. �

Theorem 4.2 In Eq. (4.1), let t0 Dα
t =C

t0 Dα
t , α ∈ (0, 1), g is Lipschitz on x with Lischitz

constant L and is piecewise continuous w.r.t. t, then the solution of Eq. (4.1) satisfies
‖x(t)‖ ≤ ‖x(t0)‖Eα(L(t – t0)α).

Proof Applying the fractional integral operator t0 Iα
t on both sides of Eq. (4.1), thus it fol-

lows from Lemma 4.1 and the Lipschitz condition that

∣∣∥∥x(t)
∥∥ –

∥∥x(t0)
∥∥∣∣ ≤ ∥∥x(t) – x(t0)

∥∥ ≤ Lt0 Iα
t
∥∥x(t)

∥∥.
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There exists M(t) > 0, we have

∥∥x(t) – x(t0)
∥∥ = Lt0 Iα

t
∥∥x(t)

∥∥ – M(t). (4.2)

Using Laplace transform on both sides of Eq. (4.2), we have

L
∥∥x(t)

∥∥ =
(
sα – 1

)–1(∥∥x(t0)
∥∥sα–1 – sαM(s)

)
. (4.3)

Using the inverse Laplace transform on both sides of Eq. (4.3), we have

∥∥x(t)
∥∥ ≤ ∥∥x(t0)

∥∥Eα

(
L(t – t0)α

)
. (4.4)

Hence the result is proved. �

4.2 Invariant region and attractivity
The dynamical transmission of the system (3.3) will be analyzed in the biologically feasible
region as, Z ⊂R

5
+, where. Z = {x ∈R

5
+ : �1 ≤ �1

dM ,�2 ≤ �2
dH }.

Lemma 4.3 The biological feasible region Z ⊂ R
5
+ is positively invariant with respect to

the initial conditions in R
5
+ for the system (3.3).

Proof Adding the first two equations of the system (3.3), the total vectors population, is

C
0 Dα

t �1 = �1 – dM�1. (4.5)

The solution of the fractional system (3.3) is

�1 = �1(0)Eα,1
(
–dM, tα

)
+ �1tαEα,α+1

(
–dMtα

)
,

where Eα,β is the Mittag-Leffler function. The behavior of this function is asymptotic, so
it gives

Eα,β (g) ∼ –
ν∑

j=1

g–j

�(β – αj)
+ O

(|j|–1–ν
)
, (|g| → ∞,

∣∣arg(g)
∣∣ ∈ (απ/2,π ]). (4.6)

Therefore, from Eq. (4.6) �1 tends towards �1/dM as time(t) tends to infinity.
Further, the proof for the case of the host individuals is completely similar to the vector

and hence it is omitted. Thus, for all positive values of t, all the values of the Caputo frac-
tional derivative the system (3.3) with i.c.s of Z remain in Z . Therefore, the region Z is
positively invariant for the system (3.3) and attracts all solutions in R

5
+. �

To show the system (3.3) has non-negative solution, we have R
5
+ = {xT ∈R

5 : x ≥ 0}.

Corollary 4.4 Let g(t) ∈ C[p, q] and CDα
t g(t) ∈ (p, q], and α ∈ (0, 1]. If

(a) CDα
t g(t) ≤ 0, for all g ∈ (p, q), then g(t) is non-increasing,

(b) CDα
t g(t) ≥ 0, for all g ∈ (p, q), then g(t) is non-decreasing.
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4.3 Positivity and boundedness
Proposition 4.5 The solution of the system (3.3) is positive, bounded for all x(0) ∈ R

5
+, for

t > 0.

Proof To demonstrate the positivity, it is required that on every hyperplane bounding of
R

5
+, from the system (3.3), we have

CDα
t MS(at MS = 0) = �1 ≥ 0,

CDα
t MI(at MI = 0) = δMMSHI ≥ 0,

CDα
t HS(at HS = 0) = �2 + βHR ≥ 0,

CDα
t HI(at HI = 0) = δHHSMI + εHHR ≥ 0,

CDα
t HR(at HR = 0) = φHHI ≥ 0.

Thus, by Corollary 4.4, the above target set has been achieved, that is, the solution will
stay in R

5
+ and thus we have the following biologically feasible region:

� =
{

x(0) ∈R
5
+ : x(0) ≥ 0

}
.

Therefore all the terms of the sum are positive, then the solution of the system (3.3) is
bounded. �

Lemma 4.6 The feasible region Z is positively invariant for the system (3.3) with an initial
condition in R

5
+. It is sufficient to show the dynamics of the aforesaid system in the region

given in Z . So this region can be supposed epidemiologically and biologically.

5 The analysis
It is hard to find the stability of the equilibrium from the equations of the system (3.3) be-
cause the fractional derivatives do not follow the Leibniz rule [41]. So, we use the following
transformation:

N1 = CDα
t MS + δMMSHI ,

N2 = CDα
t MI – δMMSHI ,

N3 = CDα
t HS + δHHSMI ,

N4 = CDα
t HI – δHHSMI ,

N5 = CDαHR.

(5.1)

The modified system (5.2) is given as

CD1–α
t N1 = �1 – dMMS,

CD1–α
t N2 = –dMMI ,

CD1–α
t N3 = �2 – dHHS + βHR,

CD1–α
t N4 = –G1HI + εHHR,
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CD1–α
t N5 = φHHI – G2HR,

CDα
t MS = N1 – δMMSHI ,

(5.2)

CDα
t MI = N2 + δMMSHI ,

CDα
t HS = N3 – δHHSMI ,

CDα
t HI = N4 + δHHSMI ,

CDα
t HR = N5,

where G1 = dH + θH + φH , & G2 = dH + εH + β .
Thus the malaria system (3.3) is equivalent to the system (5.2), so it is enough to know

more about the stability properties of the system (5.2).

5.1 Disease-free equilibrium (DFE)
The DFE point of the system (3.3) is

E0 =
(
N∗

1 , N∗
2 , N∗

3 , N∗
4 , N∗

5 , M∗
S , M∗

I , H∗
S , H∗

I , H∗
R,

)
=

(
0, 0, 0, 0, 0,�1/dM, 0,�2/dH , 0, 0

)
.

To know more about the stability of the equilibrium point E0, we build the Jacobian matrix
J at E0 of the system (5.2) as

JE0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 –dM 0 0 0 0
0 0 0 0 0 0 –dM 0 0 0
0 0 0 0 0 0 0 –dH 0 β

0 0 0 0 0 0 0 0 –G1 εH

0 0 0 0 0 0 0 0 φH –G2

1 0 0 0 0 0 0 0 –δM �1
dM 0

0 1 0 0 0 0 0 0 δM �1
dM 0

0 0 1 0 0 0 –δM �2
dH 0 0 0

0 0 0 1 0 0 δM �2
dH 0 0 0

0 0 0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the system (5.2) is a fractional-order compartmental model with multi-orders ex-
cept for α = 2

3 . So, the multi-orders can be mathematically among any numbers like ra-
tional, irrational, real, or complex. But in the literature, there is no existing method for
checking the stability of the fractional derivatives compartmental model with multi-orders
among irrational, real, or complex numbers. Therefore, we assume that α is a rational
number [9]. The stability of E0 is defined by the solutions of the following characteristic
equation of JE0 :

D
(
JE0 – �

([
λ(S–R),λ(S–R),λ(S–R),λ(S–R),λ(S–R),λ(R),λ(R),λ(R),λ(R),λ(R)])) = 0, (5.3)

where D and � denotes the determinant and the diagonal matrix. But the stability of E0

can be investigated by the use of the following result [42].
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Remark 1 For all E0 of the system (5.2), the λ are found from the following characteristic
equation:

D
(
�

([
λFp1 ,λFp1 ,λFp1 ,λFp1 ,λFp1 ,λFp2 ,λFp2 ,λFp2 ,λFp2 ,λFp2

]
– JE0

))
=0, (5.4)

where J(E0) is the jacobian matrix evaluated at the DFE points and F is the LCM of the
denominators of the rational numbers 5(p1, p2), and p1, p2 ∈Q.

Lemma 5.1 For E0 of the system (5.2), is
(i) locally asymptotically stable if the λ found from Eq. (5.4) satisfy the Routh–Hurwitz

criteria of stability or the inequality | arg(λ)| > π
2F ,

(ii) unstable if at least one of the eigenvalue λ determined from Eq. (5.4) satisfy the
inequality | arg(λ)| < π

2F , where F is already defined in Remark 1.

Based on Lemma 5.1 we have the following theorem.

Theorem 5.2 If λ be the solution of

λ3S + λ2S(dM + G1 + G2
)

+ λS(dM(G1 + G2) + G1G2 – φHεH)

+ Z – λ3S(1–α)(δMδHS∗
MS∗

H
)

= 0,

where Z = (dM(G1G2 + φHεH ) – δMδHS∗
MS∗

HG2). Then E0 of the system (5.2) is
(i) locally asymptotically stable if | arg(λe)| > π

2K , ∀i = 1, 2, . . . , 2K ;
(ii) unstable if | arg(λj)| < π

2K , for at least one j = 1, 2, . . . , 2K ; and
(iii) if ∃ a pair of roots (λq1 ,λq2 ) of the above polynomial equation satisfied in the critical

region i.e., | arg(λqj )| = π
2S , for some α∗ = R

S ∈ (0, 1), then the system (5.2) shows a
Hopf-type bifurcation at α∗.

Proof Expanding the characteristic equation (5.4) gives the following equation:

(
λS + dM)(

λS + dH)[
λ3S + λ2S(dM + G1 + G2

)
+ λS(dM(G1 + G2) + G1G2 – φHεH

– δMδHS∗
MS∗

H
)

+ Z – λ3S(1–α)(δMδHS∗
MS∗

H
)]

= 0. (5.5)

(i) By lemma (5.1), the disease-free equilibrium is locally asymptotically stable if all the
values λ of Eq. (5.5) gives | arg(λ)| > π

2S . The arguments of the values of the first term in Eq.
(5.5) yield

arg(λh) =
π

S
+

2hπ

S
, h = 0, 1, 2, . . . , (S – 1),

�⇒ ∣∣arg(λh)
∣∣ ≥ π

S
>

π

2S
∀h = 0, 1, 2, . . . , (S – 1).

For the values of the first term in Eq. (5.5)

∣∣arg(λh)
∣∣ >

π

2S
, and, h = 0, 1, 2, . . . , (S – 1).
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The arguments of the values of second term in Eq. (5.5) are

arg(λk) =
π

S
+

2kπ

S
, k = 0, 1, 2, . . . , (S – 1),

�⇒ ∣∣arg(λk)
∣∣ ≥ π

S
>

π

2S
∀k = 0, 1, 2, . . . , (S – 1).

For the values of Eq. (5.5) from the first term

∣∣arg(λk)
∣∣ >

π

2S
, where, k = 0, 1, 2, . . . , (S – 1).

Thus, the stability in system (5.2) of the remaining factor depends on the nature of the
values of the characteristic equation (5.5), and we have

λ3S + λ2S(dM + G1 + G2
)

+ λS(dM(G1 + G2) + G1G2 – φHεH – δMδHS∗
MS∗

H
)

+ Z – λ3S(1–α)(δMδHS∗
MS∗

H
)

= 0. (5.6)

Hence, if all the values λe of Eq. (5.6) yield | arg(λe)| > π
2S , where, i = 0, 1, 2, . . . , 2S, then

E0 of the system (5.2) is locally asymptotically stable.
(ii) Again, by Lemma 5.1, the disease-free equilibrium is unstable if at least one of the

value of λ of Eq. (5.5) gives | arg(λ)| < π
2S . The values of arguments of first term in Eq. (5.5),

have the following form:

arg(λh) =
π

S
+

2hπ

S
, h = 0, 1, 2, . . . , (S – 1),

�⇒ ∣∣arg(λh)
∣∣ <

π

S
<

π

2S
for at least h = 0, 1, 2, . . . , (S – 1).

So, at least one value of the first term in Eq. (5.5) is

∣∣arg(λh)
∣∣ <

π

2S
, and, h = 0, 1, 2, . . . , (S – 1).

The values of arguments second term are obtained from Eq. (5.5), in the following form:

arg(λk) =
π

S
+

2kπ

S
, k = 0, 1, 2, . . . , (S – 1),

�⇒ ∣∣arg(λk)
∣∣ <

π

S
<

π

2S
for at least k = 0, 1, 2, . . . , (S – 1).

Thus, at least one value of the first term of Eq. (5.5) is

∣∣arg(λk)
∣∣ <

π

2S
, and, k = 0, 1, 2, . . . , (S – 1).

Therefore, the stability of E0 of the system (5.2) of the remaining term depends on the
nature of the solutions in the characteristic equation (5.5).

Hence, if at least one root λj of Eq. (5.6) gives | arg(λe)| < π
2S , where, i = 0, 1, 2, . . . , 2S, then

E0 of the system (5.2) is unstable.
(iii) Let us discuss the mandatory condition for the existence of Hopf-type bifurcation

for the system (5.2). The condition for the Hopf-type bifurcation of the system (5.2) is that
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if for some roots λq and α∗ = R
S ∈ (0, 1) of Eq. (5.6) then | arg(λq)| = π

2S . At α∗ the system
(5.2) shows a Hopf-type bifurcation [24].

Now, we will study about the sufficient conditions of a Hopf-type bifurcation for the
existence of the system (5.2), let us suppose ∃ a value λ of Eq. (5.6) in the form λ = re

iπ
2S , and

r ∈R
+ and i =

√
–1. Substitute λ in Eq. (5.6), we have the two equations in the variable r:

r3S + r3S(1–α) sinπ (1 – α)δMδH – rS = 0,

r2S + r3S(1–α) cosπ (1 – α)δMδH – Z = 0.

The above equations can be changed into the variable r as below:

r6S + r6S(1–α)(δMδHS∗
MS∗

H
)2 – r4S + r2S(1 – 2Z) + Z2 = 0. (5.7)

By Descartes’s rules, the polynomial equation (5.8) has either zero or two positive root.
If Eq. (5.8) having two positive solution, which are conjugate root of the form λ = re± iπ

2S of
Eq. (5.6) for some α∗ = R

S ∈ (0, 1). Hence the system (5.2) shows a Hopf-type bifurcation at
the order α∗. �

Remark 2 The variation of α gives

λ3 + λ2(dM + G1 + G2
)

+ λ
(
dM(G1 + G2) + G1G2 – φHεH)

+ C
[

1 –
dMφHεH + δMδHS∗

MS∗
H (G2 + λ3S(1–α))

C

]
= 0, (5.8)

where C = dMG1G2. It is important to note here that we can get back the result of the
system (3.1) after putting the value of α = 1. So, on the base of this fact at the fractional-
order derivative α = 1 of the system, Eq. (5.6) is of the form

λ3 + λ2(dM + G1 + G2
)

+ λ
(
dM(G1 + G2) + G1G2 – φHεH)

+ C
[

1 –
dMφHεH + δMδHS∗

MS∗
HG2

C

]
= 0. (5.9)

Thus this quantity R0 =
√

dMφH εH +δMδH S∗
MS∗

H G2
C is known as a threshold quantity, and this

is dimensionless and this quantity is epidemiologically known as the basic reproduction
number. The basic reproduction number is simply called the number of secondary infec-
tions caused by the primary substance or the potential which measures the spread of the
disease in a population.

It is concluded that if α = 1 we can go backward towards the classical result of the epi-
demiological view for our system (3.1). If R0 < 1, the E0 is locally asymptotically stable and
if R0 > 1, the E0 is unstable and the disease persists in the population [10].

Remark 3 If α = 2
3 , then the system (5.2) converts into a one order fractional compartmen-

tal model. So from this fact we can conclude that our main stability results in Theorem
5.2 in terms of the threshold quantity (R0).
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We have the following result.

Proposition 5.3 When the order α = 2
3 , then the equilibrium value of threshold quantity

R0 is determined as Rc
0 =

√
dM(G1+G2)–φHεH

dMG1G2
+ 1

dM . Now, we have
(i) if R0 < Rc

0, then the DFE E0 of the system (5.2) is locally asymptotically stable;
(ii) if R0 > Rc

0, then the DFE E0 of system (5.2) is unstable and the system (5.2) shows a
Hopf-type bifurcation; and

(iii) if R0 = Rc
0, then the DFE E0 is stable.

5.2 Positive equilibrium
The system (3.3) has a positive equilibrium point E1 = (M∗∗

S , M∗∗
I , H∗∗

S , H∗∗
I , H∗∗

R ) that sat-
isfies

M∗∗
S =

KG1

M2
, M∗∗

I =
M1

dMM2
,

H∗∗
S =

dMM2M∗
2

KG1dHM∗
1

, H∗∗
I =

M1(δHM∗
2 – G2ε

HM∗
1)

KdH G2
1M∗

1
, H∗∗

R =
G2M1

KdHG1
,

where M1 = �1�2 –G1dHd2M , M2 = �2 +G1dM , M∗
1 = δHM1 +dH dMM2, M∗

2 = KG1�2dH +
βM1G2, and K = �1 + dHdM .

We address the locally asymptotically stable of the positive (endemic) equilibrium point
of the system (3.3). The Jacobian matrix J(E1) is given as

JE1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

–δMHI – dM 0 0 –δMMS 0
δMHI –dM 0 δMMS 0

0 –δH HS –δHMI – dH 0 β

0 δHHS δHMI –G1 εh

0 0 0 φH –G2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.10)

The characteristic equation of the Jacobian matrix at E1 is

λ5 + Z1λ
4 + Z2λ

3 + Z3λ
2 + Z4λ + Z5 = 0, (5.11)

where

Z1 = G1 + G2 + δMHI + δHMI + 2dM + dH ,

Z2 = dMA1 + A3A4 + G1G2A2A5 – δMδHMSHS – φHεH ,

Z3 = δMδ2HMSMIHS + δ2MδHMSHIHS + G1G2A6 + dMA1A4 + A3(G1A5 + G2A6)

– βφHδHMI – φHεHA6 – φHεHA3 – δMδHMSHSA1,

Z4 = G2δ
Mδ2HMSMIHS + δMδ2HMS(HS)2A1 + G1G2A6A3 + δ2MδHMSHSHIA7

+ dMA1(G1A7 + G2A6) – δ2MδHMSMIHSHI – dMφHεHA1 – G2δ
MδHMSHSA6

– βMIφ
HδHA3 – φHεHA6A3 – δMδHMSHSA1A7,

Z5 = G2δ
2HMIHS

(
δ2MMSHI – δMMSA1

)
+ dMφHA1

(
βMIδ

H + εHA6
)

– G2A6
(
δ2MδHMSHSHI + dMG1A1 + δMδHMSHSA1

)
,
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and A1 = δMHI + dM , A2 = δMMI + dH , A3 = δMHI + 2dM , A4 = G1 + G2 + dH + δHMI , A5 =
G2 + dH + δHMI , A6 = δHMI + dH , A7 = G2 + δHMI + dH .

Assume f (x) = ax5 + bx4 + cx3 + dx2 + ex + f . Let Dis(f ) denote the discriminant of a
polynomial f (x), then

Dis(f ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 b c d e f 0 0 0
0 1 b c d e f 0 0
0 0 1 b c d e f 0
0 0 0 1 b c d e f
5 4b 3c 2d e 0 0 0 0
0 5 4b 3c 2d e 0 0 0
0 0 5 4b 3c 2d e 0 0
0 0 0 5 4b 3c 2d e 0
0 0 0 0 5 4b 3c 2d e

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (5.12)

We have the following proposition.

Proposition 5.4 If Dis(f ) > 0 and Routh–Hurwitz criteria are satisfied, that is,
(i) 1, b, c, d, e, f > 0;

(ii) bc – d > 0;
(iii) bf + bcd – eb2 – d2 > 0;
(iv) cdf + bcde + 2bfe – bc2f – b2e2 – d2e – f 2 > 0;
(v) (bcd – b2e – d2)ef + (2be + cd – bc2)f 2 – f 3 > 0,

then E1 is locally asymptotically stable.

6 Optimal control
We can put the control parameter on this serious problem to prevent its spreading. The
following are the control parameters:

h1: Infectious mosquitoes, which should be killed.
h2: Malaria patients, who should be treated.
Now, the objective function is

G(li,�) =
∫ Tf

0

(
W1M2

S + W2M2
I + W3H2

S + W4H2
I + W5H2

R + u1h2
1 + u2h2

2
)

dt, (6.1)

where � is the set of all compartmental variables, W1, W2, W3, W4, W5 of the positive
weight constants for the variables MS , MI , HS , HI , HR.

Now, we will find every value of control variables from t = 0 to Tf s.t.,

F
(
hi(t)

)
= min

{F (h∗
i ,�)

hi
∈M

}
, i = 1, 2, (6.2)

where M is the smooth function for the interval [0, 1].
Therefore, the Langrangian function related to the objective function F is given by

ℵ(�, Wi) = W1M2
S + W2M2

I + W3H2
S + W4H2

I + W5H2
R + u1h2

1 + u2h2
2

+ ζ1
(
�1 – δMMSHI – dMMS

)
+ ζ2

(
δMMSHI –

(
dM + h1

)
MI

)
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+ ζ3
(
�2 – δHHSMI – dHHS + βHR

)
+ ζ4

(
δHHSMI – (G1 + h2)HI

+ h1MI + εHHR
)

+ ζ5
((

h2 + φH)
HI – G2HR

)
. (6.3)

The adjoint variables, ζi = (ζ1, ζ2, ζ3, ζ4, ζ5), for the system are calculated by taking the par-
tial derivatives of ℵ with respect to each variable,

ζ̇1 = –
∂ℵ

∂MS
= –2W1MS + (ζ1 – ζ2)δMHI + ζ1dM,

ζ̇2 = –
∂ℵ
∂MI

= –2W2MI + ζ2dM + (ζ2 – ζ4)h1 + (ζ3 – ζ4)δHHS,

ζ̇3 = –
∂ℵ
∂HS

= –2W3HS + (ζ3 – ζ4)δHMI + ζ3
(
dH + β

)
,

ζ̇4 = –
∂ℵ
∂HI

= –2W4HI + (ζ1 – ζ2)δMMS + (ζ4 – ζ5)h2 + (ζ4 – ζ5)φH + ζ5
(
θH + dH)

,

ζ̇5 = –
∂ℵ
∂HR

= –2W5HR + ζ5
(
dH + β

)
+ (ζ5 – ζ4)εH .

Hence, this calculation gives

h∗
1 = max

(
c1, min

(
d1,

MI(ζ2 – ζ4)
2u1

))
,

h∗
2 = max

(
c2, min

(
d2,

HI(ζ4 – ζ5)
2u2

))
.

(6.4)

7 Numerical methods
In this section, we discuss the approximate solution via numerical methods such as
Runge–Kutta method of fourth order (RK4) and Laplace Adomian decomposition method
(LADM) for the system (3.3). For the sake of easiness we omit the RK4. But graphically we
will observe it. We apply the Laplace transform on both sides of system (3.3), which yields

L
{CDα1

t MS
}

= L
{
�1 – δMMSHI – dMMS

}
,

L
{CDα2

t MI
}

= L
{
δMMSHI – dMMI

}
,

L
{CDα3

t HS
}

= L
{
�2 – δH HSMI – dHHS + βHR

}
,

L
{CDα4

t HI
}

= L
{
δHHSMI – G1HI + εHHR

}
,

L
{CDα5

t HR
}

= L
{
φHHI – G2HR

}
.

(7.1)

After some simplification, using the initial conditions n1, n2, n3, n4, n5 and taking the
inverse Laplace to transform to system (7.1), we have

MS = n1 + L –1
[

1
sα1

L
{
�1 – δMMSHI – dMMS

}]
,

MI = n2 + L –1
[

1
sα2

L
{
δMMSHI – dMMI

}]
,

HS = n3 + L –1
[

1
sα3

L
{
�2 – δHHSMI – dHHS + βHR

}]
, (7.2)
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HI = n4 + L –1
[

1
sα4

L
{
δHHSMI – G1HI + εHHR

}]
,

HR = n5 + L –1
[

1
sα5

L
{
φHHI – G2HR

}]
.

Suppose that the solutions x are in the form of infinite series that are given by

MS =
∞∑

n=0

MS(n), MI =
∞∑

n=0

MI(n),

HS =
∞∑

n=0

HS(n), HI =
∞∑

n=0

HI(n), HR =
∞∑

n=0

HR(n),

(7.3)

and the nonlinear terms involved in the system are MSHI and HSMI are decomposed as

MSHI =
∞∑

n=0

An, HSMI =
∞∑

n=0

Bn, (7.4)

where An, Bn are the Adomian polynomials for λ = 0 given by

An =
1

�(n + 1)
dn

dtn

[ n∑
k=0

λ2kMS(k)HI(k)

]
,

Bn =
1

�(n + 1)
dn

dtn

[ n∑
k=0

λ2kHS(k)MI(k)

]
.

(7.5)

Now using Eq. (7.3) and (7.4) into (7.2), gives

L {MS(0)} =
n1

s
, L {MI(0)} =

n2

s
, L {HS(0)} =

n3

s
,

L {HI(0)} =
n4

s
, L {HR(0)} =

n5

s
,

L {MS(1)} =
{
�1 – δMA0 – dMMS(0)

} 1
sα1+1 ,

L {MI(1)} =
{
δMA0 – dMMI(0)

} 1
sα2+1 ,

L {HS(1)} =
{
�2 – δHB0 – dHHS(0) + βHR(0)

} 1
sα3+1 ,

L {HI(1)} =
{
δHB0 – G1HI(0) + εHHR(0)

} 1
sα4+1 ,

L {HR(1)} =
{
φH HI(0) – G2HR(0)

} 1
sα5+1 , (7.6)

...

L {MS(n+1)} =
{
�1 – δMAn – dMMS(n)

} 1
sα1+1 ,

L {MI(n+1)} =
{
δMAn – dMMI(n)

} 1
sα2+1 ,

L {HS(n+1)} =
{
�2 – δHBn – dHHS(n) + βHR(n)

} 1
sα3+1 ,
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L {HI(n+1)} =
{
δHBn – G1HI(n) + εHHR(n)

} 1
sα4+1 ,

L {HR(n+1)} =
{
φHHI(n) – G2HR(n)

} 1
sα5+1 .

Taking the inverse Laplace transform of Eq. (7.6), we have the solution of A0, B0 sub-
stituting these values to get A1, B1 and finally the solution is found in the form of infinite
series:

A(t) = A0 + A1 + A2 + A3 + · · · , B(t) = B0 + B1 + B2 + B3 + · · · , (7.7)

MS(0) = n1, MI(0) = n2, HS(0) = n3, HI(0) = n4, HR(0) = n5,

MS(1) =
D1tα1

�(α1 + 1)
, MI(1) =

D2tα2

�(α2 + 1)
, HS(1) =

D3tα3

�(α3 + 1)
,

HI(1) =
D4tα4

�(α4 + 1)
, HR(1) =

D5tα5

�(α5 + 1)
,

MS(2) =
�1tα1

�(α1 + 1)
– dM D1t2α1

�(2α1 + 1)
– δM

[
D1D4t2α1

�(2α1 + 1)
× tα1+α4

�(α1 + α4 + 1)

]
,

MI(2) = δM
[

D1D4t2α1

�(2α1 + 1)
× tα1+α4

�(α1 + α4 + 1)

]
– dM D2t2α1

�(2α1 + 1)
,

HS(2) = �2
tα3

�(α3 + 1)
–

[
δH D2D3t2α3

�(2α3 + 1)
× D3tα2+α3

�(α2 + α3 + 1)
– dH t2α3

�(2α3 + 1)

]

+ β
D2tα3+α5

�(α3 + α5 + 1)
,

HI(2) = δH
[

D2D3t2α3

�(2α3 + 1)
× tα2+α3

�(α2 + α3 + 1)

]
– G1

D4t2α4

�(2α4 + 1)
+ εH D5tα4+α5

�(α4 + α5 + 1)
,

HR(2) = φH D4tα4+α5

�(α4 + α5 + 1)
– G2

D5t2α5

�(2α5 + 1)
, (7.8)

where D1 = �1 – δMn1n4 – dMn1, D2 = δMn1n4 – dMn1, D3 = �2 – δHn3n2 – dHn3 + βn5,
D4 = δHn3n2 – G1n4 + εHn5, D5 = φHn4 – G2n5.

8 Numerical simulation
In this section we will discuss the numerical work of system (3.3) via Laplace Adomian de-
composition and Runge–Kutta method. For simplification we use the values of the param-
eters that are n1 = 20, n2 = 40, n3 = 60, n4 = 80, n5 = 100, dM = 0.00667, dH = 0.0000450,
δM = 0.01, δH = 0.1, θH = 0.1, φH = 0.1428, �1 = 10, �2 = 100, εH = 0.028, β = 0.05,
α1 = α2 = α3 = α4 = α5 = α, then Eqs. after (7.7) can be written as

MS(0) = 20, MI(0) = 40, HS(0) = 60,

HI(0) = 80, HR(0) = 100,

MS(1) = –7.34
tα

�(α + 1)
, MI(1) = 13.332

tα

�(α + 1)
,

HS(1) = –234.373
tα

�(α + 1)
, HI(1) = 233.373

tα

�(α + 1)
,
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HR(0) = 3.62
tα

�(α + 1)
,

MS(2) = 10
tα

�(α + 1)
+ 0.489

t2α

�(2α + 1)
+ 17.129

t4α

�(4α + 1)
,

(8.1)

MI(2) = –0.889
t2α

�(2α + 1)
+ 17.129

t4α

�(4α + 1)
,

HS(2) = 0.1
tα

�(α + 1)
+ 0.170

t2α

�(2α + 1)
+ 313.171

t4α

�(4α + 1)
,

HI(2) = –56.374
t2α

�(2α + 1)
+ 313.171

t4α

�(4α + 1)
,

HR(2) = 33.043
t2α

�(2α + 1)
.

The solution after finding three terms solving Eq. (8.1) is given as follows:

MS = 20 + 2.66
tα

�(α + 1)
+ 0.489

t2α

�(2α + 1)
+ 17.129

t4α

�(4α + 1)
,

MI = 40 + 13.332
tα

�(α + 1)
– 0.889

t2α

�(2α + 1)
+ 17.129

t4α

�(4α + 1)
,

HS = 60 – 234.273
tα

�(α + 1)
+ 0.170

t2α

�(2α + 1)
+ 313.171

t4α

�(4α + 1)
,

HI = 80 + 233.373
tα

�(α + 1)
– 56.374

t2α

�(2α + 1)
+ 313.171

t4α

�(4α + 1)
,

HR = 100 + 3.62
tα

�(α + 1)
+ 33.043

t2α

�(2α + 1)
.

(8.2)

Therefore for α = 0.75, the solution of the system (3.3) is

MS(t) = 20 + 2.894t0.75 + 0.367t1.5 + 2.854t3,

MI(t) = 40 + 14.491t0.75 – 0.668t1.5 + 2.854t3,

HS(t) = 60 – 254.64t0.75 + 0.127t1.5 + 52.195t3,

HI(t) = 80 + 253.667t0.75 – 42.418t1.5 + 52.195t3,

HR(t) = 100 + 3.934t0.75 + 5.507t1.5.

(8.3)

For α = 0.667, the solution of the system (3.3) is

MS(t) = 20 + 2.946t0.667 + 0.410t1.334 + 4.262t2.668,

MI(t) = 40 + 14.767t0.667 – 0.746t1.334 + 4.262t2.668,

HS(t) = 60 – 259.496t0.667 + 0.142t1.334 + 77.934t2.668,

HI(t) = 80 + 258.499t0.667 – 47.329t1.334 + 77.934t2.668,

HR(t) = 100 + 4.009t0.667 + 27.741t1.334.

(8.4)



ul Rehman et al. Advances in Difference Equations        (2021) 2021:390 Page 19 of 27

Figure 2 Variation of MS , MI versus t for α = 0.75, 0.667, 0.50

For α = 0.50, the solution of the system (3.3) is

MS(t) = 20 + 3.002t0.5 + 0.489t1 + 8.564t2,

MI(t) = 40 + 15.047t0.5 – 0.889t1 + 8.564t2,

HS(t) = 60 – 264.416t0.5 + 0.170t1 + 156.585t2,

HI(t) = 80 + 263.400t0.5 – 56.374t1 + 156.585t2,

HR(t) = 100 + 4.085t0.5 + 33.043t1.

(8.5)

The Laplace Adomian decomposition method and Runge–Kutta method of fourth or-
der both are used to find the approximate solution of the non-linear fractional-order sys-
tem. We use both these methods to check the variations for biological state variables
for fractional-order derivative α and parameters. The Laplace Adomian decomposition
method is more efficient and accurate than the Runge–Kutta method. From Figs. 2(a&b)
and 3(a&b), we have seen that the system (3.3) has more degree of freedom than system
(3.1). The dynamical behavior of various compartments has been shown. From the graph-
ics of the Laplace Adomian decomposition method, it is clear that the result obtained by
using the Laplace domain decomposition method is very efficient and dramatically in-
creased by the increase of terms. One more interesting point to be looked at is that for
the use of the small interval of time, we have assumed comparatively small initial values.
For the large interval of time, the initial value should be taken large so that the concerned
population of vectors and hosts may not be negative and vice versa. Now we will make
the graphs through the Runge–Kutta method from Figs. 4(a&b), 5(a&b), 6(a&b), 7(a&b)
and 8(a&b). It is observed from Fig. 4(a) that when δM increases, MS decreases. It means
as the rate of infection in vector increases the number of susceptible mosquitoes natu-
rally decreases. Next, it is observed from Fig. 4(b) that when δM increases, MI increases.
It means as the rate of infection in vectors increases the number of infectious mosquitoes
naturally goes on increases. This is a natural phenomenon and we observe it correctly
through graphs. Similarly, it is observed from Fig. 5(a) that when δH decreases, HS in-
creases. It means as the rate of infection in the host decreases the number of susceptible
humans naturally goes on the increase. Next, it is observed from Fig. 5(b) that when δH

decreases, HI decreases. It means as the rate of infection in the host decreases the number



ul Rehman et al. Advances in Difference Equations        (2021) 2021:390 Page 20 of 27

Figure 3 Variation of HS , HI , HR versus t for α = 0.75, 0.667, 0.50

Figure 4 Variation of MS , MI versus t for δM = 0.01, 0.05, 0.09

of infectious humans naturally goes on decreases. Also, it is observed from Fig. 6(a) that
when the rate of temporary immunity in human population β increases the HS class goes
on increases, and from Fig. 6(b) it is observed that as β decrease HR decreases. Next from
Fig. 7(a) it is observed that when the rate of vaccination φH increases in the human pop-
ulation the number of infectious humans HI decreases and HR increases and this thing is
seen in Fig. 7(b). Further, it is observed from Fig. 8(a&b) that as εH increases HI increases
and HR decreases. All these graphs can be observed naturally. Hence by the Runge–Kutta
method, we have checked all the possible variations.
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Figure 5 Variation of HS , HI versus t for δH = 0.1, 0.01, 0.001

Figure 6 Variation of HS , HR versus t for β = 0.005, 0.5, 1.5

Figure 7 Variation of HI , HR versus t for φH = 0.1428, 0.2028, 0.2428

8.1 Sensitivity analysis
For our system (3.3), four parameters viz φH , εH , δM and δH are the key parameters in
order to regulate the R0. The sensitivity of R0 to the variations in these parameters is
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Figure 8 Variation of HI , HR versus t for εH = 0.028, 0.050, 0.090

given by the partial derivatives:
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(8.6)

All the values of the system (8.6) are positive. We observe that R0 increases with the
increase of any four parameters listed as above. Now to check the effects of the corre-
sponding variations to these parameters on basic reproduction numbers, we calculated
the elasticities. As elasticity is nothing but the corresponding feedback to a correspond-
ing perturbation,

EφH =
φH

R0
× ∂R0
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1

2
√
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G2
–
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�1�2δ
MδH
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(8.7)

EδM = EδH . So from these four expressions we have observed that small changes in δM and
δH will have the same effect on the basic reproduction number. Also it is observed that
EφH > EεH > EδM = EδH when

√
R0 < εH (dH + θH ) and in this case the small change in φH

will have big impact on basic reproduction number compared to the same correspond-
ing variations in the other three parameters like εH , δM , δH . If

√
R0 > εH (dH + θH ) in this

case a small change in εH will have big impact on basic reproduction number compared to
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Figure 9 Influence of φH , εH and φH , δH onR0

Figure 10 Influence of φH , εH and δM , εH onR0

Figure 11 Influence of δH , εH and φH , δM onR0

the same corresponding variations in other three parameters like φH , δM , δH . From Figs.
9(a&b), 10(a&b) and 11(a&b) we have shown the effect of these four parameters φH , εH ,
δM , δH on R0. It is seen from Fig. 9(a&b) that the biological parameter φH which is the
vaccination rate in the host population has a higher influence on R0 than the parame-
ters proportional to the transmission probabilities δM , δH . From Fig. 10(a&b) it is seen
that the biological parameter φH which is the vaccination rate in the host population has
higher influence on R0 than the parameter proportional to the transmission probabilities
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εH and the biological parameter δM , that is, the rate of infection in vectors population has
higher influence on R0 than the parameter proportional to the transmission probabilities
εH . Moreover from Fig. 11(a&b) one sees that the biological parameter δH , that is, the rate
of infection in the host population has higher influence on R0 than the parameter pro-
portional to the transmission probabilities εH and the biological parameter φH which is
the vaccination rate in hosts population has higher influence on R0 than the parameter
proportional to the transmission probabilities δM . Thus from the sensitivity analysis, we
can observe that controlling the sexual route of dynamical transmission of this malaria
disease is very important if we plan to control the transmission of this illness. The nu-
merical simulation is performed to hold up our analytical discoveries. The values of the
biological parameters are depicted in Table 2. It is noted that recruitment rate parameters
are in per year, and all other biological parameters are in per day. To show the stability
of disease-free equilibrium point, we consider the biological parametric values of differ-
ent parameters that are involved in the basic reproduction number are listed as �1 = 0.1,
�2 = 10, δM = 0.005, δH = 0.5, dM = 0.0667, dH = 0.05, εH = 0.050, φH = 0.15, θH = 0.1
and β = 0.5, and all these biological parametric values are taken from Table 2. For these
parameters R0 = 0.679 and the disease-free equilibrium point E0 = (1.66, 0, 200, 0, 0). The
behavior of these points can be observed.

8.2 Convergence analysis
The solution in Eq. (7.8) is a series and is rapidly convergent as well as converges uniformly
to the exact value. To check the convergence of the series (7.8), we will use the classical
technique [35]. For the sufficient conditions of convergence of this method, we have the
following theorem.

Theorem 8.1 Let K be a Banach space and F : K → K be a non-linear contractive operator
such that for all x, x′ ∈ K , ‖F(x) – F(x′)‖ ≤ u‖x – x′‖, 0 < u < 1. Then F has a unique point x
such that Fx = x. By the use of Adomian decomposition method the series given in Eq. (7.8)
can be written as

xt = Fxt–1, xt–1 =
t–1∑
i=1

, t = 1, 2, 3, . . . ,

and suppose that x0 ∈ Br(x), where Br(x) = {x′ ∈ K : ‖x′ – x‖ < r}, then we have
(a) xt ∈ Br(x);
(b) limt→∞ xt = x.

Proof For (a), we use mathematical induction for t = 1, to get

‖x0 – x‖ =
∥∥F(x0) – F(x)

∥∥ ≤ u‖x0 – x‖.

Suppose that this result is true for s – 1, then

‖xs – x‖ =
∥∥F(xs–1) – F(x)

∥∥ ≤ u‖xs–1 – x‖ ≤ us‖x0 – x‖,

that is, ‖xt – x‖ ≤ ut‖x0 – x‖ ≤ utr < r therefore, it implies that xt ∈ Br(x).
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(b) We have ‖xt – x‖ ≤ ut‖x0 – x‖ and also limt→∞ ut = 0. Hence, we have limt→∞ ‖xt –
x‖ = 0 �⇒ limt→∞ xt = x. �

Theorem 8.2 Let h is a function from a Hilbert space H into H and ϕ is an exact solution of
the system (3.3) where ϕ = x(t). If there exist α ∈ [0, 1) & ‖ϕx+1‖ ≤ α‖ϕx‖, for all x ∈ Z

+ ∪{0},
then the power series obtained by Eq. (7.5), converges to ϕ.

9 Discussion
In this paper, we analyzed numerically the mathematical malaria model. The existence
and uniqueness of the malaria model are discussed. We have observed that the threshold
quantity is similar to the basic reproduction number and is denoted by R0. We also have
studied the possible equilibrium points and basic reproduction number of this disease.
Next, we have studied the stability analysis of these equilibrium points to the fractional-
order derivative α and R0. We have determined the fractional-order derivative dependent
threshold values for R0, below which E0 is always stable, above which E0 is unstable, and
also at which the model shows a Hopf-type bifurcation. We analytically verify our results
when the fractional-order derivative α = 2

3 and this is the special result in our paper. The
numerical analysis work has been done by the use of the Laplace Adomian decomposition
and Runge–Kutta method to compute an approximate solution of the malaria epidemic
model. We also discuss the optimality of two biological control parameters, and present
a sensitivity analysis of four parameters behavior on R0. We also have discussed the so-
lutions of fractional differential equations. in the form of infinite series and their conver-
gence analysis.

10 Conclusion
The fractional-order mathematical model of malaria transmission with temporary im-
munity and relapse via the Laplace Adomian decomposition method is presented. This
numerical method is a fruitful tool to solve the non-linear models that are widely used in
applied mathematics and engineering. Further, we have given a convergence result for this
numerical method. Also, the aforesaid methods give good numerical results for the non-
linear fractional-order model as compared to the other numerical methods like homotopy
analysis and homotopy perturbation. These two methods have an extra parameter namely
h on which the solutions depend. But our proposed numerical methods do not need any
kind of parameter, so it is easy to understand and then implement. We observe that the
solution found through the LADM closely agrees with those obtained by other methods,
like RK4.
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