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1 Introduction

Higher-order boundary value problems (HOBVPs) have widespread applications in di-
verse areas of science and engineering. Mostly, these problems arise in astronomy, fluid
dynamics, astrophysics, hydrodynamics, beam theory, induction motors [1], and other
branches of engineering sciences [2]. If an infinite smooth sheet of fluid is heated from
below in the presence of a magnetic field in gravity direction, instability occurs. When this
instability is ordinary convection, it is modeled through tenth order boundary value prob-
lems (BVPs). If instability sets are as over stability, it is modeled by twelfth order boundary
value problem [3].

In generic cases, analytical solution of HOBVPs is a painstaking process, therefore re-
searchers have turned their attention towards approximate solutions. For example, Syed
et al. [4] applied modified variational iteration method (MVIM) for the solution of ninth
and tenth order BVPs. Siddiqi et al. [5] solved eleventh order BVPs using variational iter-
ation method. Mirmoradi et al. [6] implemented homotopy perturbation method (HPM)
for twelfth order BVPs. Noor et al. [7] solved twelfth order BVPs via variational iteration
method (VIM). Samaher [8] and his co-authors presented the solution of thirteenth order
BVPs by modified Adomian decomposition method (MADM). Akram et al. [9, 10] applied
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homotopy analysis method and nonpolynomial splines technique for solving ninth order
BVPs. Siddiqi et al. [11, 12] used spline technique for solving linear tenth and twelfth order
BVPs.

For the past few decades, wavelet based numerical methods have gained great impor-
tance for solution of HOBVPs, because of their ease in implementation. In literature, there
exist several wavelet families. Amongst different kinds, Haar wavelet (HW) deserves spe-
cial attention. HW is based on Haar functions which were defined by the Hungarian math-
ematician Alfred Haar [13] in 1909. For the first time these wavelets were used for the
problems of calculus in 1997. HW comprises rectangular functions which are discontin-
uous at the endpoints of the interval. Therefore, HW is not directly implementable for
solution of differential equations. To remove this ambiguity, Cattani [14] used spline ap-
proach to regularize these wavelets. Another way is to approximate highest order deriva-
tive by HW series. This approach was investigated by Chen and Hsiao [15, 16]. Later on,
this approach became popular and has been applied to different problems. In this direc-
tion, Lepik [17] presented the solution of a higher order differential equation by using HW.
Fazal et al. [18, 19] and Reddy et al. [20] solved fourth, fifth, sixth, seventh, and ninth or-
der boundary value problems using HW. Umer [20] implemented the HW technique for
solving heat convection radiation problems. Agarwal et al. [21, 22] investigated some spe-
cial functions in the analysis of differential equations and some existences and uniqueness
results for fractional nonlocal thermistor problem. Chu [23] and his collaborators stud-
ied fractional multi-dimensional Navier—Stokes equation. Sunarto et al. [24] implemented
iterative method for solving one-dimensional fractional mathematical physics model via
quarter-sweep and PAOR. The authors in [25, 26] explored global exponential stability
of Clifford-valued neural networks and new quantum boundaries for quantum Simpson’s
and quantum Newton’s type inequalities for preinvex functions respectively. Rezapour et
al. [27] used DGJIM and ADM methods for multi-term fractional BVP involving the gen-
eralized ¥ -RL-operators.

The rest of the paper is organized in the following way. In Sect. 2, basic definitions of
HW are described. Method description and convergence are given in Sects. 3 and 4 re-

spectively. Test problems are presented in Sect. 5, while conclusion is addressed in Sect. 6.

1.1 Motivation

The main motivation of this work is to develop HW based algorithm for solving HOBVDPs.
Also we will elaborate the scheme coupled with quasilinearization to tackle nonlinearity
in tenth, twelfth, and thirteenth order BVPs. Convergence result will also be a part of this

work.

2 Haar wavelet and its integrals

Suppose w € [c,d), where ¢ and d are constants. We define M = 2/, where ] represents
the maximal resolution level. Further subdivide [c, d) into 2M subintervals with mesh size
Aw = ﬁ (d - ¢). Next define two parameters, namely dilation y =0,1,2,3,...,], and trans-
lation parameter k = 0,1,2,...,m — 1. These parameters show the integer decomposition

of wavelet number i = k + m + 1, where m = 2. Then ith Haar wavelet is defined as follows
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[17,21]:

1 lfOll(l) < W<0l2(i),
H;(w) =3 -1 if ap(d) <w<as(i), 1)

0 elsewhere,

where a,1(i) = ¢+ (2k + s)nAw,s = 0,1,2,andn = 27/, Equation (1) is valid if i > 2. Fori = 1,
the scaling function is defined as

1 ifwelcd),
H, (w) = (2)
0 elsewhere.

For i = 2, the mother wavelet is given by

a1(2) =¢,
@(2) = 3(d-c), 3)
a3(2)=d

To solve nth order BVPs, one needs repeated integrals of the form

Pnt= [ [ [ [m@a - 2 [ s 0

where i=1,2,3,...,2M and ¢ = 1,2,...,n. Using Eq. (1) and Eq. (2), the closed form ex-
pression of these integrals is given by [17]:

0, if w<aq(i),
By () = %I{W —ar()H if a1 (0) < w < (i), 5)
S Hw — a1} = 2{w — az(D)}*] if oy (i) < w < as(i),
aillw = (DY = 2{(w — ()} + {(w - a3 ()}*] if w> a3(i).
Equation (5) is valid for i > 2, when i = 1 then
1
le (W) = E(W - C)M' (6)

The proposed method is based on collocation approach, therefore the collocation points
are
p—-0.5

Wy = M p=1,23,...2M. (7)

3 Method description for linear problems
This section is devoted to describing the proposed methodology for solving HOBVPs. For
this purpose consider the nth order ordinary differential equations

LU(w)=gw), weQ=[C,D], (8)
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where £ is a general differential operator and g is a known function. The corresponding
initial and boundary conditions are

vOC)=A4,, 0=01,2,...,n-1, (9)
or

v =4,, W YD)=B,, o=123,...,, (10)

or
we2()=A,, ve2(D)=B,, o=2,46,...,n (11)

Here, we present the method only for initial conditions, boundary conditions will be
treated later. Next we approximate the highest order derivative by truncated HW series as
follows:

2M
w(w) =" bHi(w), (12)

i=1

where b; stands for unknown wavelet coefficients to be calculated. Integrating Eq. (12),
n — o times in the domain [C, w], we have

n-o-1

2M
V) = 3 bus )+ 3 5 0= CEPC), (13)
i=1 g=0 "°

Now inserting Eq. (7) and (12)—(13) in Eq. (8) leads to the system of 2M equations with
2M unknowns b;. After computing b;, the desired solution can be extracted from Eq. (13)
by putting o = 0. It is to be noted that the proposed method requires initial conditions of
the form ¥©)(C),o =0,1,2,...,n — 1. If conditions ¥® (w,) = T',, where w, € [C,D], and
s < 1 is any nonnegative integer are known instead of ¥¥(C), we need to find ¥'¥(C). By
doing this one can write Eq. (13) as follows:

2M n-o-1

I = Y bPune ()4 Y (=W (C), (14)
i=1 B=0

Equation (14) denotes the system of linear equations from which the rest of initial condi-
tions can be computed.

3.1 Nonlinear case and quasilinearization
Consider a nonlinear nth order differential equation of the form

VO (w) = g(w, w, vV, W@, @ty yeq (15)
with initial and boundary conditions

WD) = u,, (16)
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where W) represents oth derivative of W, u, are given constants. Using the quasilin-
earization procedure [28], Eq. (15) reduces to

- 0
y+1 =g+ Z \IJ)(/Jrl ‘"Il a\ljg (17)

In Eq. (17) y stands for the number of iterations. It is clear from the above equation that
the value of W at the (y + 1)th iteration can be computed if it is known at the y th iteration.

4 Convergence analysis
In this section, we discuss the convergence of 10th order problem. For this purpose we
consider the given problem

G(W, v, \I’(l), \I;(Q)’ \IJ(B), \11(4), \11(5), q,(6), ‘11(7), \I](s)’ \p(9)’ \p(lo)) =0. (18)

Assume that
o0
w0 w) = 3" biH,(w). (19)
i=1

Alternatively this series can be written as
oo V-1
\I"(IO)(W) = blHl + Z Z b2/+€+1H2/+£+1(W)’ (20)

j=0 =0

wherei=m+¢+1,j=0,1,2,...],£=0,1,2,...m — 1. Integrating Eq. (19) ten times the
resultant is

b oo 2V
W(w) = 10‘ ; EX_O: b2j+g+1P2j+g+1;10 (w) + B(w), (21)

where B(w) denotes boundary terms. To express the convergence as a theorem, we use the
following lemma.

Lemma 4.1 ([29]) If ¥(w) € L2(R) with |V'(w)| < p for all w € (0,1) and V(w) =
Yo bili(w), then | b; | < 5 ST

Theorem 4.2 If W and Wy are the exact and approximate solutions of Eq. (18), then the
error norm at J resolution level is given by

1\2
IEr1l = O[(W) ] (22)

Proof From Egs. (19) and (21) we have

o 2-1

Z Z b2/+£+1ED2/+€+1’10 (w)|. (23)

j=J+1 £=0

|Ena| = | W (w) — Wa(w)| =
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Using the definition of error norm, one can write

1/ % 2
1w ll3 = /0 (Z bmhlﬂmmhl,lo(w)) d(w), (24)

1
b2/+[+1b25+t+1/ Py, pe110 W)Pas 1510 (W) d(w). (25)
0

Using the fact that Haar wavelet integrals are monotonically increasing functions [29] cou-
pled with Lemma 4.1, the resultant is

o 2-1

© X1 5 5 1 1V 1 /1\*
2
”EMHZ = Z Z Z 2j+1 s+l {40’320 (F) + 1440 (F)

j=J+1 £=0 s=J+1 t=0

1 1\ 1 1\8 1 1\"
+ - + — )+t =
8640 \ 2/+1 40,320 \ 2/+1 1,814,400 \ 2/+1 (26)
1 1\* 1 1\* 1 1\*¢
X — )t — =) + == =
40,320 \ 2s+1 1440 \ 2s+1 8640 \ 25+1
1 1\* 1 1\"
+ +— ,
40,320 \ 2s+1 1,814,400 \ 2s+1
which can be written as follows:
Euglly < —2 1/1\ 1/1\1/71\% 1 1\*
MIZ=77980 14 \ 271 15\ 2+ ] g5\ 2+t 1190 \ 2/+1

1 1 10
+ — = .
214,830 (21+1> }

Hence

2
|Enallz = O[<2/1+1> ] (27)

From (27) it is obvious that the error norm is inversely proportional to the resolution level.

By increasing the resolution level the error norm should decrease. The same criteria can
be applied for the convergence of other HOBVDPs. O

5 Numerical examples and discussion

In this section, the proposed method is applied to solve 10th, 12th, and 13th order BVPs.
To check the performance and reliability of the method, the computed solutions are
matched with the exact ones and those presented before.

5.1 Example
Consider the 10th order linear boundary value problem [30]

wa9) = —8e" + WA (w), wel0,1], (28)

Page 6 of 15
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with initial and boundary conditions

U)(0)=1-0 whereo =0,1,2,3,4,
W) (1)=—ce whereo =0,1,2,3,4.

The analytic solution of this problem is given by

Y(w)=(1-w)e".

Using the method discussed earlier, we have

2M
w0 w) = > " biH,(w).

i=1

Integrating Eq. (31) ten times, we get

9-o0

2M
1
WO W) => " biPiioo W)+ Y E(w)ﬂqﬂ“ﬂ)(m, where s =0,1,...,9.

i=1 B=0 """

Page 7 of 15

(29)

(30)

(31)

(32)

In Eq. (29) five initial conditions are given, we compute the remaining five initial conditions

using Eq. (29) in Eq. (32) as follows:

v (0) =

w©(0) =

w(0) =

w® 0) =

w(0) =

2M
~4.0005 + ¥ _ b;[~15,120P;,10 (1) + 6720P;,9 (1) — 1260, (1)
i=1
+120P;,7 (1) - 5Py6 (1)],
2M
~4.98528 + ) _ b;[302,400P;,10 (1) — 141,120P;,0 (1) + 2772P;,5 (1)
i=1
—2760P;,7 (1) + 120P;,6 (1)],
2M

~6.19998 + »_ b;[~272,160P;,10 (1) + 13,104P;,0 (1) — 267,120P;,5 (1)

i=1
+27,720P;,7 (1) — 1260P;6 (1) ],

2M

547661 + Z bi[+127,008P,10 (1) — 62,496P;, (1) + 131,040P;,5 (1)
i=1

— 141,120P;,7 (1) + 6720P;,6 (1)],
2M

-14.2157 + Z hi[—2,540,16OPi,10 (1) + 127,008P;,9 (1) — 272,160P;,5 (1)
i=1

+302,400P;,7 (1) — 15,120P;,6 (1)].
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Table 1 Comparison of approximate and exact solution and absolute error of Example 5.1 when

J=4

w Approximate solution Exact solution Error [30]

0.0 1.000000000000000 1.000000000000000 0.00000e-00 0.00000e-00
0.1 0.994653826267967 0.994653826268083 1.15796e-13 8.82148e-06
0.2 0.977122206525615 0.977122206528136 2.52120e-12 8.64267e-06
03 0.944901165290643 0.944901165303202 1.25587e-11 2.92062e-06
04 0.895094818551454 0.895094818584762 3.33081e-11 5.96046e-07
0.5 0.824360635288676 0.824360635350064 6.13880e-11 6.73532e-06

Using collocation points w, (see Eq. (7)) and initial conditions, we obtain

2M
Z bi[Hi(wy) — Pis (Wp) — A1Pi10 (1) — AsPiyo (1)
i-1 (33)

— A3Pig (1) — AgPi7 (1) — AsPis (1)] = —8€"” + As,
where

A = —2520w; + 12,600w;} - 2268wg + 17,640wg - 5040w;,
Ay = 1120w§, - 5880wj; + 10,920wg - 8680w§; + 2520w;,
Az = =210w} + 1155w, — 2226w + 1820w5 — 540w,

Ay = 20w; - 115w;§ + 231wf, - 196w; + 60w;,

As = -0.8333w> + 5w} — 10.5w> + 9.3333w5 — 3w/,
Ag =—1-2w, — L5w> + 161.83w> — 587.7wy + 892.4w, — 623.00w5 — 164.9w/.

Equation (33) represents 2M equations and 2M unknowns (wavelets coefficients). After
calculating the unknowns, approximate solution can be obtained from Eq. (32) when o =
0. In Table 1, we matched computed solutions with the exact solution and those presented
in [30]. The same table also addresses absolute errors. It is obvious from the table that the
proposed method gives better results than [30], which shows betterment of the proposed
method. Solution profiles of exact and approximate solutions together with absolute error
are shown in Fig. 1. From the figure it can be seen that exact and approximate solutions

are in good agreement.

5.2 Example
Consider the 10th order nonlinear boundary value problem [30]

viw) = e wiw), 0sws<l, (34)
subject to the following conditions:

v0)=1 ¢=0,2,4,6,8,

(35)
U(1)=e o0=0,2,4,6,8.

The exact solution is

W(w) =e”. (36)

Page 8 of 15
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Haar
®  Exact

-0.2

0 0.2 0.4 0.6 0.8 1
w

Figure 1 Solution profile of Example 5.1 for J =4

Error

x10°

Applying quasilinearization, Eq. (34) and Eq. (35) take the form

W0 (w) - 267w, (W)W, (W) = — " W2 (w), (37)
w0i0)=1, 0=0,2468, (38)
w1 =e 0=02468 (39)

Approximating the highest order derivative in Eq. (37), we have
v (w Z biH,(w (40)
Integrating Eq. (40) ten times leads to
9-o 1
W (w Zb Pino-o (W) + ) i W wP0), 0=0,1,...,9. (41)
=0
Using Eq. (7) and Eq. (41), we get
2M
Z bi[Hi(wy) — 277 W, {P;,10 (Wp) = wpPis10 (1) + A1Pig (1) + AxPye (1)
i=1
(42)

+AsPia (1) + AgPi (1)}]
= —e "W (w,) + 20, (W,)(As5 + Ae),

where
A1 = 15335 — §Wp
Ay = 3670WP 31 W; 1%0”’;59’
Az = %WP - T760 + mWZ 50140Wp’
Ag = 654%(7)0 Wp + 9037120 W; 437200 Wg * 30, 50 w, = 3621880 W;’
As =1+ 1.0000720w), + 3W2 + 53 Wy + 755 WS + oo ws,

Ag = —0.1665482710wp +8.39149 x 10- Bw; +1.849 x 10—4w; +4.7351 x 107%w?
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Table 2 Comparison of approximate and exact solution and absolute error of Example 5.2 when

J=4
w Approximate Exact Error [30]
0.0 1.00000 1.00000 0.00e-00 0.00e-00
0.1 1.10517 1.10517 7.08e-06 1.25e-06
02 122141 1.22140 1.34e-05 8.69%e-06
03 1.34987 1.34985 1.85e-05 2.14e-05
04 149184 149182 2.18e-05 4.35e-06
0.5 1.64874 1.64872 2.29e-05 3.96e-05
0.6 1.82214 1.82211 2.17e-05 5.40e-05
0.7 201377 2.01375 1.84e-05 6.79e-05

28 T 2.5x 1075

24 2r

22

ol . 1.5F

181 w hi

161

1.4F 05

121

0.‘2 0‘.4 w 0.‘6 0‘8 1 00 0.‘2 014 w 0.‘6 0‘.8 1
Figure 2 Solution profile of Example 5.2 for /=4

Equation (42) contains a total of 2M equations in 2M unknowns. The system has been
solved for unknowns with initial approximation Wo(w) = 1. After calculation of b;, ap-
proximate solutions have been calculated from Eq. (38) for o = 0. In Table 2 the computed
solutions are compared with the exact solution and the results given in [30]. In the same
table we also recorded the absolute error. From the table one can see that the proposed
method has comparatively good results. In Fig. 2 the plots of exact, approximate solutions
and absolute errors are presented. The figure shows that exact and approximate solutions

premise well.

5.3 Example
Consider the 12th order linear boundary value problem [31]

WA (w) + wl(w) = —€"(120+ 23w+ w’), 0<w<1, (43)
subject to the following conditions:

v0)=c(2-0), 0=0,1,2,3,4,5,

(44)
WO)(1) = —g2e, 0=0,1,2,3,4,5.

The exact solution of this problem is

W (w) = w(l — w)e™. (45)
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Table 3 Comparison of approximate and exact solution and absolute error of Example 5.3 when

J=4
w Approximate solution Exact solution Error [31]
0.0 0.000000000000000 0.000000000000000 0.00e-0 0.00e-00
0.1 0.099465382626784 0.099465382626808 2.38e-14 3.00e-11
02 0.195424441303850 0.195424441305627 1.77e-12 0.10e-10
03 0.283470349535050 0.283470349590961 5.59e-11 1.00e-10
04 0.358037926531124 0.358037927433905 9.02e-11 2.00e-10
0.5 0.412180309409399 0.412180317675032 8.26e-11 1.10e-09
o 10°
sl
s
ol
5%
> &
o
al
ol
WL
-0.05 - . . . 0
0 0.2 0.4 0.6 0.8 1 1 2 3 4 5 6 7 8 9 10 1"
Figure 3 Solution profile of Example 5.3 for J=4

The approximate and exact solutions together with absolute error have been addressed
in Table 3. The same table also shows the comparison of our results with those obtained
via the homotopy perturbation method addressed in [31]. It has been observed that our
results are better. Solution profiles of exact versus approximate solutions coupled with
absolute error are shown in Fig. 3. From the figure it is clear that both solutions are in
good agreement.

5.4 Example
Consider the 12th order nonlinear boundary value problem [32]

W) = 28" W2 (w) + WO (w), 0<w<1, (46)

with boundary conditions

we)0)=1, 0=0,1,2,3,4,5,
W)(1)=e!, 0=0,1,2,3,4,5.

The exact solution is
Y(w)=e". (47)

The problem is nonlinear which has been linearized using quasilinearization. Computed
solutions have been matched with the existing results [32] in Table 4. The same table con-
tains the absolute error. From the table, it is obvious that the computed results are com-
paratively better. In Fig. 4, the plots of approximate, exact solutions and error are shown,
which shows that the approximate and exact solution are close to each other.

Page 11 of 15
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Table 4 Comparison of approximate and exact solution and absolute error of Example 5.4 when

J=4
w Approximate solution Exact solution Error [32]
0.0 1.000000 1.0000000 0.00e-0 0.00e-0
0.1 0.904837 0.9048374 2.64e-7 2.64e-7
02 0.818730 0.8187307 5.02e-7 5.03e-7
03 0.740817 0.7408182 6.92e-7 6.92e-7
04 0.670319 0.6703200 8.13e-7 8.14e-7
0.5 0.6065298 0.6065306 8.55e-7 8.55e-7
; o 107
Haar
09 g
7
0.8
6
07 1 s
0.6 | 4
3
0.5
2
0.4
1
0 0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Figure 4 Solution profile of Example 5.4 for J =4

5.5 Example
Consider the 13th order linear boundary value problem [33]

W13 () = cos(w) — sin(w), w e [0,1], (48)

with boundary conditions

v (0)=1, ¢=0,1,4,5,
v 0)=1, =236,
W) (1) = cos(1) +sin(1), o =0,4,
(1) (1) (1) (49)
W) (1) = cos(1) —sin(1), o =1,5,
W) (1) = cos(1) —sin(l), o =2,
w)(1) =sin(1) - cos(l), o =3.
The exact solution is
W (w) = cos(w) + sin(w). (50)

In Table 5 we recorded the comparison of exact and calculated solutions with absolute
error. The same table contains the results computed by the variational iteration method
in [33]. One can see from the table that errors of present solutions are smaller. Graphical
solution and absolute error are also plotted in Fig. 5, which indicates that the scheme works

well for higher order problems.

Page 12 of 15
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Table 5 Comparison of approximate and exact solution and absolute error of Example 5.5 when

J=4
w Approximate solution Exact solution Error [33]
0.0 1.000000000000000 1.000000000000000 0.00000e-00 0.00000e-00
0.1 1.094837581924854 1.094837581924854 0.00000e-00 3.88578e-15
0.2 1.178735908636302 1.178735908636303 1.33226e-15 146216e-13
03 1.250856695786933 1.250856695786946 1.24344e-14 8.80518e-13
04 1.310479336311486 1.310479336311536 4.99600e-14 2.35822e-12
0.5 1.357008100494460 1.357008100494576 1.15463e-13 3.80140e-12

1.45 o 25 x 10

14l ® Exact
1.35 2

Error

0.5

w

Figure 5 Solution profile of Example 5.5 for J =4

5.6 Example
Consider the 13th order nonlinear boundary value problem [33]
B (w) = e (w), 0<w<l, (51)

with given boundary conditions

vo)=1, ¢=0,1,2,3,4,5,6,
v 1) =e, 0=0,1,2,3,4,5.
The exact solution is
W(w)=e". (52)

The computed and exact solution and absolute error are displayed in Table 6. From the
table it is proved that the proposed method has good results in case of nonlinear BVPs.
The plot of exact, approximate solutions and error are shown in Fig. 6. From the figure
one can observe the coincidence of exact and approximate solutions.

6 Conclusion

In this study, the Haar wavelets collocation has been applied for the numerical solution of
HBVPs. The quasilinearization technique has been applied to tackle nonlinearity. Several
examples have been solved using the proposed method which confirmed the efficiency and
reliability. The computed results have been compared with the exact solution and those
available in literature. From tabulated data and graphical solutions it has been observed

Page 13 0of 15



Arifeen et al. Advances in Difference Equations

(2021) 2021:347

Table 6 Comparison of approximate and exact solution and absolute error of Example 5.6 when

J=4
w Approximate solution Exact solution Error [33]
0.0 1.000000000000000 1.000000000000000 0.00000e-00 4.17444e-14
0.1 1.105170918075633 1.105170918075648 1.50990e-14 2.64144e-12
02 1.221402758158984 1.221402758160170 1.18616e-12 2.99314e-11
03 1.349858807564140 1.349858807576003 1.18636e-11 1.67101e-10
04 1.491824697591858 1.491824697641270 4.94124e-11 6.30955e-10
0.5 1.648721270576312 1.648721270700128 1.23816e-10 1.84757e-09

o8 x107"°

267 35F

24 sl

2.2f

251
2r =
> ﬁ% 2
1.8F
151

1.6

14 "

1.2 0.5

0.2 0.4 0.6 0.8 1 00 0.2 0.4 0.6 0.8 1
Figure 6 Solution profile of Example 5.6 for J =4

that the proposed method gives better results than quintic B-splines, homotopy pertur-
bation method, optimal homotopy asymptotic method, and variational iteration method.
In the future we will focus on extending the method for higher order partial and time

fractional partial differential equations.
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