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Abstract
The local dynamics with different topological classifications, bifurcation analysis, and
chaos control for the phytoplankton–zooplankton model, which is a discrete
analogue of the continuous-time model by a forward Euler scheme, are investigated.
It is proved that the discrete-time phytoplankton–zooplankton model has trivial and
semitrivial fixed points for all involved parameters, but it has an interior fixed point
under the definite parametric condition. Then, by linear stability theory, local
dynamics with different topological classifications are investigated around trivial,
semitrivial, and interior fixed points. Further, for the discrete-time
phytoplankton–zooplankton model, the existence of periodic points is also
investigated. The existence of possible bifurcations around trivial, semitrivial, and
interior fixed points is also investigated, and it is proved that there exists a transcritical
bifurcation around a trivial fixed point. It is also proved that around trivial and
semitrivial fixed points of the phytoplankton–zooplankton model there exists no flip
bifurcation, but around an interior fixed point there exist both Neimark–Sacker and
flip bifurcations. From the viewpoint of biology, the occurrence of Neimark–Sacker
implies that there exist periodic or quasi-periodic oscillations between phytoplankton
and zooplankton populations. Next, the feedback control method is utilized to
stabilize chaos existing in the phytoplankton–zooplankton model. Finally, simulations
are presented to validate not only obtained results but also the complex dynamics
with orbits of period-8, 9, 10, 11, 14, 15 and chaotic behavior of the discrete-time
phytoplankton–zooplankton model.
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1 Introduction
The rapid population and equally rapid decline are features of phytoplankton. Phytoplank-
ton are temperature and nutrients sensitive. Their growth rate and reduction depend upon
several features like temperature, nutrients, season, and the place of occurrence. Phyto-
plankton is commonly found in two types: spring blooms and red tides. As the name
shows, spring blooms outbreak is seasonal and depends upon availability of nutrients.
They are more sensitive as compared to other phytoplankton. Their outbreaks and sur-
vival are shorter than those of others. The name red tides is derived from their appearance.
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The red tides are more usual and formal in coastal areas strong enough to absorb heat and
toxic nutrients to survive. Red tides survive for several months, and their blooming is for
some weeks or months. The evaluation in red tide species helps them to survive in the
environment. The phytoplankton is divided into two categories: the first one shows rapid
growth, while the second shows low rate of growth. The growth rate of these species de-
pends upon environmental conditions and availability of nutrients. Some species of phy-
toplankton secrete a large amount of toxins that is the cause of fishes. When a bloom
of a specific destructive phytoplankton occurs, the aggregate impact of all the poison re-
leased may influence other life forms, causing mass mortality. Such extraordinary concen-
trations or blooms are responsible for the enormous localized mortality watched in fishes
and invertebrates in different places [1]. There has been a worldwide increment in harmful
plankton blossoms in the final three decades, see the cited bibliography therein for more
consultation on this topic [2–5], and considerable logical consideration towards harmful
algal sprouts has been paid in recent years [6, 7].

Hereafter before giving the mathematical modeling of the phytoplankton–zooplankton
model, first we give some characteristics of red tides. It is pointed out in [1] that a
phytoplankton–zooplankton model describes the detail of any particular species such as
location, reproduction, and the following other features of different species of red tides.

• On the basis of existence, red tides are classified into two classes. The population of
the first one remains constant throughout seasons of several months and that of the
second does not remain constant.

• The evolutionary process in that species is very slow, which helps to control the
environmental conditions preventing from the predators and the effects of toxins.

• The growth rate of red tides depends upon different environmental factors such as
temperature, nutrients, trace elements, and pollution. This mechanism also describes
the survival of that species in a changing environment. The population of that species
increases or decreases due to environmental factors.

• The occurrence of that species in a season is cyclic in nature: after getting maturity it
returns to the original forum. This model also describes the mechanism of their rapid
growth and recycling in the environment.

It is also pointed out in [1] that a phytoplankton–zooplankton model explains the red tide
environment as a constant system with population emerging with time, exemplified by
ordinary differential equations. There are many expedient nominees for the role of refrac-
tory variable, but these are arranged into two classes: intrinsic and extrinsic. Within the
mathematical model each complement would be denoted by a pair of coupled ordinary dif-
ferential equations. Many accessible refractory variables are neither entirely intrinsic nor
extrinsic. A similar situation would apparently hold for iron concentrations. The attribute
of the elicit mechanism ascertained in the model lies in the interaction of growth rate of
phytoplankton with the grazing rate of zooplankton. The mechanism is then modeled in
the phytoplankton evolution as follows:

dP
dt

= rP
(

1 –
P
K

)
– RmZ

P2

α2 + P2 , (1)

where P and Z respectively denote the populations of phytoplankton and zooplankton.
Moreover, the parameter r denotes the gross rate of production of phytoplankton, Rm is the
maximum specific predation rate, K is carrying capacity, and α governs how quickly that
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maximum is attained as prey densities increase. It is specified in [1] that Holling type-III
utilized in several biological models and most commonly Holling type-III shape are as the
Michaelis–Menten grazing function RmZ P

α+P and the Ivlev grazing function RmZ(1–e–λP).
Advance headstrong calculated within the system is the populace of zooplankton. In this
manner, the rate of generation of zooplankton is controlled by the population thickness of
phytoplankton, whereas their misfortune from the framework is through passing and nat-
ural predation by higher individuals of the nourishment web. So the full phytoplankton–
zooplankton system takes the following form [1]:

dP
dt

= rP
(

1 –
P
K

)
– RmZ

P2

α2 + P2 ,
dZ
dt

= γ ZRm
P2

α2 + P2 – μZ. (2)

It is noted that in (2), parameter μ is the specific rate of elimination of zooplankton by
passing out, and predacity is modeled as being relative to zooplankton population and γ

is the ratio of biomass consumed to biomass of new herbivores produced. Now model (2)
takes the following form:

Rm
dP̃
d̃t

= rP̃(1 – P̃) – RmZ̃
K2P̃2

α2 + K2P̃2
, Rm

dZ̃
d̃t

= γ RmZ̃
K2P̃2

α2 + K2P̃2
– μZ̃, (3)

by using the following transformations:

P = KP̃, Z = KZ̃, t =
t̃

Rm
. (4)

Moreover, (3) reduces to the following form:

dP̃
d̃t

= βP̃(1 – P̃) –
Z̃P̃2

ν2 + P̃2
,

dZ̃
d̃t

= γ Z̃
(

P̃2

ν2 + P̃2
– ω

)
(5)

by using transformation

ν =
α

K
, β =

r
Rm

, ω =
μ

γ Rm
. (6)

Finally, on dropping tildes, the continuous-time phytoplankton–zooplankton model (5)
becomes of the following form:

dP
dt

= βP(1 – P) –
ZP2

ν2 + P2 ,
dZ
dt

= γ Z
(

P2

ν2 + P2 – ω

)
. (7)

It is well known that discrete-time models described by difference equations are more
sensible than the continuous time models when populations have non-overlapping eras.
Besides, discrete-time models also give more proficient computational results for numer-
ical simulations and give a rich dynamics as compared to the continuous ones. Our ex-
tensive numerical simulations clearly show that the discrete system shows much more
complex behavior as compared to the continuous one. Moreover, in spite of the fact that
there are so many living circumstances in which it is characteristic to discover an occa-
sion in discrete-time intervals, e.g., the propagation plan of phytoplankton–zooplankton.
Subsequently, in order to show more reasonable and related to the living circumstance,
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we consider here a discrete form. So, by the forward Euler scheme, the discrete analogue
of phytoplankton–zooplankton model (7) takes the following form:

Pn+1 = (1 + hβ)Pn – h
(

β +
Zn

ν2 + P2
n

)
P2

n, Zn+1 = Zn + hγ Zn

(
P2

n
ν2 + P2

n
– ω

)
, (8)

where h denotes the step-size. Our main contributions in this article include:
• Topological classifications around fixed points of phytoplankton–zooplankton model

(8).
• Exploration of periodic points of phytoplankton–zooplankton model (8).
• Comprehensive bifurcation analysis around fixed points by bifurcation theory.
• Investigation of chaos by the feedback control method for

phytoplankton–zooplankton model (8).
• Validation of the obtained results numerically.

The next section is about the study of fixed points along with a linearized form of
phytoplankton–zooplankton model (8), whereas topological classifications around fixed
points are briefly studied in Sect. 3. Section 4 is purely dedicated to the explanation of
periodic points of phytoplankton–zooplankton model (8). The comprehensive bifurca-
tion analysis around fixed points is given in Sect. 5. Section 6 is about the investigation of
chaos by the feedback control method for phytoplankton–zooplankton model (8). Theo-
retical results are numerically verified in Sect. 7, whereas conclusion of the paper is given
in Sect. 8.

2 Fixed points along with linearized form of phytoplankton–zooplankton
model (8)

In the present section, the existence of fixed points along with a linearized form of
phytoplankton–zooplankton model (8) are given. In the following lemma, we first sum-
marize the result regarding the existence of fixed points of phytoplankton–zooplankton
model (8) in the region R

2
+ = {(P, Z) : P, Z ≥ 0} as follows.

Lemma 2.1 In the allowed region R
2
+ = {(P, Z) : P, Z ≥ 0}, phytoplankton–zooplankton

model (8) has at most three fixed points. Specifically,
(i) Model (8) has trivial and semitrivial fixed points F00(0, 0) and FP0(1, 0), respectively,

∀γ , β , ω, ν , h;
(ii) Model (8) has an interior fixed point F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) if ω < min{1, 1

ν2+1 }.

Proof If phytoplankton–zooplankton model (8) has a fixed point (P, Z), then

P = (1 + hβ)P – h
(

β +
Z

ν2 + P2

)
P2, Z = Z + hγ Z

(
P2

ν2 + P2 – ω

)
. (9)

From (9), after some manipulation, one gets P =
√

ων2
1–ω

, Z = βν(
√

1–ω–
√

ων2)√
ω(1–ω) . This gives the

fact that if ω < min{1, 1
ν2+1 }, then F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is an interior fixed point of

phytoplankton–zooplankton model (8). Additionally, (P, Z) = (0, 0), (1, 0) satisfies (9) ob-
viously for all parametric values γ , β , ω, ν , h. Therefore, F00(0, 0) and FP0(1, 0) are respec-
tively trivial and semitrivial fixed points of model (8). �
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Now around the fixed point FPZ(P, Z) the linearized form of (8) is given for the comple-
tion of this section. For this, one has the map

(f1, f2) �→ (Pn+1, Zn+1), (10)

where

f1 = (1 + hβ)P – h
(

β +
Z

ν2 + P2

)
P2, f2 = Z + hγ Z

(
P2

ν2 + P2 – ω

)
. (11)

Hence the variation matrix V |FPZ (P,Z) around FPZ(P, Z) with respect to the map (10) is

V |FPZ (P,Z) =

(
1 + hβ – 2Ph(β + Z

ν2+P2 – P2Z
(ν2+P2)2 ) – hP2

ν2+P2
2γ ZPν2

(ν2+P2)2 1 + hγ ( P2

ν2+P2 – ω)

)
. (12)

3 Topological classifications around fixed points

The topological classifications around fixed points F00(0, 0), FP0(1, 0), and F+
PZ(

√
ων2
1–ω

,
βν(

√
1–ω–

√
ων2)√

ω(1–ω) ) of model (8) are studied in this section.

3.1 Topological classifications around F00(0, 0)
Around F00(0, 0), (12) becomes

V |F00(0,0) =

(
1 + hβ 0

0 1 – hγω

)
(13)

with

λ1 = 1 + hβ , λ2 = 1 – hγω. (14)

Hence, based on stability theory, the topological classifications around F00(0, 0) are sum-
marized as follows.

Lemma 3.1 For F00(0, 0), the following topological classifications hold:
(i) For allowed parametric values γ , β , ω, ν , and h, F00(0, 0) is never a sink;

(ii) F00(0, 0) is a source if

γ >
2

hω
; (15)

(iii) F00(0, 0) is a saddle if

0 < γ <
2

hω
; (16)

(iv) F00(0, 0) is non-hyperbolic if

γ :=
2

hω
. (17)
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3.2 Topological classifications around FP0(1, 0)
Around FP0(1, 0), (12) becomes

V |FP0(1,0) =

(
1 – hβ –h

ν2+1
0 1 + hγ ( 1

ν2+1 – ω)

)
(18)

with

λ1 = 1 – hβ , λ2 = 1 + hγ

(
1

ν2 + 1
– ω

)
. (19)

Moreover, the topological classifications around FP0(1, 0) are summarized as follows.

Lemma 3.2 For FP0(1, 0), the following topological classifications hold:
(i) FP0(1, 0) is a sink if

2(ν2 + 1)
γ (ω(ν2 + 1) – 1)

< h <
2
β

; (20)

(ii) FP0(1, 0) is a source if

2(ν2 + 1)
γ (ω(ν2 + 1) – 1)

> h >
2
β

; (21)

(iii) FP0(1, 0) is a saddle if

h > max

{
2
β

,
2(ν2 + 1)

γ (ω(ν2 + 1) – 1)

}
; (22)

(iv) FP0(1, 0) is non-hyperbolic if

h :=
2
β

(23)

or

h :=
2(ν2 + 1)

γ (ω(ν2 + 1) – 1)
. (24)

3.3 Topological classifications around F+
PZ(

√
ων2

1–ω , βν(
√

1–ω–
√

ων2)√
ω(1–ω)

)

Around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ), (12) becomes

V |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
=

( √
1–ω(1–hβ)+2hβω(

√
1–ω–

√
ων2)√

1–ω
–hω

2hβγ
√

1 – ω(
√

1 – ω –
√

ων2) 1

)
. (25)

Further characteristic equation of (25) is

λ2 – p
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
λ

+ q
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
= 0,

(26)



Khan and Javaid Advances in Difference Equations        (2021) 2021:415 Page 7 of 30

where

p
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
=

√
1 – ω(2 – hβ) + 2hβω(

√
1 – ω –

√
ων2)√

1 – ω
,

q
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)

=
√

1 – ω(1 – hβ) + 2hβω(
√

1 – ω –
√

ων2)(1 + γ h(1 – ω))√
1 – ω

.

(27)

Finally, the roots of (26) are

λ1,2 =
p(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) ± √

�

2
, (28)

where

� =
(

p
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

))2

– 4q
(√

ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)

=
(√

1 – ω(2 – hβ) + 2hβω(
√

1 – ω –
√

ων2)√
1 – ω

)2

– 4
(√

1 – ω(1 – hβ) + 2hβω(
√

1 – ω –
√

ων2)(1 + γ h(1 – ω))√
1 – ω

)
.

(29)

Hereafter the following two lemmas give the complete topological classifications around
an interior fixed point F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8)

if � < 0 and � ≥ 0, respectively.

Lemma 3.3 If � = (
√

1–ω(2–hβ)+2hβω(
√

1–ω–
√

ων2)√
1–ω

)2 –4(
√

1–ω(1–hβ)+2hβω(
√

1–ω–
√

ων2)(1+γ h(1–ω))√
1–ω

) <

0, then around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8), the fol-

lowing topological classifications hold:
(i) F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is a stable focus if

0 < γ <
√

1 – ω – 2ω(
√

1 – ω –
√

ων2)
2hω(1 – ω)(

√
1 – ω –

√
ων2)

(30)

with

ν <
1 – 2ω

2ω

√
1 – ω

ω
; (31)

(ii) F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is an unstable focus if (31) holds and

γ >
√

1 – ω – 2ω(
√

1 – ω –
√

ων2)
2hω(1 – ω)(

√
1 – ω –

√
ων2)

; (32)
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(iii) P+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is non-hyperbolic if

γ :=
√

1 – ω – 2ω(
√

1 – ω –
√

ων2)
2hω(1 – ω)(

√
1 – ω –

√
ων2)

. (33)

Lemma 3.4 If � = (
√

1–ω(2–hβ)+2hβω(
√

1–ω–
√

ων2)√
1–ω

)2 –4(
√

1–ω(1–hβ)+2hβω(
√

1–ω–
√

ων2)(1+γ h(1–ω))√
1–ω

)≥
0, then around F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8), the fol-

lowing topological classifications hold:
(i) F+

pz(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is a stable node if

0 < γ <
(hβ – 2)

√
1 – ω – 2hβω(

√
1 – ω –

√
ων2)

h2βω(1 – ω)(
√

1 – ω –
√

ων2)
(34)

with

h >
2
√

1 – ω

β((
√

1 – ω)(1 – ω) + ω
√

ων2)
; (35)

(ii) F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is an unstable node if (35) holds and

γ >
(hβ – 2)

√
1 – ω – 2hβω(

√
1 – ω –

√
ων2)

h2βω(1 – ω)(
√

1 – ω –
√

ων2)
; (36)

(iii) F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) is non-hyperbolic if

γ :=
(hβ – 2)

√
1 – ω – 2hβω(

√
1 – ω –

√
ων2)

h2βω(1 – ω)(
√

1 – ω –
√

ων2)
. (37)

4 Periodic points of phytoplankton–zooplankton model (8)

Now it is proved that fixed points F00(0, 0), FP0(1, 0), and F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of

phytoplankton–zooplankton model (8) are periodic points with period-2, 3, . . . , n.

Theorem 4.1 F00(0, 0) of phytoplankton–zooplankton model (8) is a periodic point of
prime period-1.

Proof From (8) denote

	 := (f1, f2), (38)

where f1 and f2 are depicted in (11). After straightforward computation, from (38) one gets
the following desired statement:

	|F00(0,0) = F00(0, 0). (39)
�

In a similar way, one can prove that the rest of fixed points FP0(1, 0) and F+
PZ(

√
ων2
1–ω

,
βν(

√
1–ω–

√
ων2)√

ω(1–ω) ) of phytoplankton–zooplankton model (8) are periodic points of prime
period-1.
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Theorem 4.2
(i) FP0(1, 0) of phytoplankton–zooplankton model (8) is a periodic point of prime

period-1;
(ii) F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8) is a periodic

point of prime period-1.

Proof Same as the proof of Theorem 4.1. �

Now we will investigate that the fixed points F00(0, 0), FP0(1, 0), and F+
PZ(

√
ων2
1–ω

,
βν(

√
1–ω–

√
ων2)√

ω(1–ω) ) of phytoplankton–zooplankton model (8) are periodic points with period-
2, 3, . . . , n.

Theorem 4.3
(i) F00(0, 0) of phytoplankton–zooplankton model (8) is a periodic point of

period-2, 3, . . . , n;
(ii) FP0(1, 0) of phytoplankton–zooplankton model (8) is a periodic point of

period-2, 3, . . . , n;
(iii) F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8) is a periodic

point of period-2, 3, . . . , n.

Proof (i) In view of (38) we have

	2 =
(

(1 + hβ)f1 – h
(

β +
f2

ν2 + f 2
1

)
f 2
1 ,

f2 + hγ f2

(
f 2
1

ν2 + (f1)2 – ω

))
⇒ 	2|F00(0,0) = F00(0, 0),

	3 =
(

(1 + hβ)f 2
1 – h

(
β +

f 2
2

ν2 + (f 2
1 )2

)(
f 2
1
)2,

f 2
2 + hγ f 2

2

(
(f 2

1 )2

ν2 + (f 2
1 )2 – ω

))
⇒ 	3|F00(0,0) = F00(0, 0),

...
...

	i =
(

(1 + hβ)f i–1
1 – h

(
β +

f i–1
2

ν2 + (f i–1
1 )2

)(
f i–1
1

)2,

f i–1
2 + hγ f i–1

2

(
(f i–1

1 )2

ν2 + (f i–1
1 )2 – ω

))
⇒ 	i|F00(0,0) = F00(0, 0).

(40)

Therefore from (40) one has the required result.
(ii) In view of proof (i) of Theorem 4.3, one gets the required statement:

	2
FP0(1,0) = FP0(1, 0),

	3
FP0(1,0) = FP0(1, 0),

...

	i
FP0(1,0) = FP0(1, 0).

(41)
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(iii) The following computation shows the required statement:

	2

F+
PZ (

√
ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
= F+

PZ

(√
ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
,

	3

F+
PZ (

√
ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
= F+

PZ

(√
ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
,

...

	i

F+
PZ (

√
ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
= F+

PZ

(√
ων2

1 – ω
,
βν(

√
1 – ω –

√
ων2)√

ω(1 – ω)

)
.

(42)

�

5 Bifurcation analysis
The full and comprehensive possible bifurcation analysis of phytoplankton–zooplankton
model (8) around fixed points F00(0, 0), FP0(1, 0), F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) will be investi-

gated based on theoretical studies in Sect. 3 by bifurcation theory [8–21].

5.1 Bifurcation analysis around F00(0, 0)
In the following, we prove that around F00(0, 0), the occurrence of possible bifurcations is
flip bifurcation and transcritical bifurcation.

5.1.1 Flip analysis around F00(0, 0)
If (17) holds, then from (14) one gets λ2|(17) = –1, but λ1|(17) = 1 + 2β

γω
�= 1 or – 1. This

infers the fact that phytoplankton–zooplankton model (8) may undergo a flip bifurcation
by choosing γ as a bifurcation parameter if (γ , h,β ,ω,ν) is located in the set

F |F00(0,0) :=
{

(γ , h,β ,ω,ν),γ =
2

hω

}
, (43)

where F |F00(0,0) stands for the flip bifurcation around the fixed point F00(0, 0). But compu-
tation shows that this bifurcation cannot occur if (γ , h,β ,ω,ν) ∈ F |F00(0,0), and therefore
the fixed point F00(0, 0) is degenerate with higher co-dimension.

5.1.2 Transcritical bifurcation around F00(0, 0)
In the following theorem we prove that around F00(0, 0), phytoplankton–zooplankton
model (8) undergoes a transcritical bifurcation by choosing γ as a bifurcation parame-
ter.

Theorem 5.1 Around F00(0, 0), phytoplankton–zooplankton model (8) undergoes a tran-
scritical bifurcation if (γ , h,β ,ω,ν) goes through the following curve:

T |F00(0,0) :=
{

(γ , h,β ,ω,ν),γ =
2

ωh

}
. (44)

Proof Under the same manipulation as we have done in Sect. 5.1.1, it is recalled that
F00(0, 0) is non-hyperbolic if (17) holds. So, by choosing γ as a bifurcation parameter, the
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central manifold of the following map

Pn+1 = (1 + hβ)Pn – hβP2
n (45)

is Z = 0, where (17) holds. Thus it manifests that phytoplankton–zooplankton model (8)
undergoes a transcritical bifurcation at F00(0, 0). �

5.2 Bifurcation analysis around FP0(1, 0)
If (23) holds, then from (19) one gets λ1|(23) = –1, but λ2|(23) = 1 + 2γ

β
( 1
ν2+1 – ω) �= 1 or – 1.

This gives the fact that phytoplankton–zooplankton model (8) may undergo a flip bifur-
cation by choosing h as a bifurcation parameter if (γ , h,β ,ω,ν) is located in the set

F |FP0(1,0) :=
{

(γ , h,β ,ω,ν), h =
2
β

}
. (46)

But the following result shows the fact that the flip bifurcation does not exist around
FP0(1, 0) of phytoplankton–zooplankton model (8).

Theorem 5.2 If (γ , h,β ,ω,ν) ∈ F |FP0(1,0), then there exists no flip bifurcation around
FP0(1, 0) of phytoplankton–zooplankton model (8).

Proof It is noted here that phytoplankton–zooplankton model (8) is invariant with respect
to Z = 0, and in order to explore the said bifurcation, we restrict the model on the line
Z = 0, where (8) takes the form

Pn+1 = (1 + hβ)Pn – hβP2
n. (47)

From (47) one has the following one-dimensional map with h as a bifurcation parameter:

f (h, P) := (1 + hβ)P – hβP2. (48)

Finally, if h = h∗ = 2
β

and P = P∗ = 1, then from (48) one gets:

∂f
∂P

∣∣∣∣
h∗= 2

β
,P∗=1

:= –1, (49)

∂2f
∂P2

∣∣∣∣
h∗= 2

β
,P∗=1

:= –4 �= 0, (50)

and

∂f
∂h

∣∣∣∣
h∗= 2

β
,P∗=1

:= 0. (51)

The computed condition, which is depicted in (51), violates the nondegenerate condition,
and hence this implies the fact that if (γ , h,β ,ω,ν) ∈ F |FP0(1,0), then there exists no flip
bifurcation around FP0(1, 0) of phytoplankton–zooplankton model (8). �
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5.3 Bifurcation analysis around F+
PZ(

√
ων2

1–ω , βν(
√

1–ω–
√

ων2)√
ω(1–ω)

)

In the following, we prove that around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) the occurrence of possible

bifurcations are Neimark–Sacker and flip bifurcations.

5.3.1 Neimark–Sacker bifurcation around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) )

If (33) holds, then the variational matrix V |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
around F+

PZ(
√

ων2
1–ω

,

βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) has complex eigenvalues with |λ1,2|(33) = 1, which further shows that around

F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) there may exist the N-S bifurcation by choosing γ as a bifurca-

tion parameter if (γ , h,β ,ω,ν) are located in the set

N |
F+

PZ(
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
:=

{
(γ , h,β ,ω,ν),γ =

√
1 – ω – 2ω(

√
1 – ω –

√
ων2)

2hω(1 – ω)(
√

1 – ω –
√

ων2)

}
. (52)

But the following theorem guarantees the fact that around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) )

phytoplankton–zooplankton model (8) must undergo the Neimark–Sacker bifurcation.

Theorem 5.3 If (γ , h,β ,ω,ν) ∈ N |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
, then around F+

PZ(
√

ων2
1–ω

,

βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) phytoplankton–zooplankton model (8) undergoes the Neimark–Sacker bi-

furcation.

Proof Since (γ , h,β ,ω,ν) ∈N |
F+

PZ(
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
, it is clear that γ is the bifurcation pa-

rameter. Therefore if γ is a nbhd of γ ∗, i.e., γ = γ ∗ + ε, where ε � 1, then phytoplankton–
zooplankton model (8) takes the following form:

Pn+1 = (1 + hβ)Pn – h
(

β +
Zn

ν2 + P2
n

)
P2

n, Zn+1 = Zn + h
(
γ ∗ + ε

)
Zn

(
P2

n
ν2 + P2

n
– ω

)
, (53)

with F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) as an interior fixed point. Further, a pair of complex

roots of the characteristic equation of variational matrix V |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
around

F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of model (53) is

λ1,2 =
p(ε) ± ι

√
4q(ε) – p2(ε)
2

, (54)

where

p(ε) =
√

1 – ω(2 – hβ) + 2hωβ(
√

1 – ω –
√

ων2)√
1 – ω

,

q(ε) =
√

1 – ω(1 – hβ) + 2hωβ(
√

1 – ω –
√

ων2)(1 + (γ ∗ + ε)h(1 – ω))√
1 – ω

.

(55)

In view of (54) along with (55), one gets

|λ1,2| =

√√
1 – ω(1 – β) + 2ωβ(

√
1 – ω –

√
ων2)(1 + (γ ∗ + ε)h(1 – ω))√

1 – ω
(56)
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and

d|λ1,2|
dε

∣∣∣∣
ε=0

=
β((3 – 2ω)

√
1 – ω + 2ω

√
ων2)

2
√

1 – ω
�= 0. (57)

Further, for the existence of N-S bifurcation around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of model

(53), it is also required that λm
1,2 �= 1, m = 1, 2, 3, 4, if ε = 0, which is equivalent to p(0) �=

–2, 0, 1, 2. But if (33) holds, then from (55) one gets q(0) = 1. Therefore p(0) �= –2, 2, and so
it is only required that p(0) �= 0, 1. By computation one gets

h �= 2
√

1 – ω

β((1 – ω)(1 – 2ω) + 2ω
√

ων2)
,

√
1 – ω

β((1 – ω)(1 – 2ω) + 2ω
√

ων2)
. (58)

Hereafter, in order to transform F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of (53) to origin, i.e., F00(0, 0),

we use the following transformation:

un = Pn – P∗, vn = Zn – Z∗, (59)

with P∗ =
√

ων2
1–ω

, Z∗ = βν(
√

1–ω–
√

ων2)√
ω(1–ω) . In view of (59), from (53) one gets

un+1 = (1 + hβ)
(
un + P∗) – h

(
β +

vn + Z∗

ν2 + (un + P∗)2

)(
un + P∗)2 – P∗,

vn+1 = vn + Z∗ + h
(
γ ∗ + ε

)(
vn + Z∗)( (un + P∗)2

ν2 + (un + P∗)2 – ω

)
– Z∗.

(60)

Now a normal form of (60) is explored if ε = 0. For this expanding (60) up to order-2nd
around F00(0, 0), one gets

un+1 = α11un + α12vn + α13u2
n + α14unvn + α15u3

n + α16u2
nvn,

vn+1 = α21un + α22vn + α23u2
n + α24unvn + α25u3

n + α26u2
nvn,

(61)

with

α11 = 1 + hβ – 2hβP∗ –
2hν2Z∗P∗

(ν2 + P∗2)2 ,

α12 = –
hP∗2

(ν2 + P∗2)2 ,

α13 = –hβ –
hν2Z∗(ν2 – 3P∗2)

(ν2 + P∗2)3 ,

α14 = –
2hν2P∗

(ν2 + P∗2)2 ,

α15 =
4hZ∗ν2P∗(ν2 – P∗2)

(ν2 + P∗2)4 ,

α16 = –
hν2(ν2 – 3P∗2)

(ν2 + P∗2)3 , (62)
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α21 =
2hγ ∗Z∗ν2P∗

(ν2 + P∗2)2 ,

α22 = 1 + hγ ∗Z∗
(

P∗2

ν2 + P∗2 – ω

)
,

α23 = hγ ∗Z∗ν2
(

ν2 – 3P∗2

(ν2 + P∗2)3

)
,

α24 =
2hγ ∗ν2P∗

(ν2 + P∗2)2 ,

α25 = –4hγ ∗ν2Z∗P∗
(

ν2 – P∗2

(ν2 + P∗2)4

)
,

α26 = hγ ∗ν2
(

ν2 – 3P∗2

(ν2 + P∗2)3

)
.

Now, we use the following transformation in order to transform the linear part of (61) into
a canonical form

(
un

vn

)
=

(
α12 0

η – α11 –ζ

)(
Pn

Zn

)
, (63)

with

η =
(2 – hβ)

√
1 – ω + 2hωβ(

√
1 – ω –

√
ων2)

2
√

1 – ω
,

ζ =
1
2

√√√√√√√√√

4((1 – hβ)
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2))(1 + hγ (1 – ω))√
1 – ω

–
(√

1 – ω(2 – hβ) + 2hβω(
√

1 – ω –
√

ων2)√
1 – ω

)2

.

(64)

In view of (63), (61) takes the following form:

Pn+1 = ηPn – ζZn + P̄(Pn, Zn),

Zn+1 = ζPn + ηZn + Q̄(Pn, Zn),
(65)

where

P̄(Pn, Zn) = r11P3
n + r12P2

n + r13P2
nZn + r14PnZn,

Q̄(Pn, Zn) = r21P3
n + r22P2

n + r23P2
nZn + r24PnZn,

(66)

and

r11 = α15α
2
12 + α16α12(η – α11),

r12 = α13α12 + α14(η – α11),

r13 = –α16α12ζ ,

r14 = –α14ζ , (67)
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r21 =
1
ζ

(
α15α12(η – α11) – α25α

3
12 + α16α12(η – α11) – α26α

2
12(η – α11)

)
,

r22 =
1
ζ

(
α13α12(η – α11) – α13α

2
12 + α14(η – α11)2 – α24α12(η – α11)

)
,

r23 = –
(
α16α12 – α26α

2
12

)
,

r24 = –
(
α14(η – α11) – α24α12

)
.

From (66) one gets

∂2P̄
∂P2

n

∣∣∣∣
F00(0,0)

= 2(r12 + r13),

∂2P̄
∂Pn∂Zn

∣∣∣∣
F00(0,0)

= r14,

∂2P̄
∂Z2

n

∣∣∣∣
F00(0,0)

= 0,

∂3P̄
∂P3

n

∣∣∣∣
F00(0,0)

= 6r11,

∂3P̄
∂P2

n∂Zn

∣∣∣∣
F00(0,0)

= 0,

∂3P̄
∂Pn∂Z2

n

∣∣∣∣
F00(0,0)

= 0,

∂3P̄
∂Z3

n

∣∣∣∣
F00(0,0)

= 0,

∂2Q̄
∂P2

n

∣∣∣∣
F00(0,0)

= 2(r22 + r23),

∂2Q̄
∂Pn∂Zn

∣∣∣∣
F00(0,0)

= r24,

∂2Q̄
∂Z2

n

∣∣∣∣
F00(0,0)

= 0,

∂3Q̄
∂P3

n

∣∣∣∣
F00(0,0)

= 6r21,

∂3Q̄
∂P2

n∂Zn

∣∣∣∣
F00(0,0)

= 0.

∂3Q̄
∂Pn∂Z2

n

∣∣∣∣
F00(0,0)

= 0,

∂3Q̄
∂Z3

n

∣∣∣∣
F00(0,0)

= 0.

(68)

Finally, to determine that (65) undergoes the N-S bifurcation, the following quantity is
required to be nonzero:

� = –�
(

(1 – 2λ̄)λ̄2

1 – λ
�11�20

)
–

1
2
‖�11‖2 – ‖�02‖2 + �(λ̄�21), (69)
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where

�02 =
1
8

(
∂2P̄
∂P2

n
–

∂2P̄
∂Z2

n
+ 2

∂2Q̄
∂Pn∂Zn

+ ι

(
∂2Q̄
∂P2

n
–

∂2Q̄
∂Z2

n
+ 2

∂2P̄
∂Pn∂Zn

))∣∣∣∣
F00(0,0)

,

�11 =
1
4

(
∂2P̄
∂P2

n
+

∂2P̄
∂Z2

n
+ ι

(
∂2Q̄
∂P2

n
+

∂2Q̄
∂Z2

n

))∣∣∣∣
F00(0,0)

,

�20 =
1
8

(
∂2P̄
∂P2

n
–

∂2P̄
∂Z2

n
+ 2

∂2Q̄
∂Pn∂Zn

+ ι

(
∂2Q̄
∂P2

n
–

∂2Q̄
∂Z2

n
– 2

∂2P̄
∂Pn∂Zn

))∣∣∣∣
F00(0,0)

,

�21 =
1

16

(
∂3P̄
∂P3

n
+

∂3P̄
∂Z3

n
+

∂3Q̄
∂P2

n∂Zn
+

∂3Q̄
∂Z3

n

+ ι

(
∂3Q̄
∂P3

n
+

∂3Q̄
∂Pn∂Z2

n
–

∂3P̄
∂P2

n∂Zn
–

∂3P̄
∂Z3

n

))∣∣∣∣
F00(0,0)

.

(70)

After some manipulation, one gets

�02 =
1
4
(
r12 + r13 + r24 + ι(r22 + r23 + r14)

)
,

�11 =
1
4
(
r12 + r13 + ι(r22 + r23)

)
,

�20 =
1
4
(
r12 + r13 + r24 + ι(r22 + r23 – r14)

)
,

�21 =
3
8

(r11 + ιr22).

(71)

Finally, utilizing (71) into (69), if one gets � �= 0 as (γ , h,β ,ω,ν) ∈N |
F+

PZ(
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
,

then around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) phytoplankton–zooplankton model (8) undergoes

the N-S bifurcation. Further supercritical (resp. subcritical) N-S bifurcation occurs if � < 0
(resp. � > 0). �

5.3.2 Flip bifurcation around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) )

If (37) holds, then the eigenvalues of V |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
around F+

PZ(
√

ων2
1–ω

,

βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) satisfy λ2|(37) = –1, but λ1|(37) = (3–hβ)

√
1–ω+2hβω(

√
1–ω–

√
ων2)√

1–ω
�= 1 or – 1, which

further shows the fact that around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) there may exist the flip bifur-

cation by choosing γ as a bifurcation parameter if (γ , h,β ,ω,ν) are located in the set

F |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )

:=
{

(γ , h,β ,ω,ν),γ =
hβ

√
1 – ω – 2

√
1 – ω – 2hβω(

√
1 – ω –

√
ων2)

h2βω(1 – ω)(
√

1 – ω –
√

ων2)

}
.

(72)

But the following theorem guarantees the fact that around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) )

phytoplankton–zooplankton model (8) undergoes a flip bifurcation.

Theorem 5.4 If (γ , h,β ,ω,ν) ∈ F |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
, then around F+

PZ(
√

ων2
1–ω

,

βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) phytoplankton–zooplankton model (8) undergoes a flip bifurcation.
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Proof Since (γ , h,β ,ω,ν) ∈F |
F+

PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
, it is clear that γ is the bifurcation pa-

rameter. Therefore, if γ is a nbhd of γ ∗, then phytoplankton–zooplankton model (8) takes
the form which is depicted in (53). Further, phytoplankton–zooplankton model (8) takes
the following form:

un+1 = α̂11un + α̂12vn + α̂13u2
n + α̂14unvn + α̂15u3

n + α̂16u2
nvn + γ01unε

+ γ02vnε + γ03u2
nε + γ04unvnε + γ05u3

nε + γ06u2
nvnε,

vn+1 = α̂21un + α̂22vn + α̂23u2
n + α̂24unvn + α̂25u3

n + α̂26u2
nvn + γ07unε

+ γ08vnε + γ09u2
nε + γ10unvnε + γ11u3

nε + γ12u2
nvnε,

(73)

where

α̂11 = 1 + hβ – 2hβP∗ –
2hν2Z∗P∗
(ν2 + P∗2)2 , α̂12 = –

hP∗2

(ν2 + P∗2)2 ,

α̂13 = –hβ –
hZ∗ν2(ν2 – 3P∗2)

(ν2 + P∗2)3 , α̂14 = –
2hν2P∗

(ν2 + P∗2)2 ,

α̂15 =
4hZ∗ν2P∗(ν2 – P∗2)

(ν2 + P∗2)4 , α̂16 = –
hν2(ν2 – 3P∗2)

(ν2 + P∗2)3 ,

γ01 = β – 2βP –
2ν2Z∗P∗

(ν2 + P∗2)2 , γ02 = –
P∗2

(ν2 + P∗2)2 ,

γ03 = –β –
Z∗ν2(ν2 – 3P∗2)

(ν2 + P∗2)3 , γ04 = –
2ν2P∗2

(ν2 + P∗2)2 ,

γ05 =
4Z∗ν2P∗(ν2 – P∗2)

(ν2 + P∗2)4 , γ06 = –
ν2(ν2 – 3P∗2)

(ν2 + P∗2)3 ,

α̂21 =
2hν2γ ∗Z∗P∗

(ν2 + P∗2)2 , α̂22 = 1 + hγ ∗Z∗
(

P∗2

ν2 + P∗2 – ω

)
,

α̂23 =
hγ ∗Z∗ν2(ν2 – 3P∗2)

(ν2 + P∗2)3 , α̂24 =
2hγ ∗ν2P∗

(ν2 + P∗2)2 ,

α̂25 = –
4hZ∗ν2γ ∗P∗(ν2 – P∗2)

(ν2 + P∗2)4 , α̂26 =
hν2γ ∗(ν2 – 3P∗2)

(ν2 + P∗2)3 ,

γ07 =
2ν2γ ∗Z∗P∗

(ν2 + P∗2)2 , γ08 = γ ∗Z∗
(

P∗2

ν2 + P∗2 – ω

)
,

γ09 =
Z∗ν2γ ∗(ν2 – 3P∗2)

(ν2 + P∗2)3 , γ10 =
2γ ∗ν2P∗

(ν2 + P∗2)2 ,

γ11 = –
4Z∗ν2γ ∗P∗(ν2 – P∗2)

(ν2 + P∗2)4 , γ12 =
γ ∗ν2(ν2 – 3P∗2)

(ν2 + P∗2)3

(74)

by using the transformation which is depicted in (59). Again it is noted that (73) takes the
following form:

(
Pn+1

Zn+1

)
=

(
–1 0
0 λ1

)(
Pn

Zn

)
+

(
P̂(un, vn, ε)
Q̂(un, vn, ε)

)
, (75)
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where

P̂(un, vn, ε) =
α̂13(λ1 – α̂11) – α̂12α̂13

α̂12(1 + λ1)
u2

n +
α̂14(λ1 – α̂11) – α̂12α̂24

α̂12(1 + λ1)
unvn

+
α̂15(λ1 – α̂11) – α̂12α̂25

α̂12(1 + λ1)
u3

n +
α̂16(λ1 – α̂11) – α̂12α̂26

α̂12(1 + λ1)
u2

nvn

+
γ01(λ1 – α̂11) – α̂12γ07

α̂12(1 + λ1)
unε +

γ02(λ1 – α̂11) – α̂12γ08

α̂12(1 + λ1)
vnε

+
γ03(λ1 – α̂11) – α̂12γ09

α̂12(1 + λ1)
u2

nε +
γ 04(λ1 – α̂11) – α̂12γ10

α̂12(1 + λ1)
unvnε

+
γ 05(λ1 – α̂11) – α̂12γ11

α̂12(1 + λ1)
u3

nε +
γ 06(λ1 – α̂11) – α̂12γ12

α̂12(1 + λ1)
u2

nvnε,

Q̂(un, vn, ε) =
α̂13(1 + α̂11) + α̂12α̂13

α̂12(1 + λ1)
u2

n +
α̂14(1 + α̂11) + α̂12α̂24

α̂12(1 + λ1)
unvn

+
α̂15(1 + α̂11) + α̂12α̂25

α̂12(1 + λ1)
u3

n +
α̂16(1 + α̂11) + α̂12α̂26

α̂12(1 + λ1)
u2

nvn

+
γ01(λ1 – α̂11) + α̂12γ07

α̂12(1 + λ1)
unε +

γ02(1 + α̂11) + α̂12γ08

α̂12(1 + λ1)
vnε

+
γ03(1 + α̂11) + α̂12γ09

α̂12(1 + λ1)
u2

nε +
γ 04(1 + α̂11) + α̂12γ10

α̂12(1 + λ1)
unvnε

+
γ 05(1 + α̂11) + α̂12γ11

α̂12(1 + λ1)
u3

nε +
γ 06(1 + α̂11) + α̂12γ12

α̂12(1 + λ1)
u2

nvnε,

un = α̂12Pn + α̂12Zn,

vn = –(1 + α̂11)Pn + (λ1 – α̂11)Zn,

u2
n = α̂12

2(P2
n + 2PnZn + Z2

n
)
,

v2
n = (1 + α̂11)2P2

n + (λ1 – α̂11)2Z2
n – 2(1 + α̂11)(λ1 – α̂11)PnZn,

u3
n = α̂12

3[P3
n + Z3

n + 3P2
nZn + 3PnZ2

n
]
,

unvn = –α̂12(1 + α̂11)P2
n +

(
α̂12(λ1 – α̂11) – α̂12(1 + α̂11)

)
PnZnα̂12(λ1 – α̂11)Z2

n,

u2
nvn = –α̂12

2[(1 + α̂11)3 + P2
nZn(2 + α̂11 + λ1) + (1 – α̂11 + 2λ1)PnZ2

n

+ (λ1 – α̂11)3Z3
n
]
,

unε = α̂12Pnε + α̂12Znε,

vnε = –(1 + α̂11)Pnε + (λ1 – α̂11)Znε,

u2
nε = εα̂12

2(P2
n + 2PnZn + Z2

n
)
,

v2
nε = (1 + α̂11)2P2

nε + (λ1 – α̂11)2Z2
nε – 2(1 + α̂11)(λ1 – α̂11)PnZnε,

u3
nε = α̂12

3ε
[
P3

n + Z3
n + 3P2

nZn + 3PnZ2
n
]
,

unvnε = –α̂12(1 + α̂11)P2
nε +

(
α̂12(λ1 – α̂11) – α̂12(1 + α̂11)

)
PnZnε

+ α̂12(λ1 – α̂11)Z2
nε,

u2
nvnε = –α̂12

2[(1 + α̂11)3ε + P2
nZn(2 + α̂11 + λ1)ε + (1 – α̂11 + 2λ1)PnZ2

nε

+ (λ1 – α̂11)3Z3
nε

]
,

(76)
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by

(
un

vn

)
=

(
α̂12 α̂12

–1 – α̂11 λ1 – α̂11

)(
Pn

Zn

)
. (77)

Hereafter for (75) the center manifold McF00(0, 0) around F00(0, 0) is investigated in a small
nbhd of ε, and hence one can write McF00(0, 0) as the following mathematical expression:

McF00(0, 0) =
{

(Pn, Zn) : Zn = C0ε + C1P2
n + C2Pnε + C3ε

3 + O
((|Pn| + |ε|)3)}. (78)

The computation yields

C0 = 0,

C1 =
(1 + α̂11)

1 – λ2
1

(
α̂12α̂13 – (1 + α̂11)α̂14 – α̂12α̂24

)
+

1
1 – λ2

1
α̂12

2α̂23,

C2 =
(γ01 + γ08)(1 + α̂11)α̂12 + γ07α̂12

2 – γ02(1 + α̂11)2

α̂12(1 – λ2
1)

,

C3 = 0.

(79)

Finally, one can express (75) restricted to McF00(0, 0) as follows:

f (Pn) = –Pn + h1P2
n + h2Pnε + h3P2

nε + h4Pnε
2 + h5P3

n + O
((|Pn| + |ε|)4), (80)

where

h1 =
1

1 + λ1

[
α̂12α̂13(λ1 – α̂11) – (1 + α̂11)

(
α̂14(λ1 – α̂11) – α̂12α̂24

)
– α̂12

2α̂23
]
,

h2 =
1

(1 + λ1)

[(
γ01(λ1 – α̂11) – γ07α̂12

)
–

(1 + α̂11)(γ02(λ1 – α̂11) – α̂12γ8)
α̂12

]
,

h3 =
1

α̂12(1 + λ1)
[
2C2α̂12

2(α̂13(λ1 – α̂11) – α̂12α̂23
)

+ C2α̂12
(
(λ1 – α̂11) – (1 + α̂11)

)(
α̂14(λ1 – α̂11)

)
– α̂12α̂24 +

(
γ01(λ1 – α̂11) – α̂12γ07

)
C1α̂12

+ C1(λ1 – α̂11)
(
γ02(λ1 – α̂11) – α̂12γ08

)
+

(
γ03(λ1 – α̂11) – α̂12γ09

)
α̂12

2

– α̂12(1 + α̂11)
(
γ04(λ1 – α̂11) – α̂12γ10

)]
,

h4 =
C2

(1 + λ1)α̂12

[(
γ01(λ1 – α̂11) – α̂12γ07

)
+ (λ1 – α̂11)

(
γ02(λ1 – α̂11) – α̂12γ08

)]
,

h5 =
1

(1 + λ1)
[
2C1α̂12

(
α̂13(λ1 – α̂11) – α̂12α̂23

)

+ C1
(
(λ1 – α̂11) – (1 + α̂11)

)(
α̂14(λ1 – α̂11) – α̂12α̂24

)
+ α̂2

12
(
α̂15(λ1 – α̂11) – α̂12α̂25

)
– α̂12(1 + α̂11)

(
α̂16(λ1 – α̂11) – α̂12α̂26

)]
.

(81)
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Now it is required that the following discriminatory quantities are nonzero for map (80)
to undergo the flip bifurcation [8, 9]

�1 =
(

∂2f
∂Pn∂ε

+
1
2

∂f
∂ε

∂2f
∂P2

n

)∣∣∣∣
F00(0,0)

,

�2 =
(

1
6

∂3f
∂P3

n
+

(
1
2

∂2f
∂P2

n

)2)∣∣∣∣
F00(0,0)

.

(82)

Therefore after computation we get

�1 = –
1
h∗ �= 0 (83)

and

�2 =
√

1 – ω

(2 – hβ)
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2)

×
[

–
√

1 – ω

(4 – hβ)
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2)

×
[

–h2βω(
√

1 – ω –
√

ων2)(1 – 4ω)(1 – ω)√
ων2

–
(2 – hβ)

√
1 – ω + 4h2βω2(

√
1 – ω –

√
ων2)(1 – ω)√

1 – ω

+
hω(

√
1 – ω – 2ω(

√
1 – ω –

√
ων2))√

1 – ω –
√

ων2

–
√

1 – ω

(2 – hβ)
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2)

×
(

h3ω2β(
√

1 – ω –
√

ων2)(1 – 4ω)(1 – ω)√
ων2

)]

– 2hω

(
–hβ

(
1 +

(√
1 – ω –

√
ων2

))
(1 – ω)(1 – 4ω)

+
h2ωβ(

√
1 – ω –

√
ων2)(1 – 4ω)(1 – ω)√
ων2

)

+
(

hβ
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2)√
1 – ω

)
(84)

×
(

–4hω(1 – ω) +
hω(

√
1 – ω – 2ω(

√
1 – ω –

√
ων2))√

1 – ω –
√

ων2

)

+ h2ω2
(

8hβ(
√

1 – ω –
√

ων2)(1 – 2ω)(1 – ω)2

ν2
√

1 – ω

–
2hβω(

√
1 – ω – 2ω(

√
1 – ω –

√
ων2))(1 – 2ω)(1 – ω)

ν2ω

)

+
hω(2 – hβ)

√
1 – ω + 2hβω(

√
1 – ω –

√
ων2)√

1 – ω

(
–2h(1 – 4ω)(1 – ω)2

ν2
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+ hω
(
√

1 – ω – 2ω(
√

1 – ω –
√

ων2))(1 – 4ω)(1 – ω)
2ω(

√
1 – ω –

√
ων2)ν2

)]

+
[( √

1 – ω

(4 – hβ)
√

1 – ω + 2hβω(
√

1 – ω –
√

ων2)

)

×
(

2h2βω
(
1 +

(√
1 – ω –

√
ων2

))
(1 – ω)(1 – 4ω)

–
h3ω2β(

√
1 – ω –

√
ων2)(1 – ω)(1 – 4ω)√
ων2

–
(2 – hβ)

√
1 – ω + 2hβω(

√
1 – ω –

√
ων2)√

1 – ω

×
(

–4hω(1 – ω) +
hω(

√
1 – ω – 2ω(

√
1 – ω –

√
ων2))√

1 – ω –
√

ων2

))]2

.

Finally, from (84) if �2 �= 0 as (γ , h,β ,ω,ν) ∈ F |
F+

PZ(
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
, then around the in-

terior fixed point F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ), phytoplankton–zooplankton model (8) un-

dergoes the flip bifurcation. Further, if �2 > 0 (respectively �2 < 0), then period-2 points
bifurcating from F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) are stable (respectively unstable). �

6 Chaos control
In this section, the state feedback control method is utilized to stabilize chaos at the state
of unstable trajectories by adding un as control forces to discrete-time phytoplankton–
zooplankton model [22, 23]:

Pn+1 = (1 + hβ)Pn – h
(

β +
Zn

ν2 + P2
n

)
P2

n + un,

Zn+1 = Zn + hγ Zn

(
P2

n
ν2 + P2

n
– ω

)
,

un = –k1(Pn – P) – k2(Zn – Z),

(85)

where k1, k2 denote feedback gains, and P =
√

ων2
1–ω

, Z = βν(
√

1–ω–
√

ων2)√
ω(1–ω) . Now, for control

system (85), the variational matrix VC|PPZ(P,Z) takes the following form:

VC|PPZ (P,Z) =

(
�11 – k1 �12 – k2

�21 �22

)
, (86)

where

�11 =
√

1 – ω(1 – hβ) + 2hβω(
√

1 – ω –
√

ων2)√
1 – ω

,

�12 = –hω,

�21 =
β(

√
1 – ω – 2ω(

√
1 – ω –

√
ων2))

ω
√

1 – ω
.

�22 = 1.

(87)
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Now, if the roots of the characteristic equation of VC|PPZ (P,Z) are λ1,2, then

λ1 + λ2 = �11 + �22 – k1, (88)

λ1λ2 = �22(�11 – k1) – �21(�12 – k2). (89)

Now it is noted here that marginal stability is determined from the restrictions λ1 = ±1,
λ1λ2 = 1, which gives the fact that |λ1,2| < 1. If λ1λ2 = 1, then from (89) one gets

L1 : k1 – k2β
(
√

1 – ω – 2ω(
√

1 – ω –
√

ων2))
ω

√
1 – ω

= 0. (90)

If λ1 = 1, then from (88) and (89) one gets

L2 : k2 + hω = 0. (91)

Finally, if λ1 = –1, then from (88) and (89) one gets

L3 : 2k1 – β

(√
1 – ω – 2ω(

√
1 – ω –

√
ων2)

ω
√

1 – ω

)
k2

–
(4 – hβ)

√
1 – ω + 2ωhβ(

√
1 – ω –

√
ων2)√

1 – ω
= 0.

(92)

Therefore, from (90), (91), and (92), lines L1, L2, and L3 in the (k1, k2)-plane give the trian-
gular region, which further gives the fact that |λ1,2| < 1.

7 Numerical simulations
The obtained results are numerically verified in this section for fixing suitable values of
involved parameters. Here the following two cases are considered for the completeness of
this section.

Case 1: Let h = 0.95, β = 0.55, ν = 0.6, ω = 0.23, then from (33) one gets γ =
3.0548345625166413, which is the value of a bifurcation parameter. So, the interior fixed
point F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8) is a stable (re-

spectively unstable) focus if 0 < γ < 3.0548345625166413 (respectively γ >
3.0548345625166413). To show this fact deeply, if one chooses the bifurcation value
γ = 1.7 < 3.0548345625166413, then Fig. 1(a) shows that F+

PZ(0.3279214350000127,
0.5270170961180427) of the discrete phytoplankton–zooplankton model (8) is a stable
focus; moreover, Fig. 1(b)–1(f ) shows the same qualitative behavior if bifurcation val-
ues respectively are γ = 1.97, 2.1, 2.35, 3.01, 3.01345 < 3.0548345625166413. On the other
hand, if γ = 3.3 > 3.0548345625166413, then Fig. 2(a) shows that the positive fixed point
F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) of phytoplankton–zooplankton model (8) changes behavior, and

as a consequence an attracting invariant closed curve appears. Now numerically we have
to show that if γ = 3.3 > 3.0548345625166413, then phytoplankton–zooplankton model
(8) undergoes the supercritical N-S bifurcation, that is, the discriminatory quantity � < 0.
So, if γ = 3.3, then from (57) one gets d|λ1,2|

dε
|ε=0 = 0.7399820615275017 > 0, i.e., nondegen-

erate condition for the existence of N-S bifurcation holds. Moreover, from (54) and (71)
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Figure 1 Stable focus of phytoplankton–zooplankton model (8)

one gets

λ1,2 = 0.8195170415488735 ± 1.2288296165874808ι (93)

and

�02 = –0.1064845211021958 + 0.3409285950222708ι,

�11 = –0.022556674629067297 + 0.0424976106628709ι,

�20 = –0.022556674629067297 + 0.0424976106628709ι,

�21 = 0.008072080753930323 + 0.022202436334813922ι.

(94)
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Figure 2 Attracting invariant closed curves of phytoplankton–zooplankton model (8)

Using (93) and (94) in (69), one gets � = –0.11850669853573864 < 0, which confirms that
our obtained theoretical results are mathematically correct, and hence phytoplankton–
zooplankton model (8) undergoes a supercritical N-S bifurcation. Similarly, for other cho-
sen bifurcations values γ = 3.324, 3.4, 3.54, 3.654, 3.8, 3.87, 3.9, 4.22, 4.95 >
3.0548345625166413 it is also from Fig. 2(b)–2(j) that attracting invariant closed curves
appear, and therefore the discrete phytoplankton–zooplankton model (8) undergoes a su-
percritical N-S bifurcation, i.e., for the said bifurcation values, � < 0 (see Table 1). Finally,
bifurcation diagrams along with maximum Lyapunov exponent are drawn and presented
in Fig. 3.

Case 2: If h = 0.9, β = 3.7, ν = 0.6, ω = 0.523, then from (37) one gets γ =
0.12657824922905964. From the theoretical discussion, the interior fixed point F+

PZ(
√

ων2
1–ω

,
βν(

√
1–ω–

√
ων2)√

ω(1–ω) ) of the discrete phytoplankton–zooplankton model (8) is a stable (respec-
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Table 1 Numerical values of � for γ > 3.0548345625166413

Bifurcation values if γ > 3.0548345625166413 Corresponding value of �

3.3 –0.11850669853573864 < 0
3.324 –0.11850669853573864 < 0
3.4 –0.11850669853573864 < 0
3.54 –0.13479326654465815 < 0
3.654 –0.14288926265451063 < 0
3.8 –0.15359841432110483 < 0
3.87 –0.1588691528795736 < 0
3.9 –0.16115514866851807 < 0
4.22 –0.18655628927087037 < 0
4.95 –0.2387294887287743 < 0

Figure 3 3(a)–3(b) N-S bifurcation diagrams of phytoplankton–zooplankton model (8) with γ ∈ [0.9, 4.95]
3(b) Maximum Lyapunov exponents corresponding to 3(a)–3(b) with (0.54, 0.85)

tively unstable) node if 0 < γ < 0.12657824922905964 (respectively γ >
0.12657824922905964). For this, if γ = 0.012 < 0.12657824922905964, then from Fig. 4(a),
F+

PZ(0.6282650564308631, 1.6522521579455332) of phytoplankton–zooplankton model
(8) is a stable node. In a similar faction, Fig. 4(b)–4(d) also indicates the fact that for
the bifurcation value γ = 0.0123, 0.11, 0.112 < 0.12657824922905964 of phytoplankton–
zooplankton model (8) is a stable node. Further recall that if γ > 0.12657824922905964,
then F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) becomes unstable, and meanwhile a flip bifurcation occurs,

i.e., if γ = 0.13 > 0.12657824922905964, then by mathematical computation from (83) one
gets �1 = –1.1111111 �= 0. Moreover, from (84) one gets �2 = 0.3722876096102278 > 0,
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Figure 4 Stable node of phytoplankton–zooplankton model (8)

Figure 5 5(a)–5(b) Flip bifurcation diagrams of phytoplankton–zooplankton model (8) with γ ∈ [0.1, 5.2] 3(b)
Maximum Lyapunov exponents corresponding to 5(a)–5(b) with (0.84, 0.75)
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Figure 6 Complex and chaotic behavior of phytoplankton–zooplankton model (8)

which indicates the fact that stable period-2 points bifurcate from F+
PZ(

√
ων2
1–ω

,
βν(

√
1–ω–

√
ων2)√

ω(1–ω) ), and hence a flip bifurcation diagram along with maximum Lyapunov ex-
ponents is plotted and presented in Fig. 5. Figure 6 has been drawn to show the complex
dynamics of phytoplankton–zooplankton model (8) with orbits of period-8, 9, 10, 11, 14,
15, whereas Fig. 6(g)–6(i) shows the chaotic behavior.

Hereafter we prove the validity of the obtained results in Sect. 6. For instance, if h = 0.9,
β = 3.7, ν = 0.6, ω = 0.523, then from (90), (91), and (92) one gets

L1 : k1 – 4.3237312072633385k2 = 0, (95)

L2 : k2 + 0.4707 = 0, (96)

L3 : 2k1 – 4.3237312072633385k2 – 1.9648197207411462. (97)

Hence the lines that are presented in (95), (96), and (97) determine the triangular region
that gives |λ1,2| < 1 (see Fig. 7). Finally, n vs Pn and Zn have been plotted for controlled sys-
tem (85) with k1 = 1.0358101854205568, k2 = –0.47069999999999995, which shows that
unstable trajectories are stabilized (see Fig. 8).
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Figure 7 Region of stability where |λ1,2| < 1

Figure 8 Graphs of n vs Pn and Zn for controlled
system (85)

8 Conclusion
The work is about the topological classifications around fixed points, periodic points, bi-
furcations, and chaos control in the discrete-time phytoplankton–zooplankton model (8)
in the region R

2
+ = {(P, Z) : P, Z ≥ 0}. We proved that, for all parametric values γ , h, β , ω,

ν , phytoplankton–zooplankton model (8) has trivial and semitrivial fixed points F00(0, 0),
FP0(1, 0), but it has an interior fixed point F+

PZ(
√

ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ) if ω < min{1, 1

ν2+1 }. Fur-
ther we studied the local stability with different topological classifications around each
fixed point, and the main findings are presented in Table 2. Next, for phytoplankton–
zooplankton model (8), we also studied the existence of periodic points by existing theory.
Further we explored the local bifurcations like flip bifurcation, transcription bifurcation,
and N-S bifurcation which can be analyzed entirely through changes in the local stabil-
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Table 2 Topological classifications around fixed points of phytoplankton–zooplankton model (8)

Fixed points Corresponding behavior

F00(0, 0) never sink; source if γ > 2
hω ; saddle if 0 < γ < 2

hω ;
non-hyperbolic if γ = 2

hω

FP0(1, 0) sink if 2(ν2+1)
γ (ω(ν2+1)–1)

< h < 2
β ;

source if 2(ν2+1)
γ (ω(ν2+1)–1)

> h > 2
β ;

saddle if h >max{ 2
β ,

2(ν2+1)
γ (ω(ν2+1)–1)

};
non-hyperbolic if h = 2

β or h = 2(ν2+1)
γ (ω(ν2+1)–1)

F+PZ (
√

ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω)
) stable focus if γ <

√
1–ω–2ω(

√
1–ω–

√
ων2)

2hω(1–ω)(
√
1–ω–

√
ων2)

;

unstable focus if γ >
√
1–ω–2ω(

√
1–ω–

√
ων2)

2hω(1–ω)(
√
1–ω–

√
ων2)

;

non-hyperbolic if γ =
√
1–ω–2ω(

√
1–ω–

√
ων2)

2hω(1–ω)(
√
1–ω–

√
ων2)

;

stable node if γ < (hβ–2)
√
1–ω–2hβω(

√
1–ω–

√
ων2)

h2βω(1–ω)(
√
1–ω–

√
ων2)

;

unstable node if γ > (hβ–2)
√
1–ω–2hβω(

√
1–ω–

√
ων2)

h2βω(1–ω)(
√
1–ω–

√
ων2)

;

non-hyperbolic if γ = (hβ–2)
√
1–ω–2hβω(

√
1–ω–

√
ων2)

h2βω(1–ω)(
√
1–ω–

√
ων2)

ity properties around fixed points F00(0, 0), FP0(1, 0), F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ), periodic

orbits, or other invariant sets as parameters crossing through bifurcation value to un-
derstand model (8) more deeply. So, it is proved that around a trivial fixed point there
exists a transcritical bifurcation if (γ , h,β ,ω,ν) ∈ T |F00(0,0) = {(γ , h,β ,ω,ν),γ = 2

hω
}, but

around trivial and semitrivial fixed points there exists no flip bifurcation if (γ , h,β ,ω,ν) ∈
F |F00(0,0) = {(γ , h,β ,ω,ν),γ = 2

hω
} and (γ , h,β ,ω,ν) ∈ F |FP0(1,0) = {(γ , h,β ,ω,ν), h = 2

β
}, re-

spectively. We also investigated that around F+
PZ(

√
ων2
1–ω

, βν(
√

1–ω–
√

ων2)√
ω(1–ω) ), phytoplankton–

zooplankton model (8) undergoes both Neimark–Sacker and flip bifurcations if param-
eters go through the curves (γ , h,β ,ω,ν) ∈ N |

F+
PZ(

√
ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
= {(γ , h,β ,ω,ν),γ =

√
1–ω–2ω(

√
1–ω–

√
ων2)

2hω(1–ω)(
√

1–ω–
√

ων2)
} and (γ , h,β ,ω,ν) ∈ F |

F+
PZ(

√
ων2
1–ω , βν(

√
1–ω–

√
ων2)√

ω(1–ω) )
= {(γ , h,β ,ω,ν),γ =

hβ
√

1–ω–2
√

1–ω–2hβω(
√

1–ω–
√

ων2)
h2βω(1–ω)(

√
1–ω–

√
ων2)

}, respectively. From the viewpoint of biology, the occur-
rence of Neimark–Sacker implies that there exist periodic or quasi-periodic oscillations
between phytoplankton and zooplankton populations. Further the state feedback con-
trol method is utilized to stabilize chaos existing in the discrete-time phytoplankton–
zooplankton model. Finally, the obtained results are verified not only numerically but also
by showing the complex dynamics with orbits of period-8, 9, 10, 11, 14, 15 and chaotic
behavior of the discrete-time phytoplankton–zooplankton model.
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