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Abstract
There are different approaches that indicate the dynamic of the growth of microbe. In
this research, we simulate the growth by utilizing the concept of fractional calculus.
We investigate a fractional system of integro-differential equations, which covers the
subtleties of the diffusion between infected and asymptomatic cases. The suggested
system is applicable to distinguish the presentation of growth level of the infection
and to approve if its mechanism is positively active. An optimal solution under
simulation mapping assets is considered. The estimated numerical solution is
indicated by employing the fractional Tutte polynomials. Our methodology is based
on the Atangana–Baleanu calculus (ABC). We assess the recommended system by
utilizing real data.
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1 Introduction
Integro-differential dynamic system of equations simulates various states from science and
engineering corresponding to the analysis, control, and optimization studies. The main
model in this direction is the Wilson–Cowan system, which designs the dynamics of con-
nections between populations of very inhibitory system in cells or neurons. It was devel-
oped by Hugh R. Wilson and Jack D. Cowan [1]. The system and its generalizations have
been extensively utilized in forming neuronal or cell populations [2]. The system is signif-
icant traditionally because it utilizes phase plane approaches and mathematical solutions
to designate the reactions of neuronal populations to motivations. The general system
involves simple integro-differential equations, therefore, limit cycle performance (neural
fluctuations) and stimulus-dependent suggested reactions are expected. The key results
contain the solvability of multiple stable situations and hysteresis in the population’s reac-
tion.

Coronavirus (COVID-19) has been an infectious virus molded by a recently exposed
coronavirus. It has been recorded by the World Health Organization (WHO), it is a pan-
demic. The first WHO warning of dyed-in-the-wool cases of COVID-19 indicated on Jan-
uary 2020 with 282 cases (see [3, 4]). There is an increasing number of research works that
develop the growth of the COVID-19 infection by using an ordinary dynamic system [5]
and fractal-fractional dynamic system [6]. Utilizing the recent information from Euro-
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pean and African countries, Atangana and Araz presented numerous statistical analyses
[7, 8]. Musa et al. [9] introduced a nonlinear 4D-system of ordinary differential equations
describing COVID-19. Atangana [10] formulated a numerical design using the Newton
polynomial. Other strategies can be located in efforts by Memon et al. [11]. Newly, nu-
merous mathematical simulations have been indicated to realize the coronavirus infection.
Supreme of these representations are based on classical integer-order derivative or classi-
cal fractional differential operators, which cannot get the vanishing memory and bound-
ary performance found in numerous biological phenomena. Consequently, we investigate
the coronavirus disease in this study by discovering the dynamics of COVID-19 infection
utilizing the fractional Caputo derivative.

The terminal coronavirus continues to blow out across the globe, and mathematical
models can be utilized to display suspected, recovered, and deceased coronavirus patients,
as well as how many persons have been tested or even vaccinated. Consequently, math-
ematical and statistical solutions of the infected human beings overall can decrease the
risk of future COVID-19 spread. In this study, we aim to generalize the Wilson–Cowan
system (WCS) utilizing the concept of fractional calculus to study the growth of COVID-
19 population. This investigation includes a dynamic term, which is the exponential law
to discover and realize the graph of the growth. The solvability of the system is indicated
by using the optimal point theorem of simulation function. Other behaviors are indicated
such as the approximated solvability using the fractional Tutte polynomials.

2 Preparations
This section deals with some concepts and the properties of these concepts.

2.1 ABC-definition
In recent decades, numerous physical issues have been exposed using the fractional cal-
culus. The essential explanations for employing fractional calculus are that various mea-
sures, structures, and inequities display capability to remember the past or nonlocal pos-
sessions. The basic outlook and appearances of fractional calculus and fractional differen-
tial equations are recognized in various reviews. Most researches focus on the derivatives,
which include kernels. For instance, the main difference between the Caputo operator, the
Caputo–Fabrizio operator [12], and others is that the Caputo operator is communicated
by giving a power law, the Caputo–Fabrizio operator is adapted by utilizing an exponen-
tial growth act. The Atangana–Baleanu operator is presented by signifying the extended
Mittag-Leffler function [13].

Definition 2.1 Let �μ, μ ∈ (0, 1) be the Atangana–Baleanu operator of order μ of a func-
tion χ fulfilling

�μχ (t) =
B(μ)
1 – μ

∫ t

0
χ ′(τ )�μ

(
–μ

1 – μ
(t – τ )μ

)
dτ , t ∈ [0,∞),

where B(μ) indicates a normalization function, � represents the Mittag-Leffler function.
Corresponding to �μ, the ABC integral is realized by

jμχ (t) =
(1 – μ)
B(μ)

χ (t) +
μ

B(μ)�(μ)

∫ t

0
χ (τ )(t – τ )μ–1 dτ .
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Example 2.1 Consider the function χ (t) = tm, then the ABC integral becomes

jμtm =
(1 – μ)
B(μ)

tm +
μ�(m + 1)

B(μ)�(m + 1 + μ)
tm+μ.

In our study, since we focus on the approximated solutions, we assume that B(μ) → 1
for all μ ∈ (0, 1). Applications of this calculus in COVID-19 can be located in [14–16].

2.2 Approximate point theorem
We deal with the resulting notion of cyclic �-condensing operator. Let ð be a measure of
noncompactness on a Banach space X and A, B be nonempty and convex subsets of X (see
[17]).

Definition 2.2 A function f : R+ × R+ → R is called simulation if and only if f (0, 0) = 0,
f (x1, x2) < x2 – x1, where x2, x1 > 0 and limi→∞ sup f (xi, yi) < 0 for xi < yi and limi→∞ xi =
limi→∞ yi = 0.

Definition 2.3 Let Y : A ∪ B → A ∪ B be an operator. It is f -cyclic condensing (CC) if, for
every nonempty, bounded, convex, and closed subset (A1, B1),

f
[
ð
(
Y (A1) ∪ Y (B1)

])
,ð(A1 ∪ B1)] ≥ 0, (A1, B1) ⊂ (A, B).

Lemma 2.2 A relatively nonexpansive cyclic f -condensing mapping Y : A ∪ B → A ∪ B
recognizes a best proximity point.

3 Results
We let N(t) be the accumulation number of infected people, which represents the sum
of the number of the standard infected persons χ (t) and that of the asymptomatic
transmission ones ϒ(t): N(t) = χ (t) + ϒ(t). Take into account that χ (t) includes peo-
ple who have previously been diseased. Therefore, there are rate functions joining χ

and ϒ . The following integro-differential system indicates the generalization of WCS.
We suggest the generalization by using the ABC formula of fractional calculus as fol-
lows:

�μχ (ς ) = 
1

(
ς ,χ (ς ),

∫ τ1+τ2

τ1

φ1
(
ς , τ ,χ (τ )

)
dτ ,

∫ ς

τ1

ψ1
(
ς , τ ,χ (τ )

)
dτ

)
,

χ (τ1) = χ1,

�μϒ(ς ) = 
2

(
ς ,ϒ(ς ),

∫ τ1+τ2

τ1

φ2
(
ς , τ ,ϒ(τ )

)
dτ ,

∫ ς

τ1

ψ2
(
ς , τ ,ϒ(τ )

)
dτ

)
,

ϒ(τ1) = ϒ1,

(1)

where the variables are defined in different intervals: 
 = [τ1 – τ2, τ1 + τ2], 
χ = [χ1 –
ε,χ1 + ε], 
ϒ = [ϒ1 – ε,ϒ1 + ε], and 
ε = [τ1 – ε, τ1 + ε].

To study the solvability of system (1), we formulate the following assumptions:
(A1) All the functions are continuous in R such that φ1 : 
 × 
 × 
χ →R,

φ2 : 
 × 
 × 
ϒ →R, 
1 : 
ε × 
χ × 
χ × 
χ →R,

2 : 
ε × 
ϒ × 
ϒ × 
ϒ →R and χ , ϒ are inside the nonempty, bounded,
closed, and convex sets ᵀ1 ⊂ C(
ε ,R) and ᵀ2 ⊂ C(
ε ,R) respectively.
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(A2) For a sup.norm, we suppose that ‖χ1 – ϒ1‖ ≤ ε‖χ – ϒ‖, 0 < ε ≤ 1, so that
dis(ᵀ1,ᵀ2) = ‖χ1 – ϒ1‖. In addition, for all χ ∈ ᵀ1 and ϒ ∈ ᵀ2, we suppose that
there occurs a positive constant ρ > 0 fulfilling

‖
1 – 
2‖ ≤ ρ
(‖χ – ϒ‖ – ‖χ1 – ϒ1‖

)
.

(A3) For any 
χ , 
ϒ , there exists a positive function k : R+ →R+ which is upper
semi-continuous and achieves k(ı) < ı and

ð
(
ϒ1(
ε × 
χ × 
χ × 
χ ) ∪ 
2(
ε × 
ϒ × 
ϒ × 
ϒ )

)

<
k(ð(
χ ∪ 
ϒ ))
[(1 – μ) + ε̄μ

�(μ) ]
, ε̄μ > 0.

Here, we introduce our theorem for the solvability of system (1). We define an operator
Q : ᵀ1 ∪ ᵀ2 → C(
ε ,R) as follows:

Q(ς ) :=

⎧⎨
⎩

ϒ1 + (1 – μ)
1 + μ

�(μ)
∫ ς

τ1

1(η)(ς – η)μ–1 dη if χ ∈ ᵀ1,

χ1 + (1 – μ)
2 + μ

�(μ)
∫ ς

τ2

2(η)(ς – η)μ–1 dη if ϒ ∈ ᵀ2.

(2)

Theorem 3.1 Consider system (1) satisfying hypotheses (A1)–(A3). Then it has an optimal
solution in C(
ε ,R), whenever

ρ <
�(μ)

�(μ) + (1 – μ) + ε̄μ

,

(ρ > 0, 0 < μ < 1, ε̄μ > 0).

Proof Consider the operator Q and B(μ) → 1. We aim to show that O is a cyclic operator.
Let χ ∈ ᵀ1, then we get

∥∥(Qχ ) – ϒ1
∥∥ =

∥∥∥∥(1 – μ)
1 +
μ

�(μ)

∫ ς

τ1


1(η)(ς – η)μ–1 dη

∥∥∥∥

≤ (1 – μ)‖
1‖ +
μ

�(μ)

∫ ς

τ1

∥∥
1(η)(ς – η)μ–1∥∥dη

≤ (1 – μ)‖
1‖ +
μ

�(μ)
‖
1‖

∫ ς

τ1

(ς – η)μ–1 dη

≤ ‖
1‖
(

1 +
(ς – τ1)μ

�(μ)

)

:= ‖
1‖
(

1 +
ε

μ
1

�(μ)

)

:= S1(1εμ), 1εμ := 1 +
ε

μ
1

�(μ)
,

where S1 := sup(
1) = ‖
1‖. By letting (1εμ) < ε̄μ

max{S1,S2} , where ε̄μ := max{1εμ,2 εμ} and
S2 := sup(
2), we have

∥∥(Qχ ) – ϒ1
∥∥ < ε̄μ, ∀χ ∈ ᵀ1.
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Thus, Qχ ∈ ᵀ2. In the same manner, we conform that, for ϒ ∈ ᵀ2, this indicates that

‖Qϒ – χ1‖ < ε̄μ,

and hence Qy ∈ ᵀ1. We conclude that Q is cyclic. The above conclusion shows that the set
Q(ᵀ1) is bounded in ᵀ2, and the set Q(ᵀ2) is bounded in ᵀ1.

Recall that φ ∈ ᵀ1 ∪ᵀ2 indicates an optimum outcome of system (1) if and only if dist(ᵀ1 ∪
ᵀ2) = ‖φ –Qφ‖. Therefore, we have to prove this fact. Next, we aim to prove that Q(ᵀ1) is
equicontinuous in ᵀ2. For ς and ς ′, we have

∥∥Qχ (ς ) – Oχ
(
ς ′)∥∥

=
μ

�(μ)

∥∥∥∥
∫ ς

τ1


1(η)(ς – η)μ–1 dη –
∫ ς ′

τ1


1(η)
(
ς ′ – η

)μ–1 dη

∥∥∥∥

≤ μ

�(μ)

∣∣∣∣
∫ ς ′

ς

∥∥
1(η)
∥∥(

ς – ς ′)μ–1 dη

∣∣∣∣
≤ 1

�(μ)
S1

∣∣ς – ς ′∣∣μ

≤ ε̄μS1,

which implies that Q(ᵀ1) is equicontinuous in ᵀ2. In a similar manner, we confirm that
Q(ᵀ2) is equicontinuous in ᵀ1. As a consequence and via the Arzela–Ascoli theorem, we
point that the pair (ᵀ1,ᵀ2) is relatively compact. Now, we have to show that Q is relatively
nonexpansive.

For (χ ,ϒ) ∈ (ᵀ1,ᵀ2), we inform that

∥∥Qχ (ς ) – Qϒ(ς )
∥∥

=
∥∥∥∥ϒ1 + (1 – μ)
1 +

μ

�(μ)

∫ ς

τ1


1(ς – η)μ–1(η) dη

– χ1 – (1 – μ)
2 –
μ

�(μ)

∫ ς

τ1


2(η)(ς – η)μ–1 dη

∥∥∥∥
≤ ‖χ1 – ϒ1‖ + (1 – μ)

∥∥
1(ς ) – 
2(ς )
∥∥

+
μ

�(μ)

∣∣∣∣
∫ ς

τ1

∥∥ϒ1(η) – ϒ2(η)
∥∥(ς – η)μ–1 dη

∣∣∣∣
≤ ε‖χ – ϒ‖ + (1 – μ)ρ

(‖χ – ϒ‖ – ‖χ1 – ϒ1‖
)

+
ρε̄μ

�(μ)
(‖χ – ϒ‖ – ‖χ1 – ϒ1‖

)

≤ ε‖χ – ϒ‖ + (1 – μ)ρ
(‖χ – ϒ‖ – ‖χ1 – ϒ1‖

)
+

ρε̄μ

�(μ)
(‖χ – ϒ‖ – ‖χ1 – ϒ1‖

)

=
[
ε + (1 – μ)ρ +

ρε̄μ

�(μ)

]
‖χ – ϒ‖ –

[
(1 – μ)ρ +

ρε̄μ

�(μ)

]
‖χ1 – ϒ1‖.
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But ε is an arbitrary constant, thus when ε → 0, we have the inequality

∥∥Qχ (ς ) – Qϒ(ς )
∥∥ ≤

[
(1 – μ)ρ +

ρε̄μ

�(μ)

](‖χ – ϒ‖)

< ‖χ – ϒ‖.

This indicates that Q is relatively nonexpansive.
We proceed to show that Q is f -condensing. Assume that (
χ ,
ϒ ) ⊆ (ᵀ1,ᵀ2) is a

nonempty, bounded, closed, and convex set such that

ð
(
Q(
χ ) ∪Q(
ϒ )

)

= max
{(
ðQ(
χ ),ðQ(
ϒ )

)}

= max
(

sup
χ

{ðQχ ,χ ∈ 
χ }, sup
ϒ

{ðQϒ ,∈ 
ϒ }
)

= max

(
sup
χ

{
ð

(
ϒ1 + (1 – μ)conv
1 +

ε̄μ

�(μ)
conv
1

)}
,

sup
ϒ

{
ð

(
χ1 + (1 – μ) ¯con
2 +

ε̄μ

�(μ)
conv
2

)})

≤ max

(
sup
χ

{
ð

(
ϒ1 + (1 – μ)conv
1(
ε × 
χ × 
χ × 
χ )

+
ε̄μ

�(μ)
conv
1(
ε × 
χ × 
χ × 
χ )

)}
,

sup
ϒ

{
ð

(
χ1 + (1 – μ)conv
2(
ε × 
ϒ × 
ϒ × 
ϒ )

+
ε̄μ

�(μ)
conv
2(
ε × 
ϒ × 
ϒ × 
ϒ )

)})

≤
[

(1 – μ) +
ε̄μ

�(μ)

]
max

({
ð
(
ϒ1(
ε × 
χ × 
χ × 
χ )

)}
,

{
χ

(
ϒ2(Iε × 
ϒ × 
ϒ × 
ϒ )

)})

≤
[

(1 – μ) +
ε̄μ

�(μ)

]
ð
(
ϒ1(
ε × 
χ × 
χ × 
χ ) ∪ ϒ2(
ε × 
ϒ × 
ϒ × 
ϒ )

)

<
[

(1 – μ) +
ε̄μ

�(μ)

]
k(ð(
χ ∪ 
ϒ ))
[(1 – μ) + ε̄μ

�(μ) ]

= k
(
ð(
χ ∪ 
ϒ )

)
.

Thus, we obtain

k
(
ð(
χ ∪ 
ϒ )

)
– ð

(
Q(Ix) ∪Q(
ϒ )

) ≥ 0.

By putting f (τ ,ς ) := k(ς ) – τ , then we arrive at

f
(
ð
(
Q(
χ ) ∪Q(
ϒ )

)
,k

(
ð(
χ ∪ 
ϒ )

)) ≥ 0.
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Hence, the necessary requirements of Lemma 2.2 are achieved. Thus, the operator Q has
the best proximity point and thus system (1) has an optimal solution.

This completes the proof. �

3.1 Numerical structures
In this subsection, we introduce some numerical systems pointing to utilize Theo-
rem 3.1. The chief assumption in Theorem 3.1 is ρ < �(μ)

�(μ)+(1–μ)+ε̄μ
. This inequality is

very informal to fulfill likening with other existence theorems attaining (A1–A3). The-
orem 3.1 designates that the system attractive formula (1) admits an optimal solution.
This kind of result is very significant in dynamic and control systems. By this result, one
can investigate the stability, oscillatory solution, and other performances of the resolu-
tion.

Example 3.2

�0.9χ (ς ) = χ (υ1 – υ2ϒ), χ (0) = χ0,

�0.9ϒ(ς ) = ϒ(υ3χ – υ4), ϒ(0) = ϒ0.
(3)

By using Mathematica 11.2, the solution is realized by the integral

∫ χ [ς ]1/τ

τ0=0

1
(1 + W (–(υ2)/(υ1) exp((υ3τ – c)/υ1)τ–υ4υ1 ))

dτ ≈ υ1ς + c,

ϒ[ς ] = (–υ1/υ2) × W
(
(–υ2/υ1) exp

((
υ3χ [ς ] – c

)
/υ1

)
χ [ς ]–υ4/υ1

)
,

where c is a constant and W represents the product log function. As an application of
Theorem 3.1, we assume that (χ0,ϒ0) = (1, 1) and ρ = (υ2υ3 – υ1υ4), where

ρ <
�(μ)

�(0.9) + (1 – 0.9) + ε̄0.9
=

1.06
3.10

= 0.341.

For instance, (υ1,υ2,υ3,υ4) = (2, 1, 0.4, 0.1), we attain ρ = 0.2 < 0.341; thus, by Theorem 3.1,
system (3) admits an optimal solution converging to a limit cycle. In another case, suppose
that (υ1,υ2,υ3,υ4) = (1, 1, 0.9, 0.8), then ρ = 0.1 < 0.341. This implies that system (3) admits
optimal solution converging to a limit cycle. Similarly, for (υ1,υ2,υ3,υ4) = (1, 1, 1, 0.8) ⇒
ρ = 0.2 < 0.341 and (υ1,υ2,υ3,υ4) = (1, 0.9, 1, 0.8) ⇒ ρ = 0.1 < 0.341. Figure 1 represents
various cases considering the value of ρ .

Example 3.3 Consider the following system:

�0.5χ (ς ) = ϒ , χ (0) = χ0

�0.5ϒ(ς ) = –χ + ρϒ , ϒ(0) = ϒ0,
(4)

where the value of ρ achieves

ρ <
�(0.5)

�(0.5) + (1 – 0.5) + ε̄0.5
=

1.77
3.83

= 0.462.
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Figure 1 Results of (3) with various values of ρ . From the upper left, the solution is for
(υ1,υ2,υ3,υ4) = (2, 1, 0.4, 0.1), while the lower left is the optimal outcome for (1, 1, 0.9, 0.8). The upper and
lower right graphs represent the solutions for (1, 1, 1, 0.8) and (1, 0.9, 1, 0.8) respectively. We indicate that the
cyclic result for these values is based on the fact thatQ is cyclic

Figure 2 Solutions of (4) for different cases, depending on the value of ρ . We recognize that the cyclic
solution for these cases is based on the fact thatQ is cyclic

For instance, when ρ = 0.4, we have an optimal solution with the initial condition (χ0,ϒ0) =
(0, 0). Furthermore, it is unstable cyclic because it indicates a portrait unstable limit cycle
(see Fig. 2, the upper graphs). When ρ = 0.1, the system admits an optimal solution with
a portrait unstable limit cycle (see Fig. 2, the lower graphs).
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Figure 3 GB for the linear case. From the left: the graph represents 3D solution, contour plot, and integral
curve. Similarly, for the case (τ ,ς ) for all real coefficients. The second row is GB of fractional order μ = 0.5,
which indicates the set {ς ,τ ,√τ + ς ,

√
ς +

√
τ }

Remark 3.1 The upper value of ρ plays an important role in describing the behavior of
the optimal solution. It represents that when the upper value of ρ is equal to 0.33, then
we have a stable solution (see Example 3.2). If the value is greater than 0.33, we have an
unstable optimal solution (see Example 3.3). We shall take into account this fact when we
establish the connections of Tutte polynomials in the next section.

3.2 Approximated solution
In this section, we aim to use a type of polynomial to approximate the solution of (1). In
this place, we suggest to use the Tutte polynomial because the formality of this polynomial
involves two variables as follows (see [18]):

Tm(ς , τ ) =
∑

0≤i≤m,0<j<m

ω(i, j)ς iτ j.

By using the construction of Example 2.1, we have the fractional Tutte polynomial as fol-
lows:

Tμ
m(ς , τ ) := jμTm(ς , τ )

= (1 – μ)Tm(ς , τ ) +
μ

�(μ)

∫ ς

0
Tm(τ , τ )(ς – τ )μ–1 dτ

= (1 – μ)
∑

0≤i≤m,0<j<m

ω(i, j)ς iτ j

+
μ

�(μ)

∫ ς

0

( ∑
0≤i≤m,0<j<m

ω(i, j)τ i+j
)

(ς – τ )μ–1 dτ

= (1 – μ)
∑

0≤i≤m,0<j<m

ω(i, j)ς iτ j



Hadid and Ibrahim Advances in Difference Equations        (2021) 2021:351 Page 10 of 15

Figure 4 GB for the nonlinear case. From the left: the graph represents τ 3, τς , and ς 2 – τ 2 respectively. The
second row represents their fractional case when μ = 0.9

+
μ

�(μ)
∑

0≤i≤m,0<j<m

ω(i, j)
(∫ ς

0
τ i+j(ς – τ )μ–1 dτ

)

= (1 – μ)
∑

0≤i≤m,0<j<m

ω(i, j)ς iτ j +
∑

0≤i≤m,0<j<m

ω(i, j)
(
jμς i+j)

= (1 – μ)
∑

0≤i≤m,0<j<m

ω(i, j)ς iτ j

+
∑

0≤i≤m,0<j<m

ω(i, j)
(

(1 – μ)ς i+j +
μ�(i + j + 1)

�(i + j + 1 + μ)
ς i+j+μ

)

=
∑

0≤i≤m,0<j<m

ω(i, j)
(

(1 – μ)ς iτ j + (1 – μ)ς i+j +
μ�(i + j + 1)

�(i + j + 1 + μ)
ς i+j+μ

)
.

To determine the upper bound (approximated value) of ω(i, j), based on Theorem 2.2,
we shall consider that these weights satisfy the upper bound of ρ , which is given by the
formula

ω(i, j) =
�(μ)

�(μ) + (1 – μ) + ε̄μ

=
�(μ)

�(μ) + (2 – μ) + (ς–τ )μ
�(μ)

.
(5)

Note that limμ→1 ω(ς , τ ) = 0.33 providing that ς – τ = 1. This value is approximated with
the upper bound of ρ in Example 3.2. By suggesting the solution of system (3) in terms of
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Figure 5 From the left: the graph represents τ 4 – 0.1089 and ς – 3.03τ 3 respectively. The second row
represents the fractional case with μ = 0.9

fractional Tutte polynomials, we have

χ (ς ) =
N∑

n=0

An(ς , τ )Tμ
n (ς , τ ), ϒ(ς ) =

N∑
n=0

Bn(ς , τ )Tμ
n (ς , τ ).

We suppose that χ and ϒ have the same gathering of roots as the original polynomials.
That is, these polynomials can be recognized in a Grobner basis (GB). For linear func-
tions in any number of variables, GB is analogous to Gaussian elimination. For example, if
(χ (ς ),ϒ(ς )) = (ς , τ ), then GB(ς , τ ) = {ς , τ } (see Fig. 3). For nonlinear cases, we have the
following results.

Example 3.4 GB(χ (ς ),ϒ(ς )) = GB(τ 2 – ς2, τ ∗ ς ) = {τ 3, τς ,ς2 – τ 2} with (0, 0) root (see
Fig. 4).

Example 3.5 GB(χ (ς ),ϒ(ς )) = GB(τ 2 – ς2, τ ∗ ς – 0.33) = {τ 4 – 0.1089,ς – 3.03τ 3} with
the real root (

√
33

10 ,
√

33
10 ) (see Fig. 5).

Example 3.6 GB(χ (ς ),ϒ(ς )) = GB(ς3 – τ 2,ς – τ ) = {τ 3 – τ 2,ς – τ } with two real roots
(0, 0) and (1, 1) (see Fig. 6).
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Figure 6 GB for the nonlinear case {τ 3 – τ 2,ς – τ } with the fractional case when μ = 0.9

Figure 7 GB for the nonlinear case in Example 3.7

Example 3.7 GB(χ (ς ),ϒ(ς )) = GB(ς3 + τ 2,ς ∗ τ ) = {ς3,ςτ ,ς2 + τ 2} with one real root
(0, 0) (see Fig. 7).
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Figure 8 Approximate solution by using GB in May, where the data was given by K = 1000. For Brazil, we
select τ 2 = 5, while for USA is τ = 60. The fractional order is μ = 0.95 and μ = 0.98 respectively.

Figure 9 Approximate solution by using GB in May, where the data was given by K = 1000. For Brazil, we
select τ 2 = 5, while for USA is τ = 60. The fractional order is μ = 1 and μ = 1 respectively.

3.3 Application
In this subsection, we shall utilize live data regarding COVID-19, which were recorded
in May. Figures 8 and 9 indicate live data which were recognized in May for Brazil and
USA. By using the approximated solution, we see that the data converge to the result of
different BG values where the value of τ indicates the starting situation. Experimentally,
we indicate that the good result appears, when the value of fractional order μ → 1 and the
interval of convergence solution is μ ∈ (0.8, 0.99].

4 Conclusion
By using the fractional calculus, type ABC, we have generalized WCS. We have got two
kinds of solutions, the first one is the optimal solution (see Theorem 3.1) using the con-
cept of simulation function and the second is approximated solution using the GB set of
polynomials of two variables (τ ,ς ). The optimal solution brings the stability, oscillation,
and periodicity. The second solution is validated for discrete data. In this investigation,
we generalized the most popular graph polynomials called the Tutte polynomial and a va-
riety of carefully related graph polynomials such as the harmonic, movement, reliability,
and shelling polynomials. We also used the Tutte polynomial to demonstrate how graph
polynomials may be both dedicated and generalized, and how they can convert informa-
tion relevant to medical applications. We concluded with a brief conversation of compu-
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tational complexity deliberations. Different studies are presented using fractional calculus
together with statistics and polynomials categories, which can be located in [19–25].
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