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Abstract

In this article we make an improvement in the Banach contraction using a controlled
function in controlled metric like spaces, which generalizes many results in the
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1 Introduction
One of the most interesting applications of “xed point theory is solving integral and di�er-
ential equations; see, for example, [1]. The Banach contraction principle was generalized
many times to extend its application. As an example of these generalizations,b-spaces (see
[2]) are an extension of the regular metric spaces; see [3…15]. Lately, Kamran [16] intro-
duced what the so-called extendedb-metric spaces by adding a control function� (p,q)
in the triangle inequality. For more onb-metric spaces and its extensions, we refer the
reader to [17…23]. First, we start by reminding the reader the de“nition of extendedb-
metric spaces.

De“nition 1.1 ([16]) Consider the setX �= � and � : X × X � [1,� ). Let de : X × X �
[0,� ) be such that for allp,q,z � X,

(1) de(p,q) = 0 if and only ifp = q;
(2) de(p,q) = de(q,p);
(3) de(p,q) � � (p,q)[de(p,z) + de(z,q)].

Then (X,de) is called an extendedb-metric space.

Mlaiki et al. [24] gave an extension to this type of metric spaces as follows.

De“nition 1.2 ([24]) Consider the setX �= � and� : X × X � [1,� ). Suppose that a func-
tion dc : X × X � [0,� ) satis“es the following:

(1) dc(p,q) = 0 if and only ifp = q;
(2) dc(p,q) = dc(q,p);
(3) dc(p,q) � � (p,z)dc(p,z) + � (z,q)dc(z,q) for all p,q,z � X.

Then (X,dc) is called a controlled metric-type space.
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In 2021, a new generalization of theb-metric spaces introduced in [25], the so-called

controlled metric-like spaces.

De“nition 1.3 ([25]) Consider the setX �= � and� : X × X � [1,� ). Suppose that a func-

tion dc : X × X � [0,� ) satis“es the following:

(CML1) dc(s,r) = 0 � s = r;

(CML2) dc(s,r) = dc(r,s);
(CML3) dc(s,r) � � (s,z)dc(s,z) + � (z,r)dc(z,r) for all s,r,z � X.

Then (X,dc) is called a controlled metric-like space.

Example 1.4 ([25]) Let X = {0,1,2}. De“ne the function dc by

dc(0, 0) =dc(1, 1) = 0, dc(2, 2) =
1
10

and

dc(0, 1) =dc(1, 0) = 1, dc(0, 2) =dc(2, 0) =
1
2

, dc(1, 2) =dc(2, 1) =
2
5

.

Let � : X × X � [1,� ) a symmetric function de“ned by

� (0, 0) =� (1, 1) =� (2, 2) =� (0, 2) = 1, � (1, 2) =
5
4

, � (0, 1) =
11
10

.

Here dc is a controlled metric-like onX.

We havedc(2, 2) = 1
10 �= 0, which implies that (X,dc) is not a controlled metric-type space.

De“nition 1.5 ([25]) Let (X,dc) be a controlled metric-like space, and let{sn}n	 0 be a

sequence inX.

(1) {sn} converges tos in X if and only if

lim
n��

dc(sn,s) = dc(s,s).

Then we writelimn�� sn = s.
(2) {sn} is a Cauchy sequence if and only iflimn,m�� dc(sn,sm) exists and is “nite.

(3) We say that(X,dc) is complete if for every Cauchy sequence{sn}, there iss � � such

that

lim
n��

dc(sn,s) = dc(s,s) = lim
n,m��

dc(sn,sm).

De“nition 1.6 ([26]) Let (X,dc) be a controlled metric-like space. Lets � X and � > 0.

(i) The open ballB(s, � ) is

B(s, � ) =
{
y � X,

∣∣dc(s,r) …dc(s,s)
∣∣ < �

}
.

We denote controlled metric-like spaces byCMLS.

Note that if T is continuous atp in the CMLS (X,dc), thenpn � p implies thatTpn � Tp

asn � � .
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Now let (X,dc) be a controlled metric-like space, and letT : X � X. The following con-
trol functions were introduced by Sintunavarat et al. [27] (in this paper, we will exclude
zero from their range):

A =
{
� : X � (0, 1),� (Tp) � � (p) for all p � X

}
.

and

B =
{
� : X � (0, 1/2),� (Tp) � � (p) for all p � X

}
.

2 Main results
Our “rst main result corresponds to a nonlinear Banach-type result onCMLS, which is
also an extension of the results in [28].

Theorem 2.1 Let (X,dc) be a complete CMLS. Consider the mapping T : X � X such that

dc(Tp,Tq) � � (p)dc(p,q) (2.1)

for all p,q � X, where � � A. For p0 � X, take pn = Tnp0. Suppose that

sup
m	 1

lim
i��

� (pi+1,pi+2)
� (pi,pi+1)

� (pi+1,pm) <
1

� (p0)
. (2.2)

Also, assume that for every p � X, we have

lim
n��

� (pn,p) and lim
n��

� (p,pn) exist and are finite. (2.3)

Then T has a unique fixed point.

Proof Consider the sequence{pn = Tnp0}. By (2.1) we get

dc(pn,pn+1) � � (pn…1)dc(pn…1,pn) for all n 	 1.

Since� � A, we have

dc(pn,pn+1) � � (p0)dc(pn…1,pn) for all n 	 1.

By induction,

dc(pn,pn+1) �
[
� (p0)

]ndc(p0,p1) for all n 	 0. (2.4)

Choosek =: � (p0) � (0, 1). For all natural numbersn < m, as in [24], we have

dc(pn,pm) � � (pn,pn+1)dc(pn,pn+1) + � (pn+1,pm)dc(pn+1,pm)

� � (pn,pn+1)kndc(p0,p1) +
m…1∑

i=n+1

( i∏

j=n+1

� (pj,pm)

)

� (pi,pi+1)kidc(p0,p1)

� � (pn,pn+1)kndc(p0,p1) +
m…1∑

i=n+1

( i∏

j=0

� (pj,pm)

)

� (pi,pi+1)kidc(p0,p1).
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Let

Sp =
p∑

i=0

( i∏

j=0

� (pj,pm)

)

� (pi,pi+1)ki.

Hence we have

dc(pn,pm) � dc(p0,p1)
[
kn� (pn,pn+1) + (Sm…1…Sn)

]
. (2.5)

Now by condition (2.2) and the ratio test, we deduce thatlimn�� Sn exists, and therefore

{Sn} is a Cauchy sequence. Taking the limit in (2.5), we obtain

lim
n,m��

dc(pn,pm) = 0. (2.6)

Hence{pn} is a Cauchy sequence. Since (X,dc) is complete, we deduce that{pn} converges

to someu � X. We claim that u is a “xed point of T. To prove this claim, we start by

applying the triangle inequality of theCMLS as follows:

dc(u,pn+1) � � (u,pn)dc(u,pn) + � (pn,pn+1)dc(pn,pn+1).

By (2.2), (2.3), and (2.6) we conclude that

lim
n��

dc(u,pn+1) = 0. (2.7)

Thus

dc(u,Tu) � � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)dc(pn+1,Tu)

� � (u,pn+1)dc(u,pn+1) + � (pn)� (pn+1,Tu)dc(pn,u)

� � (u,pn+1)dc(u,pn+1) + � (p0)� (pn+1,Tu)dc(pn,u).

Note that, asn � � in (2.3) and (2.7), we havedc(u,Tu) = 0, that is,Tu = u. Now we may

assume thatT has “xed pointsu andv. Hence

dc(u,v) = dc(Tu,Tv) � � (u)dc(u,v) < dc(u,v),

which leads us to a contradiction. Therebydc(u,v) = 0, which impliesu = v, as desired.�

Next, we present the following example.

Example 2.2 LetX = [0,1]. Consider theCMLS (X,dc) de“ned by

dc(p,q) = |p …q|2,
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where� (p,q) = pq+ 1 for p,q � X. TakeTp = p2

4 . Choose� : X � [0, 1) as� (p) = p+1
4 . Then

� � A. Takep0 = 0, so (2.2) is satis“ed. Letp,q � X. Then

dc(Tp,Tq) =
(p2 …q2)2

16
=

1
16

|p …q|2(p + q)2

�
1
4

|p …q|2

�
p + 1

4
|p …q|2

= � (p)dc(p,q).

Note that all the hypotheses of Theorem2.1 are satis“ed. Thus there exists an element
u � X such thatTu = u, which isu = 0.

In the following theorem, we propose a “xed point result using the nonlinear Kannan-
type contraction via the auxiliary function� � B.

Theorem 2.3 Let (X,dc) be a complete CMLS by the function � : X × X � [1,� ). Let
T : X � X where

dc(Tp,Tq) � � (p)
[
dc(p,Tp) + dc(q,Tq)

]
(2.8)

for all p,q � X, where � � B.For p0 � X, take pn = Tnp0. Suppose that

sup
m	 1

lim
i��

� (pi+1,pi+2)
� (pi,pi+1)

� (pi+1,pm) <
1 …� (p0)

� (p0)
. (2.9)

Also, assume that for every p � X, we have

lim
n��

� (p,pn) exists, is finite and lim
n��

� (pn,p) <
1

� (p0)
. (2.10)

Then there exists a unique fixed point of T.

Proof Let {pn = Tpn…1} be a sequence inX satisfying hypotheses (2.9) and (2.10). From
(2.8) we obtain

dc(pn,pn+1) = dc(Tpn…1,Tpn)

� � (pn…1)
[
dc(pn…1,Tpn…1) + dc(pn,Tpn)

]

� � (p0)
[
dc(pn…1,pn) + dc(pn,pn+1)

]
.

Considera = � (p0). Then dc(pn,pn+1) � a
1…a dc(pn…1,pn). By induction we get

dc(pn,pn+1) �
(

a
1 …a

)n

dc(p1,p0), 
 n 	 0. (2.11)

For all natural numbersn, m, we have

dc(pn,pm) � � (pn,pn+1)dc(pn,pn+1) + � (pn+1,pm)dc(pn+1,pm).
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Following the steps of the proof of Theorem2.1, we deduce

dc(pn,pm) � � (pn,pn+1)dc(pn,pn+1) +
m…2∑

i=n+1

( i∏

j=n+1

� (pj,pm)

)

� (pi,pi+1)dc(pi,pi+1)

+
m…1∏

k=n+1

� (pk ,pm)dc(pm…1,pm)

� � (pn,pn+1)
(

a
1 …a

)n

dc(p0,p1)

+
m…2∑

i=n+1

( i∏

j=n+1

� (pj,pm)

)

� (pi,pi+1)
(

a
1 …a

)i

dc(p0,p1)

+
m…1∏

i=n+1

� (pi,pm)
(

a
1 …a

)m…1

dc(p0,p1).

Since 0� a < 1
2, we have a

1…a � (0, 1). Therefore{pn} is a Cauchy sequence, and since (X,dc)

is a completeCMLS, {pn} converges to someu � X. Suppose thatTu �= u. Then

0 < dc(u,Tu) � � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)dc(pn+1,Tu)

� � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)� (pn)
[
dc(pn,pn+1) + dc(u,Tu)

]
(2.12)

� � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)� (p0)
[
dc(pn,pn+1) + dc(u,Tu)

]
.

As n � � in (2.12) and by (2.10), we conclude that 0 <dc(u,Tu) < dc(u,Tu), which leads

us to a contradiction. TherebyTu = u. Now we may assume thatT has “xed pointsu andv.

Thus

dc(u,v) = dc(Tu,Tv) � � (u)
[
dc(u,Tu) + dc(v,Tv)

]

= � (u)
[
dc(u,u) + dc(v,v)

]
= 0.

Henceu = v. Therefore the “xed point is unique, as required. �

Example 2.4 ConsiderX = {0,1,2}. Take the controlled metric-likedc de“ned as

dc(0, 1) =
1
2

, dc(0, 2) =
11
20

, dc(1, 2) =
3
20

.

Let � : X × X � [1,� ) be de“ned by

� (0, 0) =� (1, 1) =� (2, 2) =� (1, 2) =� (2, 1) = 1,

� (0, 2) =� (2, 0) = 2, � (0, 1) =� (1, 0) =
3
2

.

Let T : X � X be given by

T0 = 2 and T1 =T2 = 1.
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Let � : X � [0, 1
2) be given by� (0) = 99

200, � (1) = 3
10, and � (2) = 49

100. Then � � B. Take

p0 = 0, so that (2.9) is satis“ed.

Also, it is easy to see that (2.8) holds. By Theorem2.3there exists a uniqueu such that

Tu = u, that is,u = 1.

Now,we again give a response to an open question in [24], which is a study of a nonlinear

Chatterjea-type contraction via an auxiliary function� � B.

Theorem 2.5 Let (X,dc) be a complete CMLS by the function

� : X × X � [1,� ).

Let T : X � X be such that dc(Tp,Tq) � � (p)
[
dc(p,Tq) + dc(q,Tp)

]
(2.13)

for all p,q � X, where � � B.For p0 � X, take pn = Tnp0. Suppose that

sup
i	 1

� (pi…1,pi) = � (exists and is “nite), (2.14)

0 <� (p0) <
1

2�
, (2.15)

and

sup
m	 1

lim
i��

� (pi+1,pi+2)
� (pi,pi+1)

� (pi+1,pm) <
�� (p0)

1 …�� (p0)
. (2.16)

Also,assume that dc is continuous with respect to the first variable and that for every p � X,

lim
n��

� (p,pn) exists, is finite, and lim
n��

� (pn,p) <
1

� (p0)
. (2.17)

Then T possesses a unique fixed point in X.

Proof Consider the sequence{pn = Tpn…1} in X satisfying hypotheses (2.14), (2.15), (2.16),

and (2.17). From (2.13) and (2.14) we obtain

dc(pn,pn+1) = dc(Tpn…1,Tpn)

� � (pn…1)
[
dc(pn…1,Tpn) + dc(pn,Tpn…1)

]

= � (pn…1)dc(pn…1,pn+1)

� � (p0)
[
� (pn…1,pn)dc(pn…1,pn) + � (pn,pn+1)dc(pn,pn+1)

]

� �� (p0)
[
dc(pn…1,pn) + dc(pn,pn+1)

]
.

Let b = �� (p0)
1…�� (p0) . By (2.15) we haveb � (0, 1). Thendc(pn,pn+1) � bdc(pn…1,pn). By induction

we get

dc(pn,pn+1) � bndc(p0,p1), 
 n 	 0. (2.18)
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For all natural numbersn, m, we have

dc(pn,pm) � � (pn,pn+1)dc(pn,pn+1) + � (pn+1,pm)dc(pn+1,pm).

Following the steps of the proof of Theorem2.1, we get

dc(pn,pm) � � (pn,pn+1)dc(pn,pn+1) +
m…2∑

i=n+1

( i∏

j=n+1

� (pj,pm)

)

� (pi,pi+1)dc(pi,pi+1)

+
m…1∏

k=n+1

� (pk ,pm)dc(pm…1,pm)

� � (pn,pn+1)(bndc(p0,p1) +
m…2∑

i=n+1

( i∏

j=n+1

� (pj,pm)

)

� (pi,pi+1)bidc(p0,p1)

+
m…1∏

i=n+1

� (pi,pm)bm…1dc(p0,p1).

This implies that{pn} is a Cauchy sequenceCMLS (X,dc). Since the space is complete, the

sequence{pn} converges to someu � X. Now suppose thatTu �= u. Then

0 < dc(u,Tu) � � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)dc(pn+1,Tu)

� � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)� (pn)
[
dc(pn,Tu) + dc(u,pn+1)

]
(2.19)

� � (u,pn+1)dc(u,pn+1) + � (pn+1,Tu)� (p0)
[
dc(pn,Tu) + dc(u,pn+1)

]
.

Asn � � in (2.19), by (2.17) and using the continuity ofdc with respect to its “rst variable,

we deduce that 0 <dc(u,Tu) < dc(u,Tu), which leads us to a contradiction. ThusTu = u.

Now let us assume thatT has “xed pointsu andv. Then

dc(u,v) = dc(Tu,Tv) � � (u)
[
dc(u,Tv) + dc(v,Tu)

]

= � (u)
[
dc(u,u) + dc(v,v)

]
= 0.

Thereforeu = v, and thus the “xed point ofT is unique. �

Now we introduce cyclical orbital contractions in the class ofCMLS.

De“nition 2.6 Let U andV be two nonempty subsets of aCMLS (X,dc). LetT : U � V �

U � V be a cyclic mapping (i.e.,T(U) � V andTV � U) such that for somep � U, there

existskp � (0, 1) such that

dc
(
T

2n
p,Tq

)
� kpdc

(
T

2n…1
p,q

)
, (2.20)

wheren = 1,2, . . . andq � U. ThenT is called a controlled cyclic orbital contraction map-

ping.

Finally, we prove the following result.
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Theorem 2.7 Let U and V be two nonempty closed subsets of a complete CMLS (X,dc).Let
T : X � X be a controlled cyclic orbital contraction mapping. For p0 � U, take pn = Tnp0.

Suppose that

sup
m	 1

lim
i��

� (pi+1,pi+2)
� (pi,pi+1)

� (pi+1,pm) <
1

kp0

. (2.21)

Also, assume that for every p � X,

lim
n��

� (pn,p) and lim
n��

� (p,pn) exist and are finite. (2.22)

Then U 
 V is nonempty, and T has a unique fixed point.

Proof Suppose there existsp (sayp0) in U satisfying (2.20). De“ne the iterative sequence

{pn = Tnp0}. Sincep0 � U andT is cyclic, we have

p2n � U and p2n+1 � V for all n 	 0. (2.23)

By (2.20) we get

dc
(
T

2
p,Tp

)
� kpdc(Tp,p).

Again,

dc
(
T

3
p,T2

p
)

= dc
(
T

2
p,T

(
T

2
p
))

� kpdc
(
Tp,T2

p
)

� (kp)2dc(Tp,p).

By induction we obtain that

dc(pn,pn+1) � [kp]ndc(p0,p1) for all n 	 0. (2.24)

Similarly to the proof of Theorem2.1, we can easily deduce that

lim
n,m��

dc(pn,pm) = 0, (2.25)

that is,{pn} is a Cauchy sequence in the completeCMLS (X,dc), so{pn} converges to some

u � X. Since{T2np} is in U andU is closed, the limitu is in S1. Similarly,{T2n…1p} is in the

closed subsetV , sou � V , that is,u � U 
 V , and henceU 
 V is not empty. Let us prove

that u is a “xed point of T. We have

dc(u,pn+1) � � (u,pn)dc(u,pn) + � (pn,pn+1)dc(pn,pn+1).

Using (2.21), (2.22), and (2.25), we get that

lim
n��

dc(u,pn+1) = 0. (2.26)
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By (2.20) we deduce

dc(u,Tu) � �
(
u,T2n

p
)
dc

(
u,T2n

p
)

+ �
(
T

2n
p,Tu

)
dc

(
T

2n
p,Tu

)

� �
(
u,T2n

p
)
dc

(
u,T2n

p
)

+ kp�
(
T

2n
p,Tu

)
dc

(
T

2n…1
p,u

)

= � (u,pn+1)dc(u,pn+1) + kp� (pn+1,Tu)dc(p2n…1,u).

Taking the limit asn � � and using (2.22) and (2.26), we deduce thatdc(u,Tu) = 0, that
is,Tu = u. Finally, assume thatT has two “xed points, sayu andv (they are inU). Then

dc(u,v) = dc(Tu,Tv) = dc
(
T

2nu,Tv
)

� kudc
(
T

2n…1u,v
)

= kudc(u,v),

which holds unlessdc(u,v) = 0, sou = v. HenceT has a unique “xed point. �

The following example illustrates Theorem2.7.

Example 2.8 Let X = U � V , where U = [ 1
4, 1

2]andV = [ 1
2, 1]. Consider the controlled

metric-like dc de“ned as

dc(p,q) = |p …q|2,

where� (p,q) = pq + 1 for p,q � X. TakeTp = 1
2 if p � U andTp = p

2 if p � V \ { 1
2}. Now let

kp : X � [0, 1] be de“ned askp = p+1
2 . Note that for all p � U, we have

Tp =
1
2

, T
2
p =

1
2

, . . . , T
2n…1

p =
1
2

, T
2n
p =

1
2

, . . . .

For all q � U, using the fact that

dc
(
T

2n
p,Tq

)
= dc

(
1
2

,
1
2

)
= 0,

we deduce that

dc
(
T

2n
p,Tq

)
� kpdc

(
T

2n…1
p,q

)
.

It is not di�cult to see that T satis“es all the hypotheses of Theorem2.7. ThereforeT has
a unique “xed point u = 1

2.

3 Fredholm-type integral equation
Consider the setX = C([0, 1], (…� ,� )) and the following Fredholm-type integral equa-
tion:

p
�(t) =

∫ 1

0
S
(
t,s,p�(t)

)
ds for t � [0, 1], (3.1)

whereS(t,s,p�(t)) is a continuous function from [0,1]2 into R. Now de“ne

dc : X × X Š� R
+

(p,q) �� sup
t� [0,1]

(
|p�(t)| + |q(t)|

2

)
.
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Note that (X,dc) is a completeCMLS, where

� (p,q) = 2.

Theorem 3.1 Assume that for all p,q � X,

(1) |S(t,s,p�(t))| + |S(t,s,q(t))| � � (supt� [0,1](|p
�(t)| + |q(t)|))(|p�(t)| + |q(t)|) for some

� � B.

(2) S(t,s,
∫ 1

0 S(t,s,p�(t))ds) <S(t,s,p�(t)) for all t, s.
Then the integral equation (3.1) has a unique solution.

Proof Let � : X Š� X be de“ned by�p�(t) =
∫ 1

0 S(t,s,p�(t))ds. Then

dc(�p�,�q) = sup
t� [0,1]

(
|�p�(t)| + |�q(t)|

2

)
.

Now we have

dc
(
�p

�(t),�q(t)
)

=
|�p�(t)| + |�q(t)|

2

=
|
∫ 1

0 S(t,s,p�(t))ds| + |
∫ 1

0 S(t,s,q(t))ds|
2

�

∫ 1
0 |S(t,s,p�(t))| ds +

∫ 1
0 |S(t,s,q(t))| ds

2

=

∫ 1
0 (|S(t,s,p�(t))| + |S(t,s,q(t))|)ds

2

�

∫ 1
0 � (supt� [0,1](|p

�(t)| + |q(t)|))(|p�(t)| + |q(t)|)ds
2

� �
(

sup
t� [0,1]

(∣∣p�(t)
∣∣ +

∣∣q(t)
∣∣)

)
dc

(
p

�(t),q(t)
)
.

Thus dc(�p�,�q) � � (supt� [0,1](|p
�(t)| + |q(t)|))dc(p�,q). Also, notice that

� (p,q) <
1

� (supt� [0,1](|p�(t)| + |q(t)|))
.

Therefore all the hypotheses of Theorem2.1are satis“ed, and hence equation (3.1) has a

unique solution. �

4 Conclusion
We have proved the existence and uniqueness of a “xed point for a self-mapping in con-

trolled metric-like spaces under di�erent nonlinear contractions with a control function.

Also, we present an application of our results to Fredholm-type integral equations. More-

over, we would like to bring the reader•s attention to the following question.

Question 4.1 Under what conditions we can obtain the same results for a self-mapping

in double controlled metric-like spaces [26]?
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6. Aydi, H., Karapšnar, E., Bota, M.F., Mitrović, S.: A “xed point theorem for set-valued quasi-contractions inb-metric

spaces. Fixed Point Theory Appl.2012, 88 (2012)
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