Shatanawi et alAdvances in Di erence Equations  (2021) 2021:358 ® Advances in Difference Equations
https://doi.org/lO.1186/513662-021-03516-4 a SpringerOpen Journal

RESEARCH Open Acces

l‘)
Fredholm-type integral equation in
controlled metric-like spaces

Was* Shatanawi, Nabil Mlaiki®, Doaa RiZkand Enyinda Onunwér

“Correspondence:

nmlaiki@psu.edu;sa Abstract

nmlaiki2012@gmail.com . . . . . .

1Department of Mathematics and In thl§ arpcle we make an improvement in th_e Banach contraction using qcontrol ed

General Sciences, Prince Sultan function in controlled metric like spaces, which generalizes many results in the

X”"t’)‘?fs't% Riyadh, 11586, Saudi literature. Moreover, we present an application on Fredholm type integral equatio.
rabla

Full list of author information is Keywords: Fixed point; Controlled metric-like spaces; Fredholm-type integral

available at the end of the article equations

1 Introduction

One of the mostinteresting applications of “xed point theory is solving integral and di er-
ential equations; see, for examplel][ The Banach contraction principle was generalized
many times to extend its application. As an example of these generalizatidnspaces (see
[2]) are an extension of the regular metric spaces; s&e.15]. Lately, Kamran [L6] intro-
duced what the so-called extendebl-metric spaces by adding a control function (p, q)

in the triangle inequality. For more onb-metric spaces and its extensions, we refer the
reader to [17..23]. First, we start by reminding the reader the de“nition of extended-
metric spaces.

De“nition 1.1 ([16]) ConsiderthesetX = and :Xx X [1, ).Letds:Xx X
[0, )besuchthatforallp,q,z X,

(1) de(p,q) =0ifand only ifp = q;

(2) de(p,q) = de(q,p);

(3) de(p,a)  (p,a)[de(p,2) + de(z,9)].
Then (X, d) is called an extendedb-metric space.

Milaiki et al. [24] gave an extension to this type of metric spaces as follows.

De“nition 1.2 ([24]) ConsidertheseX = and :Xx X [1, ).Suppose thata func-
tiond,: Xx X [0, ) satis“es the following:

(1) de(p,q) =0ifand only ifp = g;

(2) dc(p,q) =dc(q,p);

(3) de(p,a)  (p,2)de(p,2) + (z,9)dc(z,9) forallp,q,z X,
Then (X, d.) is called a controlled metric-type space.
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In 2021, a new generalization of thb-metric spaces introduced in 25], the so-called
controlled metric-like spaces.

De“nition 1.3 ([25]) ConsidertheseX = and :Xx X [1, ).Suppose thata func-
tiond.:Xx X [0, )satis“es the following:

(CML1) d¢(s,r)=0 s=r;

(CML2) dc(s,r) =dc(r,s);

(CML3) dc(s,r)  (5,2)dc(s,2) + (z,r)dc(z,r) foralls,r,z  X.
Then (X,d,) is called a controlled metric-like space.

Example 1.4 (25]) Let X ={0, 1, Z. De“ne the function d; by

d(0,0)=de(1,1) =0,  de(2,2) :%

and
de(0,1) =de(1,0) =1, de(0,2) =dc(2,0) =%’ de(1,2) =de(2, 1) :é'

Let :Xx X [1, )asymmetricfunction de“ned by

11
0,00= (1,1)= (2,2)= (0,2)=1, (1,2):§, 0,1)=—.
4 10
Here d. is a controlled metric-like onX.

We haved;(2,2) = 1—10 =0, which implies that (X, d.) is not a controlled metric-type space.

De“nition 1.5 ([25]) Let (X,d.) be a controlled metric-like space, and lefsy}n o be a
sequence inX.
(1) {sn} converges ta in X if and only if

nlim dc(Sn,S) = dc(s, ).
Then we writelimp, Sh =S5.
(2) {sn}is a Cauchy sequence if and onlylifn,m  dc(Sn,Sm) eXists and is “nite.
(3) We say tha(X,d;) is complete if for every Cauchy sequen{sg}, there iss such
that

lim d¢(Sn,S) =dc(s,5) = lim dc(Sh,Sm)-
n n,m

De“nition 1.6 ([2€]) Let (X,d.) be a controlled metric-like space. Let X and >0.
(i) The open ballB(s, )is

B(s, )={y X,|dc(s,r)..de(s,9)[ < }.
We denote controlled metric-like spaces bgMLS.

Note that if ¥ is continuous atp inthe CMLS (X,d.), thenp, pimpliesthatTp, Ip
asn
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Now let (X,d;) be a controlled metric-like space, and [T : X  X. The following con-
trol functions were introduced by Sintunavarat et al.2[7] (in this paper, we will exclude
zero from their range):

A={ :X (0,1), (Zp) (p)forallp X}.
and
B={ :X (0,1/2), (Tp) (p)forallp X}.

2 Mainresults
Our “rst main result corresponds to a nonlinear Banach-type result o6MLS, which is
also an extension of the results ir2g].

Theorem 2.1 Let (X,d.) be a complete CMLS. Consider the mapping ¥: X X such that

de(Tp,Ta)  (p)de(p,q) (2.1)

forall p,q X, where A.Forpg X, take pn = T"po. Suppose that

. (pisnpiv2) 1
;uqihmm (Pis1,Pm) < 00 (2.2)

Also, assume that for every p X, we have

nhm (pn,p) and nlim (p,pn) existand are finite. (2.3)
Then ¥ has a unique fixed point.
Proof Consider the sequencép, = T"po}. By 2.1) we get

de(pn, bn+1) (Pn..9dc(pn...1pn) foralln 1.

Since A, we have

de(Pn,Pns1)  (Po)dc(pn..apn) foralln 1.
By induction,

de(pn.pns1) [ (po)]"de(po,pa) foralin 0. (2.4)
Choosek =: (po) (0,1). For all natural numbersi <m, as in P4], we have

de(pn, pm) (Pns Pr+n)de(Pn, Pres) + (Pnst, Pm)de(Pnes Pm)

m...1 i
(Pns Pre)K"de(po, 1) + ) (H (Pjapm)> (pi, Pis1)k'de(Po, 1)

i=n+1 \j=n+1

m...1/ i
(Pn, Pre1)K"de(po,p2) + ) (1‘[ (pj.pm>> (Pi, Pis1)k'de(po, pa)-

i=n+1 \ j=0
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Let

p i
SP:Z<H (Pj,pm)) (pi, pis1)K'.

i=0 \j=0
Hence we have
dc(pnypm) dc(po,pl)[kn (Pnapn+l) + (Sm...l--sn)]- (2-5)

Now by condition (2.2) and the ratio test, we deduce thdim, S, exists, and therefore
{Sn} is a Cauchy sequence. Taking the limit ir2(5), we obtain

n‘rlnim dc(pn,pm) =0. (2.6)

Hence{p,} is a Cauchy sequence. Sinck¥,d.) is complete, we deduce thdtp,} converges
to someu X. We claim thatu is a “xed point of €. To prove this claim, we start by
applying the triangle inequality of theCMLS as follows:

de(U,pn+1) (U pn)de(U,pn) + (P, Prea)de(pn, Poea).
By (2.2, (2.3, and (2.6) we conclude that

nlim dc(u,pn+1) = 0. (2.7
Thus

dc(u,Fu) (U, pnen)de(U, pne1) + (Pnea, TU)de(pne1, Tu)
(U, pne1)de(U, pne1) + (pn) (Pne, TU)dc (P, U)
(U, pn+1)de(U, pnes) + (Po) (Pn+z, Tu)dc(pn, ).

Note that, asn in (2.3 and (2.7), we haved.(u,Tu) = 0, that is,Tu = u. Now we may
assume thatt has “xed pointsu andv. Hence

dc(u,v) = dc(Fu,2v) (u)dc(u,v) <dg(u,v),
which leads us to a contradiction. Therebyg.(u,v) = 0, which impliesu = v, as desired ]

Next, we present the following example.

Example 2.2 LetX =[O0, 1]. Consider theCMLS (X, d.) de“ned by

de(p.g) =1p ..ql%,
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where (p,q)=pq+1forp,q X.TakeTp=2 . Choose :X [0,1)as (p)= EL. Then
A. Takepo =0, so @.2) is satis“ed. Letp,q X. Then
(02 ..9%)?°

de(Tp.Ta) = —— ¢

1 2 2
=—lp.. +
16Ip ql“(p +q)

1 2
Z|P--£l|
p+1l Ll

4
= (p)dc(p,q).

Note that all the hypotheses of Theoren2.1 are satis“ed. Thus there exists an element
u X such thatTu=u, whichisu=0.

In the following theorem, we propose a “xed point result using the nonlinear Kannan-
type contraction via the auxiliary function  B.

Theorem 2.3 Let (X,d;) be a complete CMLS by the function :X x X  [1, ). Let
T: X  Xwhere

de(Tp,Tq)  (P)[dc(p, Tp) + de(q,Tq)] (2.8)

forall p,q X, where B.Forpo X, take pn = T"pg. Suppose that

. (pir1,Pir2) 1... (po)
sup lim ————= (pj+1,Pm) < . 2.9
Also, assume that for every p X, we have
. S ) 1
lim (p,pn) exists,isfiniteand lim (pn,p)<——. (2.10)
n n (pO)

Then there exists a unique fixed point of .

Proof Let {p, = Tp,..3 be a sequence X satisfying hypotheses2(9) and 2.10. From
(2.8 we obtain

dc(pn, pn+1) = de(Tpn..1Tpn)
(pn...J)[dc(pn...lspn...J) + dc(Pn,TPn)]
(po)[dc(pn...lpn) + dc(pnapnﬂ)]-

Considera=(po). Thendc(pn,pn+1)  155dc(Pn...1pn). By induction we get

e Per) (%) d(ppo) N 0. (2.11)

For all natural numbersn, m, we have

de(pn, pm) (pnspr+1)de(Pn,pnea) + (Pres, Pm)de(Pnes, Pm)-
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Following the steps of the proof of Theoren2.1, we deduce

m...2 i
de(pn, Pm) (Pn, pre1)de(pn, Pres) + Z (l_[ (Pj,IJm)> (Pi, pix1)de(Pi, Piv1)

i=n+1 \j=n+1

m...1

+ H (pkupm)dc(pm...lpm)

k=n+1

(pn,pnﬂ)(ﬁa.a) dc(po,p1)

m.2/ i i
* Z(l_[ (pj,pm)) o)1 ) cHoonn)

i=n+1 \j=n+1

m...1 a m...1
1 Guon(575) et

i=n+1
Since0 a< % we have;®. (0, 1). Thereforg{pn} is a Cauchy sequence, and since,d.)
is a completeCMLS, {pn} converges to some& X. Suppose thaffu =u. Then
0 <de(u,Tu) (U, pn+a)dc(U, pne) + (Pne, TUYe(Pnsa, TU)

(U, pre1)de(U, prea) + (Pnes, TU) (pn)[dc(pnapml) + dc(u,‘Zu)] (2.12)
(U, prea)de(U, prea) + (Pnes, TU) (po)[dc(pn'pnﬂ) + dc(u,‘i'u)].

Asn in (2.12 and by .10, we conclude that 0 <d.(u, Tu) <d.(u,Tu), which leads
usto a contradiction. TherebyZu = u. Now we may assume thaf has “xed pointsu andv.
Thus

de(u,v) = de(Tu,Tv)  (U)[dc(u, Tu) +de(v, TV)]
= (U[dc(u,u) +dc(v,v)] =0.

Henceu =v. Therefore the “xed point is unique, as required. O
Example 2.4 ConsiderX ={0, 1, 3. Take the controlled metric-liked. de“ned as
1 11 3
dC(Ovl)_E! dC(O!Z)_Z_O! dC(112)_2_0
Let :Xx X [1, )bede“nedby
0,0)= (1,1)= (2,2)= (1,2)= (2,1)=1,

(0.2)= (2,00=2,  (0,1)= (1.0)::‘;'
LetT:X X begiven by

T0=2 and %1=%2=1.
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Let :X [0,3) begivenby (0)=2%, (1)==3,and (2)=+15. Then B. Take
po =0, sothat @.9) is satis“ed.

Also, itis easy to see that(8) holds. By TheorenR.3there exists a uniqueau such that
Fu=u,thatis,u=1.

Now,we again give a response to an open question24], which is a study of a nonlinear
Chatterjea-type contraction via an auxiliary function  B.

Theorem 2.5 Let (X,d;) be a complete CMLS by the function

Xx X [L )
LetT: X  Xbesuchthatd.(Tp,Tq)  (p)[dc(p, Tq) +dc(q, Tp)] (2.13)

forall p,q X, where B.Forpo X, take pn = T"po. Suppose that

sup (pi..api) = (exists and is “nite), (2.14)
i1
1
0< (po) <5 (2.15)
and

. (pir1,Pir2) (Po)

Iim ————— (Pi+1, <— . 2.16
R T R o (2:40)

Also, assume that d. is continuous with respect to the first variable and that foreveryp X,

1
lim (p,pn) exists,isfinite,and  lim  (pp,p) <——. (2.17)
n n (po)

Then T possesses a unique fixed point in X.

Proof Consider the sequencé, = Tp,.. 3 in X satisfying hypothese2(14, (2.15, (2.16,
and (2.17). From (2.13 and (2.14 we obtain

de(pn, Pn+1) = de(Tpn...1Tpn)
(Pn...2[dc(pn...3Tpn) + delpn, Tpn._.9]
= (pn..2dc(pn...aPn+1)
(o) (Pn...abn)de(Pn..aPn) + (P, Pre1)de(pn, Prea)]
(Po)[dc(Pn...3pn) + depn, Pn+a)].

Letb= — (?%) .By@.19wehaveh (0,1). Thend¢(pn,pn+1) bdc(pn...2pn). By induction
we get

de(pn.pPn+1)  b"de(po.p1), n 0. (2.18)
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For all natural numbersn, m, we have

dc(pn, pm) (pnsPnr0)de(Pn, ) + (Pnet, Pm)de(Pnet, Pm)-

Following the steps of the proof of Theoren2.1, we get

m...2 i
de(pn, Pm) (pn, pre1)de(pn, Pre1) + Z (l_[ (pj’pm)> (pi, pi+1)dc(pi, piv1)

i=n+1 \j=n+1

m...1

+ 1_[ (P, pm)dc(Pm...1 Pm)

k=n+1

m..2/ i
(Pns Pre1)(0"de(Po.pa) + ) (H (Phpm)) (pi, pis1)b'de(po, p1)

i=n+1 \j=n+1

m...1
+ 1_[ (pi:pm)bm"'Jdc(lJOupl)-

i=n+1

This implies that{p,} is a Cauchy sequenc&MLS (X, d.). Since the space is complete, the
sequencgpn} converges to some&  X. Now suppose thattu = u. Then

0 <de(U,TU)  (UsPns)do(UsPrea) + (Prsa, TU)de(pne, TU)
(U, prea)de(U, prea) + (Pnss, TU) (pn)[dc(pmgu) + dc(U,Pn+1)] (2.19)
(U, pe1)de(U, pnea) + (Pnea, TU)  (Po) [dc(pnv(zu) + dc(U,Pn+1)]-

Asn in (2.19, by .17 and using the continuity ofd, with respectto its “rst variable,
we deduce that 0 <d(u, Tu) <d.(u,Tu), which leads us to a contradiction. Thu€u = u.
Now let us assume tha has “xed pointsu andv. Then

de(u,v) = de(Tu,Tv)  (U)[dc(u, Tv) + de(v, Tu)]
= (W[dc(u,u) +dc(v,v)] =0.

Thereforeu = v, and thus the “xed point of ¥ is unique. O
Now we introduce cyclical orbital contractions in the class dEMLS.

De“nition 2.6 LetU andV be two nonempty subsets of @MLS (X,d;). LetT:U V
U V beacyclic mapping (i.,e¥(U) V and®V U) such that for somep U, there
existsk, (0,1) such that

de(Tp,Tq)  Kpde(T™D,q), (2.20)

wheren=1,2,...and; U. Then% is called a controlled cyclic orbital contraction map-
ping.

Finally, we prove the following result.
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Theorem 2.7 LetU andV be two nonempty closed subsets of a complete CMLS (X, d;). Let
T: X X beacontrolled cyclic orbital contraction mapping. For pg U, take p, = T po.

Suppose that
. (Piv1, Pi+2) 1
sup lim ———= i+1, < —. 2.21
> Iii (i, Piv1) (Pi+1,Pm) kpo ( )

Also, assume that for every p X,
nlim (pn,p) and nlim (p,pn) existand are finite. (2.22)

Then U V is nonempty, and < has a unique fixed point.

Proof Suppose there existg (saypo) in U satisfying .20. De“ne the iterative sequence
{pn =% po}. Sincepy U and ¥ is cyclic, we have

pon U and pps1 V' foralln 0. (2.23)
By (2.20 we get

de(T?,%p)  Kpde(Th,p)-
Again,

do(T3p, T2) = dc (T2, T(T%))  Kpde(Tp, T2p)  (Kp)?de(Tp, p).
By induction we obtain that

de(pn,pns1)  [Kp]"de(po,p1) foralln 0. (2.24)
Similarly to the proof of Theorem2.1, we can easily deduce that

lim dc(pnapm) = 01 (225)

n,m
thatis,{pn} is a Cauchy sequence in the comple@MLS (X,d.), so{pn} converges to some
u X.Since{Tp}isin U andU is closed, the limitu is in S;. Similarly,{T?"}} is in the

closed subseV, sou V,thatis,u U V,andhenced V isnotempty.Letus prove
that u is a “xed point of €. We have

de(u, pn+1) (u,pn)dc(u, pn) +  (Pn, P+1)de(Pn, Prs+a)-
Using 2.27), (2.22), and .25, we get that

nhm dc(u,pn+l) = 0. (2.26)
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By (2.20 we deduce

de(u,Tu) (U, Tp)dc(u, T"p) + (T™p, Tu)de(T*p, Tu)
(U, Tp)dc (U, T"p) +k, (T"p,Tu)dc (TP, u)
= (U pn+2)de(U, pres) + Ky (Pne, TU)de(pon.. 3 U).

Taking the limit asn and using @.22 and (2.26), we deduce that(u,Tu) =0, that
is, Tu = u. Finally, assume thaf has two “xed points, sayu andv (they are inU). Then

do(u,v) = de(Tu, Tv) = de(T2"u, Tv)  Kyde (T2 b, v) = kyde(u,v),
which holds unlesg,(u,v) =0, sou =v. Hence¥ has a unique “xed point. g
The following example illustrates Theoren2.7.

Example 2.8 LetX =U V, whereU = [3,1]andV = [4,1]. Consider the controlled
metric-like d. de“ned as

dc(PaCI) = |p "'qlz’

where (p,q)=pq+1forp,q X.TakeTp=3ifp UandTp=5ifp V\{1}. Nowlet
kp : X [0,1] be de“ned ak, = ’%1 Note thatforallp U, we have

1 1
. 2, = ..} - = n, — =
Tp = T?p I LS > TNy 5

Forallg U, using the fact that

11
(57030 =0 5.5) =0

we deduce that
de(Tp,Tq)  kpde(T*" b, q).

It is not di cult to see that ¥ satis“es all the hypotheses of Theore.7. Therefore¥ has
a unique “xed pointu = 1.

3 Fredholm-type integral equation
Consider the setX = C([0, 1],(... , )) and the following Fredholm-type integral equa-
tion:

p (t):/olS(t,s,p(t)) ds fort [0,1], (3.1)

whereS(t,s,p (t)) is a continuous function from [0, 1f into R. Now de“ne

d.:Xx X8 RY
t)| + |q(t
) sup <|P()I2|q()|)_
t [0,1]
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Note that (X, d;) is a completeCMLS, where

(p,q)=2.

Theorem 3.1 Assume that for all p,q X,

@) IS, p O+ ISEs,a(t)] (supy o,yy(Ip O+ [a@®Dp O + |a(®)]) for some
B

(2) S(t,s,folS(t,s,p (t))ds) <S(t,s,p (t)) forall t,s.
Then the integral equation (3.1) has a unique solution.

Proof Let5:X S X be de“ned byUp (t) = fol S(t,s,p (t))ds. Then

de(Up ,0q) = sup
t [0,1]

(Lt at

Now we have

de(p (0, Ua(1)) = w

_ LJo S(ts,p () ds| +| fo S(t,s,q(t)) s
2

JIS@E,s,p (E)Ids + [ [S(t,s, q(t))| ds
2

_ Jo(IS(t5.p )] +IS(t,s,q(t)]) ds
2

Jo (sup, pay(lp @1+ la@®D)p @) +la)l)ds
2

(sup (o O] +[a®)]) ) de(p ©.a(D).
t [0,1]

Thusde(Up ,0q)  (supg o,5(Ip (O] +a(t)]))de(p , q)- Also, notice that

1
(supy o,11(Ip @®) +[a(t)))’

(p,q) <

Therefore all the hypotheses of Theorer.1are satis“ed, and hence equatior8(1) has a
unique solution. O

4 Conclusion

We have proved the existence and uniqueness of a “xed point for a self-mapping in con-
trolled metric-like spaces under di erent nonlinear contractions with a control function.
Also, we present an application of our results to Fredholm-type integral equations. More-
over, we would like to bring the readeres attention to the following question.

Question 4.1 Under what conditions we can obtain the same results for a self-mapping
in double controlled metric-like spaces46]?
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