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Abstract
In this article, we discuss the dynamics of a Leslie–Gower ratio-dependent
predator–prey model incorporating fear in the prey population. Moreover, the Allee
effect in the predator growth is added into account from both biological and
mathematical points of view. We explore the influence of the Allee and fear effect on
the existence of all positive equilibria. Furthermore, the local stability properties and
possible bifurcation behaviors of the proposed system about positive equilibria are
discussed with the help of trace and determinant values of the Jacobian matrix. With
the help of Sotomayor’s theorem, the conditions for existence of saddle-node
bifurcation are derived. Also, we show that the proposed system admits limit cycle
dynamics, and its stability is discussed with the value of first Lyapunov coefficient.
Moreover, the numerical simulations including phase portrait, one- and
two-parameter bifurcation diagrams are performed to validate our important
findings.
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1 Introduction
One of the prominent topics for ecologists, biologists, and even mathematicians is the
study of various mechanisms related to the interaction between prey and predators. The
typical model of such interactions between two species was first proposed in the form of a
simplest mathematical model [1, 2]. The key factor in a predator–prey relationship is that
the growth of predator depends on its functional response to the prey population, which
describes the amount of prey each predator eats per unit of time. Many researchers have
developed and implemented various forms of interaction terms to understand the more
realistic situation. Thus the predation function depends on prey only such as Holling type
classification [3, 4], whereas ratio-dependent [5], Beddington [6], and Crowley Martin [7]
are the functions of both prey and predator. In real-world situations, [8, 9] clearly con-
firm that the ratio-dependent interaction has a greater description of predation rates than
the prey-dependent interaction. The authors in [10] assumed that the predator growth
function is different from the predator’s predation function, and its reduction has a re-
ciprocal relationship with per capita availability of its preferred food, the so-called Leslie
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type predator–prey model. Despite its rich and varying complexity, there has been greater
focus paid by several researchers to modify and build the Leslie type model in several ways
[7, 11, 12]. In some real situations, fractional-order systems are found to be more accurate
than integer-order ones. For this reason, a fractional-order predator–prey system has been
investigated by several researchers, and numerous outstanding results have been derived,
for example, see [13, 14].

The Allee effect is one of the most interesting phenomena in ecology, which is char-
acterized by a positive correlation between the population size and the per capita growth
rate for a population [15]. The Allee effect can be caused by various environmental factors
including difficulties in finding mating partners at low density, genetic inbreeding, social
felicitation of reproduction, low probability of successful mating, depletion in inbreed-
ing rate, etc. Recently, there has been greater interest from many researchers to study
the effect of incorporating the Allee effect in the predator–prey dynamics. In the ratio-
dependent predator–prey model, the authors in [16] compared the dynamical properties
with and without the Allee effect in logistic prey growth term and showed that the in-
clusion of Allee effect can remove oscillation behavior of species densities. Further, the
conditions for occurrence of various bifurcation behaviors were derived and verified nu-
merically with the help of parametric diagrams and phase portraits. The same model with
discrete time was investigated in [17], and the authors showed that varying integral step
size can arise chaotic orbits via period-doubling and invariant circle. A Leslie type model
with ratio-dependent type interaction term with state impulsive feedback control was con-
sidered, and the conditions for existence, uniqueness, and orbital asymptotical stability of
periodic solution of order-1 were obtained by applying the geometry theory of differen-
tial equations [18]. The authors [19] considered a strong Allee effect in the prey growth
function in the Holling type II model with density-dependent death rate for predators and
examined various types of bifurcation behavior in the considered model. Since there have
been fewer studies related to the double Allee effect in the predator–prey system, in [20]
the authors attended the presence of double Allee effect in the ratio-dependent predator–
prey system in the prey growth function, where they studied various types of bifurcation
behavior and showed bi-stability behavior in the phase plane implying that the considered
system dynamics is sensitive in choosing the initial conditions.

Predators will actively affect the ecosystem and the prey reproduction process by con-
suming them and by affecting the behavior and physiology of the survivor indirectly [21].
Compared to direct predation, these forms of behavioral and physiological modifica-
tions related to fear of predation are more efficient and longer-lasting evolutionary effects
[21, 22]. For starters, birds respond with anti-predator defences to the sounds of preda-
tors and flee from their nests at the first sign of danger [22]. Fear of song sparrows during
the breeding season by eliminating direct predation, recognizing that the understanding
of predation risk alone reduces the amount of offspring produced by 40 percent per year
[23]. Recently, many mathematical models have been studied with effect of fear in the prey
population due to anti-predator defense, see for details [24–26].

The authors in [27] showed that the predator–prey model with Beddington–DeAngelis
type interaction has both stabilizing and destabilizing effect on incorporating the fear term
in the prey. In [28] the effect of fear of predator in the prey–predator model was investi-
gated and the existence, stability of equilibria, and occurrence of limit cycle in the consid-
ered system were studied. The authors in [29] studied the dynamics of cost of fear and the
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Allee effect in the predator–prey model, also with disease in the prey population, while
the dynamics of a prey-predator system with fear and group defense was considered in
[30]. The predator populations in the natural world are more vulnerable to Allee effects
than their prey, and because they are bigger, populations are more likely to undergo an
Allee effect (predator populations are usually much smaller than prey populations). The
model with Allee effect in the predator population was considered in [31, 32]. Since there
have been various dynamics and bifurcation behavior arising in the nonlinear population
model, in [33] the authors attempted to study the predator–prey system with nonlinear
harvesting and showed that the considered system has unstable periodic orbit by find-
ing the value of first Lyapunov coefficient. They also showed the existence of saddle-node
and transcritical bifurcation by Sotomayor’s theorem, and Bogdanov–Takens bifurcation
by finding universal unfolding near cusp. To understand the dynamics of fear and Allee
effect, more works are required, and this fact has motivated our current study.

Encouraged by the above discussion, we aim to investigate the combined effect of in-
corporating both fear and Allee effect in a Leslie type predator–prey model with ratio-
dependent type interaction. To the best of our knowledge, this assumption has not been
studied. We are interested in a way the system exhibits various complex dynamical behav-
iors. The main highlights of this article are summarized as follows:

• The predator–prey model with fear effect in prey growth term and Allee effect in
predator growth term is considered and analyzed.

• The proposed models utilize the fact that predators have to go for alternative food
when there is low density of their favorite food.

• To confirm the long term coexistence of species of the proposed model, permanence
analysis is performed.

• The impact of introduced parameters on system dynamics is investigated through
different types of bifurcations.

• By taking fear and Allee effect constant as a bifurcation parameter, the proposed
theoretical results are verified through numerical simulations.

This article is organized as follows: In Sect. 2, we describe the formation of the system
along with its assumptions, and some preliminaries of the system are given in Sect. 3. In
Sect. 4, we address the existence of the system’s equilibria and local stability with numerical
examples. In Sect. 5, we explore the complex dynamical behavior of our system by varying
the Allee parameter with a numerical example. We give numerical simulations in Sect. 6,
and the conclusion is given in the last section.

2 The mathematical model
The mathematical model of the modified Leslie–Gower predator–prey model as in [11, 12]
is given by

dx
dt

= xf1(x, K1) – g(x, y)y, (2.1a)

dy
dt

= sy
(

1 –
y

nx + c

)
, (2.1b)

where x(t), y(t) are the prey and predator biomass at time t, f1(x, K1) is a function rep-
resenting the gross rate of increase in the prey population with carrying capacity K1 in
the lack of predators and satisfying f1(0, K1) > 0, f1(K1, K1) = 0, ∂f1

∂x ≤ 0, ∂f1
∂t |x=K1 < 0, and
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∂f1
∂K1

> 0. And nx in (2.1b) is the prey-dependent carrying capacity of the predator, and it is
assumed that c is a constant taken for the alternative food source, which in turns means
that the predator proportion is small compared to the alternative food source. We con-
sider the logistic growth of the form f1(x, K1) = r0 – e – bx, with K1 = r0–e

b . Also, as in [5],
the ratio-dependent (ratio between prey and predator) in Michaelis–Menten type inter-
action is implemented, which is of the form g( x

y ) = px
x+ay , where p, a are predators searching

level and handling time spent for each prey. Then (2.1a) takes the form

dx
dt

= r0xf2(k, y) – ex – bx2 –
pxy

x + ay
, (2.2)

where r0, e, and b are positive constants, representing the birth rate, death rate, and death
rate caused by intra-species competition. The dynamical analysis of a Leslie–Gower model
with ratio-dependent interaction is performed in [34]. Since the prey production is indi-
rectly influenced by the fear effect [35], we also attempted to include the fear effect in the
prey growth term in (2.2). Hence, we multiply the function f2(k, y) = 1

1+ky with the birth rate
r0, which is the cost of anti-predator defense due to fear [26], and for other fruitful results
see [27–29]. Here, the quantity k measures the fear level on prey, and by the biological
meanings of k, y, and f2(x, y), it is appropriate to take that

f2(0, y) = 1, f2(k, 0) = 1, lim
k→∞

f2(k, y) = 0,

lim
y→∞ f2(k, y) = 0,

∂f2(k, y)
∂k

< 0,
∂f2(k, y)

∂y
< 0.

Then (2.2) with fear term is of the following form:

dx
dt

=
r0x

1 + ky
– ex – bx2 –

pxy
x + ay

. (2.3)

Since there have been fewer studies related to the presence of Allee effect on the predator
population, in [12] the authors attempted a Leslie–Gower model with Holling type inter-
action model and studied the dynamics with effect to the Allee effect in both prey and
predator, respectively. Hence, it is reasonable and more realistic to take the Allee effect
into account for the predator population. We arrive at the following model with fear in
the prey population and the Allee effect in the predator population:

dx
dt

=
r0x

1 + ky
– ex – bx2 –

pxy
x + ay

:= g1(x, y), (2.4a)

dy
dt

= sy
(

y
y + m

–
y

nx + c

)
:= g2(x, y), (2.4b)

x(0) > 0, y(0) > 0,

where y
y+m is the term for the Allee effect and m is the Allee effect constant. The per capita

growth rate of the predator is reduced from s to sy
y+m . The bigger the m, the stronger the

Allee effect, the slower the per capita growth rate of the predator population, and we al-
ways assume H1 r0 > e, i.e., the reproduction rate of prey is always greater than its death
rate.
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3 Preliminaries
3.1 Positivity
Biologically, the survival of the population is positivity. We follow Theorem A.4 in [36]
to prove the positivity of system (2.4a)–(2.4b). We define the state space of (2.4a)–(2.4b)
as X = {(x, y) ∈ R2

+} due to the biological meaning. Now the functions g1(·, ·), g2(·, ·) are
continuously differentiable and locally Lipschitz in X. Then, by Theorem A.4 in [36], we
conclude that, for a sufficiently large number S, the solution of the initial value problem
(2.4a)–(2.4b) exists and is unique in the interval [0, S).

3.2 Boundedness
Boundedness, whether there is a well-specified beginning or end of a case. As a conse-
quence of limited resources, boundaries can be viewed as a natural constraint on growth.
To prove the boundedness of system (2.4a)–(2.4b), we use the lemma of Chen [37].

Lemma 3.1 (Chen [37]) Assume that ε,η > 0 with u(0) > 0. Then, for du
dt ≤ u(t)(ε – ηu(t)),

we have

lim
t→∞ sup u(t) ≤ ε

η
,

and for du
dt ≥ u(t)(ε – ηu(t)), we have

lim
t→∞ u(t) ≥ ε

η
.

Proposition 3.1 Assume that r0 > e and r0–e
b + n + ε1 > qm, where ε1 > 0 is an arbitrary

small number. Then all the solutions (x(t), y(t)) of system (2.4a)–(2.4b) with the initial con-
ditions x(0) > 0, y(0) > 0 are bounded.

Proof From (2.4a), we have

dx
dt

=
r0x

1 + ky
– ex – bx2 –

pxy
x + ay

≤ x(r0 – e – bx).

Since r0 > e by H1, applying Lemma 3.1, we obtain

lim
t→∞ sup x(t) ≤ r0 – e

b
. (3.1)

Thus, there exists T̃1 ∈R, T̃1 > 0 for some arbitrary constant ε1 > 0 such that

x(t) ≤ r0 – e
b

+ ε1, ∀t > T̃1.

Also, (2.4b) can be written as

dy
dt

=
nx + c – m – y
(y + m)(nx + c)

.
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Thus, for all t > T̃1, we have

dy
dt

≤ sy2

mc

(
n(r0 – e)

b
+ c – m + ε1 – y

)
.

Assume that n(r0–e)
b + c + ε1 > m. Then, again by Lemma 3.1, we have

lim
t→∞ sup y(t) ≤ n(r0 – e)

b
+ c + ε1 – m. (3.2)

Thus, T̃2 > T̃1, T̃2 ∈ R for some arbitrary constant ε2 > 0 such that

y(t) ≤ n(r0 – e)
b

+ c + ε1 – m + ε2, ∀t > T̃2.

Therefore, the solutions of system (2.4a)–(2.4b) are bounded. �

3.3 Permanence
The system’s permanence is important as it ensures that the species present now will not
be extinct in the future. System (2.4a)–(2.4b) is said to be permanent if there exist positive
constants M3 and M4 such that each positive solution (x(t, x0, y0), y(t, x0, y0)) of system
(2.4a)–(2.4b) with the initial condition (x0, y0) ∈ int(R2

+) satisfies

min
{

lim
t→∞ inf x(t, x0, y0), lim

t→∞ inf y(t, x0, y0)
}

≥ M3,

max
{

lim
t→∞ inf x(t, x0, y0), lim

t→∞ inf y(t, x0, y0)
}

≤ M4.

Proposition 3.2 System (2.4a)–(2.4b) with the initial conditions x(0) > 0, y(0) > 0 is per-
manent if r0

1+kM2
– e – p > 0 and n – mq > 0.

Proof From (2.4a), we have

dx
dt

≥ x
[

r0

1 + kM2
– e – bx – p

]
(3.3)

≥ x(w0 – bx), (3.4)

where M2 is the upper bound of y population and w0 = r0
1+kM2

– e – p.
Assume that w0 > 0. Then, by applying Lemma 3.1, we obtain

lim
t→∞ inf x(t) ≥ ω0

b
.

Also, from (2.4b), we have

dy
dt

≥ sy2
(

1
y + m

–
1
c

)

≥ sy2

mc
(c – m – y).
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Assume that c – m > 0, again by using Lemma 3.1, we obtain

lim
t→∞ inf y(t) ≥ c – m.

Choose M3 = min{ω0
b , c – m}, and from (3.1) and (3.2), choose M4 = max{ r0–e

b , n(r0–e)
b + c +

ε1 – m}. Then the condition of permanence of system (2.4a)–(2.4b) follows. �

4 Equilibria and local stability analysis
4.1 Existence of equilibria
In order to obtain the equilibrium points of system (2.4a)–(2.4b), we consider the following
equations:

r0

1 + ky
– e – bx –

py
x + ay

= 0 and
1

y + m
–

1
nx + c

= 0. (4.1)

Simple computation yields the following equilibrium points of system (2.4a)–(2.4b):
• Trivial equilibrium E0(0, 0) exists by [38].
• Predator free equilibrium Ē(x̄, 0) = ( r0–e

b , 0) always exists by H1.
• Prey free equilibrium Ê(0, ŷ) = (0, c – m) exists if and only if c – m > 0.
• Interior equilibrium E∗(x∗, y∗), where x∗ = y∗+m–c

n , and y∗ is the positive root of the
cubic equation

y∗3 + 3A1y∗2 + 3A2y∗ + A3 = 0, (4.2)

where

A1 =
bk(an + 2)(m – c) + (an + 1)(b + ekn) + kn2p

3bk(an + 1)
,

A2 =
pn2 + kb(m – c)2 + (2b + ekn + abn)(m – c) + n(1 + an)(e – r)

3kb(1 + an)
,

A3 =
b(m – c)2 + n(e – r)(m – c)

kb(1 + an)
.

By introducing a transformation z = y∗ + A1, (4.2) can be reduced to

l(z) = z3 + 3p1z + p2 = 0, (4.3)

where p1 = A2 – A2
1 and p2 = A3 – 3A1A2 + 2A3

1. By [39], the existence of the positive roots
of (4.3) can be stated in the following lemma.

Lemma 4.1 Existence of positive roots of (4.3):
(a) If p2 < 0, (4.3) has a single positive root;
(b) Suppose p2 > 0 and p1 < 0, then:

(1) If p2
2 + 4p3

1 > 0, (4.3) has no positive roots;
(2) If p2

2 + 4p3
1 = 0, (4.3) has a positive root of multiplicity two;

(3) If p2
2 + 4p3

1 < 0, (4.3) has two positive roots;
(c) If p2 = 0 and p1 < 0, (4.3) has a unique positive root.
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Moreover, algebraic computations show that (4.3) has two positive roots z1 =
3
√

(–4p2+4
√

4p3
1+p2

2)2–4p1

2 3
√

–4p2+4
√

4p3
1+p2

2

and z2 = – z1
2 +

√
z3

1+4p2
2√z1

. It is noted that if (4.3) has one positive root,

it must be the same as z1. Suppose p2 > 0, p1 < 0, and using the Descartes rule of sign
change, we discuss the existence of possible interior equilibria of system (2.4a)–(2.4b) in
the following cases.

Case: (i) If m < c, i.e., A1 > 0, (4.2) has almost two positive roots, then by Lemma 4.1,
model (2.4a)–(2.4b) has

(1) No positive interior equilibrium by Lemma 4.1.
(2) A unique positive interior equilibrium point of multiplicity two, i.e.,

E1 = (x1, y1) = ( z1,2–A1+m–c
n , z1,2 – A1) with z1,2 > A1 and y1 > c – m. In this case, z1 = z2.

(3) Two positive interior equilibrium points, namely
E2,3 = (x2,3, y2,3) = ( z1,2–A1+m–c

n , z1,2 – A1) with z1,2 > A1.
Case: (ii) If m = c shows A1 > 0, A3 = 0, then one root becomes zero and (4.2) has at most
one positive root, then the interior equilibrium is E4 = (x4, y4) = ( z1–A1+m–c

n , z1 – A1) with
z1 > A1 and m – c = 0.

Case: (iii) If m > c implies A1 > 0 and (4.2) has a unique positive root, then the interior
equilibrium is E5 = (x5, y5) = ( z1–A1+m–c

n , z1 – A1).
Note that the Allee effect term m plays an important role for the existence of interior

equilibrium points. Moreover, if m < c, the two equilibria E2 and E3 collide to get E1 and
disappear if m crosses some particular threshold value, it states possible saddle-node bi-
furcation around E1. Furthermore, if m = c, then one of the equilibria E2, E3 will disappear
and one will collide with E0 another with E4, then there may be possible existence of tran-
scritical bifurcation around E0.

Hence, the expression for the critical threshold value m for the above scenario of the
existence of positive equilibria is difficult to find, so we discuss it with the help of numerical
example and nullcline analysis.

Example 4.1 For system (2.4a)–(2.4b), consider the fixed parameter values e = 0.05,
b = 1, p = 1, s = 0.5, a = 1 c = 0.2, n = 1, r0 = 1, k = 1 and varying m. If m = 0.03,
system (2.4a)–(2.4b) has Ê(0, 0.17) and no positive interior equilibrium point (given in
Fig. 1(a)) and, if m = 0.08586597105258, we get the unique positive interior equilibrium
E1(0.07208, 0.18621) with Ê(0, 0.114134), and for m = 0.12, we get two positive interior
equilibria E2(0.156899,
0.236899), E3(0.018512, 0.098512) with Ê(0, 0.08). If m = c = 0.2, we have a unique pos-
itive interior equilibrium E4(0.25, 0.25), both Ê and E3 collide with E0, and for m = 0.3 > c,
E3 disappears and we have E5(0.341366, 0.241366). Finally, in all cases we have E0(0, 0)
and Ē(0.95, 0). This is shown in Fig. 1(b). Since the value of a fear function decreases as
the level of fear increases as in [40], the parameter k also has the same capability for the
possible existence of saddle-node bifurcation, see Fig. 1(c). The saddle-node bifurcation
plot for varying m is given in Fig. 2(a) and for k in Fig. 2(b). The region for existence of
interior equilibria in k – m plane is given in Fig. 2(c).

Thus, the trace(Tr) and determinant (Det) values of the Jacobian matrix play a promi-
nent role in studying the local stability of system (2.4a)–(2.4b), we discuss the local stability
in the following subsection.
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Figure 1 The blue line represents prey nullcline and the black line represents predator nullcline, (a) when
k = 1,m = 0.03, there is no interior equilibrium point. (b) Fixing k = 1 and varyingm shows that system
(2.4a)–(2.4b) has a unique equilibrium E1 in blue dot, two interior equilibria E2, E3 in black dot, one equilibrium
E3 coincides with E0 and has a unique interior equilibrium E4 in red dot form = c, E3 disappears and E5 is
given in red dot form > c. (c) Takingm = 0.08586, the scenario for the existence of no equilibria, unique
equilibrium, and two equilibria by varying fear parameter k

Figure 2 (a) Saddle-node bifurcation diagram by fixing k = 1 andm varying in (0, 0.2), the blue dotted line
represents stable E2 and the red line represents unstable E3. (b) Saddle-node bifurcation diagram by fixing
m = 0.1 and k varying in (0, 1.3). (c) The black dark curve represents p22 + 4p31 = 0 which separates Region I (no
interior equilibria) and II (two interior equilibria), thed blue dashed line representsm = c which separates
Region II and Region III (unique interior equilibria)

4.2 Local stability analysis
The Jacobian matrix of the system at any equilibrium point (x, y) is given by

J =

⎛
⎝ r0

1+ky – e – 2bx – apy2

(x+ay)2
–r0kx

(1+ky)2 – px2

(x+ay)2

sny2

(nx+c)2
sy2+2msy

(y+m)2 – 2sy
nx+c

⎞
⎠ . (4.4)

Note that the Jacobian matrix cannot be evaluated at E0(0, 0). To study the stability of
system (2.4a)–(2.4b) at E0, we transform the ratio-dependent predator–prey system to an
equivalent system by making use of transformation x = x, y = y

x , then the resultant system
takes the form:

dx
dt

=
r0x

1 + kyx
– ex – bx2 –

pyx
1 + ay

, (4.5)

dy
dt

= sy
(

yx
yx + m

–
yx

nx + c

)
– y

(
r0

1 + kyx
– e – bx –

py
1 + ay

)
. (4.6)



Vinoth et al. Advances in Difference Equations        (2021) 2021:338 Page 10 of 22

Thus, the above system has the same equilibrium E0 = (0, 0) and axial equilibrium Ē(x̄, 0) =
( r0–e

b , 0) after re-transfer to its original variables. The Jacobian matrix of system (2.4a)–
(2.4b) at E0 from (4.5) is given as

JE0 =

(
r0 – e 0

0 –r0 + e

)
.

The Jacobian matrix of system (2.4a)–(2.4b) at the axial equilibria points Ē and Ê is given
by

JĒ =

(
–r0 + e – k(r0–e)

b – p
0 0

)
, JÊ =

(
0 0

sn(c–m)2

c2 – s(c–m)2

c2

)
.

Since the sign of the eigenvalues of JE0 , JĒ , JÊ determines the local stability of system (2.4a)–
(2.4b) around the equilibrium points E0, Ē, Ê, thus the conditions for local stability around
the E0, Ē, Ê are summarized in the following proposition.

Proposition 4.1 Assume that H1 holds, then E0 is saddle, since the eigenvalues of JE0 are
λ1 = r0 – e > 0 and λ2 = –r0 + e < 0. Also the eigenvalues of JĒ are λ1 = –r0 + e < 0 and λ2 = 0,
thus Ē always has stable manifold along the x-axis. Further c – m > 0 implies the existence
of Ê, so if Ê exists then one of the eigenvalues of JÊ is λ2 = – s(c–m)2

c2 < 0 and another one λ1 = 0,
then Ê always has stable manifold along y-axis. And if m = c, then Ê collides with E0.

Let E∗(x∗, y∗) be an arbitrary interior equilibrium whose Jacobian matrix is given as fol-
lows:

JE∗ =

⎛
⎝–bx∗ + px∗y∗

(x∗+ay∗)2 – r0kx∗
(1+ky∗)2 – px∗2

(x∗+ay∗)2

sny∗2

(nx∗+c)2 – sy∗2

(y∗+m)2

⎞
⎠ . (4.7)

Thus, the characteristic equation of the above matrix is

λ2 + Tr(JE∗ )λ + Det(JE∗ ) = 0, (4.8)

where

Tr(JE∗ ) = x∗
(

–b +
py∗

(x∗ + ay∗)2

)
–

sy∗2

(y∗ + m)2 ,

Det(JE∗ ) = sx∗y∗2
[(

b –
py∗

(x∗ + ay∗)2

)(
1

(y∗ + m)2

)

+
(

r0k
(1 + ky∗)2 +

px∗

(x∗ + ay∗)2

)(
n

(nx∗ + c)2

)]
.

Thus, E∗ is locally asymptotically stable if it satisfies Routh–Hurwitz criteria that are
Tr(JE∗ ) < 0 and Det(JE∗ ) > 0. Thus, we have the following proposition.

Proposition 4.2 The arbitrary interior equilibrium point E∗ of system (2.4a)–(2.4b) is lo-
cally asymptotically stable if x∗(–b + py∗

(x∗+ay∗)2 ) < sy∗2

(y∗+m)2 and –b + py∗
(x∗+ay∗)2 > 0.



Vinoth et al. Advances in Difference Equations        (2021) 2021:338 Page 11 of 22

Here, we give an example for the local stability of system (2.4a)–(2.4b).

Example 4.2 We chose the parameter values as given in Example 4.1 and vary the pa-
rameters m and k. If we choose k = 2 and m = 0.17, we have two interior equilibrium
points E2(0.144371, 0.174371) and E3(0.00471853, 0.0347185), and their corresponding
trace and determinant values are Tr(JE2 ) = –0.0247796 < 0, Det(JE2 ) = 0.0333904 > 0 and
Tr(JE3 ) = 0.0862325 > 0, Det(JE3 ) = 0.00112236 < 0. Then the equilibrium E2 is locally
asymptotically stable, while E3 is unstable. Moreover, E2 satisfies Proposition 4.1, which is
0.103414 = x2(–b + py2

(x2+ay2)2 ) < sy22

(y2+m)2 = 0.128194 and –b + py2
(x2+ay2)2 = 0.716306 > 0, i.e., E2

is locally asymptotically stable (see Fig. 6(a)).

5 Bifurcation analysis
In this section, we focus on the possible existence of various bifurcation behaviors of
system (2.4a)–(2.4b). In the nonlinear population interaction model, the most common
phenomenon is the existence of periodic solutions around the equilibrium point, that
is, the local birth or death of a periodic solution, the so-called Hopf bifurcation. More-
over, the two branches of stable and unstable equilibria created collide and disappear and
are defined as saddle-node bifurcation. Finally, the exchange of stability properties of two
equilibria is known as transcritical bifurcation. Hence, the bifurcation behavior of system
(2.4a)–(2.4b) is discussed in what follows.

5.1 Saddle-node bifurcation
Theorem 5.1 Suppose Det(JE∗ )|E1 = 0 for some critical threshold m = ms, then system
(2.4a)–(2.4b) admits a saddle-node bifurcation at E1.

Proof By taking m as the bifurcation parameter, we use Sotomayor’s theorem as in [41]
to prove that system (2.4a)–(2.4b) admits a saddle-node bifurcation. According to [41],
since Det(JE1 ) = λ1λ2 = 0, either of the eigenvalues must be zero and another is negative,
also Tr(JE1 ) < 0. Let g = (g1, g2)T , where g1, g2 are given in Sect. 2. Then the matrix JE∗ at
E1(x1, y1) is written by

JE1 = Dg(x1, y1) =

⎛
⎝(–bx1 + px1y1

(x1+ay1)2 ) (– r0kx1
(1+ky1)2 – px12

(x1+ay1)2 )
sny12

(nx1+c)2 – sy12

(y1+ms)2

⎞
⎠ .

Let m = ms be the threshold value for which JE1 has the eigenvalue zero, demands Det(JE1 ) =
0 at m = ms. Also, let the matrices JE1 and JE1

T have the eigenvectors v = (v1, v2)T and
w = (w1, w2)T for the zero eigenvalue, which yields

v =
(

1
(y1 + ms)2 ,

n
(nx1 + c)2

)T

, w =
(

–sny1
2

(nx1 + c)2 , –bx1 +
px1y1

(x1 + ay1)2

)T

.

Furthermore, we can get gm(E1; ms) =
( 0

–sy12

(y1+ms)2

)
.

Now

�1 =W T gm(E1; ms) =
(

–bx1 +
px1y1

(x1 + ay1)2

)(
–sy1

2

(y1 + ms)2

)
. (5.1)
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Therefore, �1 
= 0 at m = ms, and

D2g(E1; ms)(v, v) =

⎛
⎝ ∂2g1

∂x2 v2
1 + 2 ∂2g1

∂x ∂y v1v2 + ∂2g1
∂y2 v2

2
∂2g2
∂x2 v2

1 + 2 ∂2g2
∂ x∂y v1v2 + ∂2g2

∂y2 v2
2

⎞
⎠

=

(
α1v2

1 + α2v1v2 + α3v2
2

α4v2
1 + α5v1v2 + α6v2

2

)
,

where

α1 = –2b +
apy2

1
(x1 + ay1)3 , α2 = –

r0k
(1 + ky1)2 –

2pax1y1

(x1 + ay1)3 , α4 = –
2sn2y2

1
(nx1 + c)3 ,

α3 =
2r0k2x1

(1 + ky1)3 +
2pax2

1
(x1 + ay1)3 , α5 = 0, α6 = –

2smsy1

(y1 + ms)3 ,

also

�2 = W T D2g(E1; ms)(v, v) =
(

w1 w2

)(
α1v2

1 + α2v1v2 + α3v2
2

α4v2
1 + α5v1v2 + α6v2

2

)

= 0. (5.2)

Thus, system (2.4a)–(2.4b) admits a saddle-node bifurcation around E1(x1, y1), if �1 
= 0
and �2 
= 0 by Sotomayor’s theorem [41]. To confirm �1,�2 
= 0, we calculated it numeri-
cally. Therefore, we can say that the number of interior equilibria of system (2.4a)–(2.4b)
changes from zero to two, when the value of m varies from one side of threshold value
m = ms to the other side. �

Example 5.1 Let us take the parameter values as in Example 4.1, when k = 1 the two equi-
libria E2, E3 collide at some critical magnitude of m, i.e., m = ms = 0.08586597105258 and
a unique equilibrium E1 emerges and disappears for m < 0.08586597105258 = ms, which
ensures the possible existence of saddle-node bifurcation near E1 (see Fig. 2(a)). In addi-
tion, by [41] the values �1 = –0.0302379 
= 0, �2 = 7.70607 
= 0 confirm that system (2.4a)–
(2.4b) undergoes saddle-node bifurcation near E1.

5.2 Transcritical bifurcation
System (2.4a)–(2.4b) admits transcritical bifurcation, if there occurs a possible exchange of
stability properties between equilibria. From Sect. 4, system (2.4a)–(2.4b) has the bound-
ary equilibria Ê(0, ŷ) and Ē(x̄, 0). Also, when m = c, E2 and Ê coincide with E0. Note that if
Ê and Ē exist, then they are always stable and also E0 is always a saddle by Proposition 4.1.
Then, there is no chance of exchange of stability properties between equilibria.

Remark 5.1 System (2.4a)–(2.4b) does not admit transcritical bifurcation behavior.

5.3 Hopf bifurcation
In this subsection, the possible occurrence of limit cycle dynamics (Hopf bifurcation) near
the arbitrary interior equilibrium E∗(x∗, y∗) is to be analyzed by varying m and fixing all
other parameters as constant.
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Theorem 5.2 The necessary and sufficient conditions for system (2.4a)–(2.4b) undergoing
Hopf bifurcation at m = mh around the interior equilibrium point E∗ are that Tr(JE∗ )|m=mh =
0, Det(JE∗ )|m=mh > 0, and d(Tr(JE∗ ))

dm |m=mh 
= 0.

Proof To prove that system (2.4a)–(2.4b) exhibits limit cycle dynamics, we need to con-
sider that at some threshold value m = mh the trace value of JE∗ should be zero. The thresh-
old value mh is calculated by

x∗(m)
(

–b +
py∗(m)

(x∗(m) + ay∗(m))2

)
–

sy∗(m)2

(y∗(m) + m)2

∣∣∣∣
m=mh

= 0.

Thus, the characteristic equation (4.8) in Sect. 4 becomes

λ2 + Det(JE∗ )|m=mh = 0. (5.3)

Now, equation (5.3) must have the eigenvalues λ1,2 = ±iω0, where ω0 =
√

Det(JE∗ )|m=mh ,
with Det(JE∗ ) > 0 at m = mh. Next, we shall verify the transversality condition at some
value of m = mh, λ1,2 = α(m) ± β(m), where α(m) = 1

2 (x∗(m), y∗(m)) and

β(m) =
√

Det
(
x∗(m), y∗(m)

)
–

1
4

Tr2(x∗(m), y∗(m)
)
.

Now, d
dmα(m)|m=mh = 1

2 [ d
dm Tr(x∗(m), y∗(m))]m=mh .

Thus, the transversality condition is satisfied if d
dm Tr(x∗(m), y∗(m)) 
= 0 at m = mh. There-

fore, the system undergoes Hopf bifurcation at m = mh. �

5.3.1 Direction and stability
To study the direction of the possible occurrence of limit cycle oscillation and its stabil-
ity nature originating around the arbitrary equilibrium E∗, we derive the first Lyapunov
coefficient (l1) and use the results in [42].

Let the translation u = x – x∗ and v = y – y∗, and transform E∗ of system (2.4a)–(2.4b)
into origin, we get

⎧⎨
⎩

du
dt = r0(u+x∗)

1+k(v+y∗) – e(u + x∗) – b(u + x∗)2 – p(u+x∗)(v+y∗)
(u+x∗)+a(v+y∗) ,

dv
dt = s(v + y∗)( (v+y∗)

(v+y∗)+m – (v+y∗)
n(u+x∗)+c ).

(5.4)

On expanding (5.4) using Taylor’s series expansion at (u, v) = (0, 0), we obtain

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇ = a10u + a01v + a20u2 + a11uv + a02v2 + a30u3

+ a21u2v + a12uv2 + a03v3 + O(|u, v|4),

v̇ = b10u + b01v + b20u2 + b11uv + b02v2 + b30u3

+ b21u2v + b12uv2 + b03v3 + O(|u, v|4),

(5.5)

where

a10 = –bx∗ +
px∗y∗

(x∗ + ay∗)2 , a01 = –
r0kx∗

(1 + ky∗)2 –
px∗2

(x∗ + ay∗)2 ,
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a20 = –b +
apy∗2

2(x∗ + ay∗)3 , a11 = –
r0k

(1 + ky∗)2 –
2apx∗y∗

(x∗ + ay∗)3 ,

a02 =
r0k2x∗

(1 + ky∗)3 +
apx∗2

(x∗ + ay∗)3 , a30 = –
apy∗2

2(x∗ + ay∗)4 ,

a21 =
2apx∗y∗ – pa2y∗2

(x∗ + ay∗)4 , a12 =
r0k2

(1 + ky∗)3 +
2a2px∗y∗ – apx∗2

(x∗ + ay∗)4 ,

a03 = –
r0k3x∗

(1 + ky∗)4 –
apx∗2

(x∗ + ay∗)4 , b10 =
sny∗2

(nx∗ + c)2 , b01 = –
sy∗2

(y∗ + m)2 ,

b20 = –
2sn2y∗2

(nx∗ + c)3 , b11 = 0, b02 = –
2smy∗

(y∗ + m)3 ,

b30 =
sn3y∗2

(nx∗ + c)2 b21 = 0, b12 = 0, b03 =
2smy∗ – sm2

3(y∗ + m)4 .

We rewrite system (5.5) after removing the terms of degree above 3, which takes the form

U̇ = JE∗U + B(U), (5.6)

where

U =

(
u
v

)
and B =

(
B1

B2

)
=

⎛
⎜⎜⎜⎝

a20u2 + a11uv + a02v2 + a30u2

+a21u2v + a12uv2 + a03v3

b20u2 + b11uv + b02v2 + b30u2

+b21u2v + b12uv2 + b03v3

⎞
⎟⎟⎟⎠ .

Assume iθ0 to be the eigenvalue of JE∗ and its eigenvector is given by v̂ = (a01,iθ0–a10 )T . Now
define

Q =
(
Re

(
v̂, – Im(v̂)

))
=

(
a01 0

–a10 –θ0

)
.

Let us use the transformation U = QV or V = Q–1U , where V = (v1, v2)T in (2.4a)–(2.4b),
we obtain

V̇ =
(
Q–1JE∗Q

)
V + Q–1B(QV ).

Thus, the above system takes the form

(
v̇1

v̇2

)
=

(
0 –θ0

θ0 0

)(
v1

v2

)
+

(
S1(v1, v2; m = mh)
S2(v1, v2; m = mh)

)
, (5.7)

where S1 and S2 are nonlinear in u and v, given by

S1(v1, v2; m = mh) =
1

a01
B1, S2(v1, v2; m = mh) = –

1
θ0a01

(a01B1 + a01B2),

with

B1 =
(
a20a2

01 – a11a01a10 + a02a2
10

)
v2

1 + θ0(2a02a10 – a11a01)v1v2 + θ2
0 a02v2

2
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Figure 3 The two-parameter bifurcation diagram for
system (2.4a)–(2.4b), k varying in (0, 4) andm varying in (0,
0.4). From Fig. 2(c) the black dark curve (E1 exists)
represents Det(E1) = 0 which separates Region I (no interior
equilibria) and Region II (E2 and E3 exist), the black dashed
line (E4 exists) representsm = c which separates Region II
and Region III (E5 exists), and the blue line (Hopf bifurcation
curve) represents Tr(E2,4,5) = 0 which separates the stable
and unstable region of equilibria E2,4,5 . Red dot represents
the Bogdanov–Takens point, which is the intersecting
point of Det(E1) = 0 and Tr(E2,4,5) = 0

+
(
a12a01a2

10 – a03a3
10 + a30a3

01 – a21a2
01a10

)
v3

1 + θ0
(
2a12a10a01

– a21a2
01 – 3a03a2

10
)
v2

1v2 + θ2
0 (a12a01 – 3a03a10)v1v2

2 – θ3
0 a03v3

2,

B2 =
(
b20a2

01 – b11a01a10 + b02a2
10

)
v2

1 + θ0(2b02a10 – b11a01)v1v2 + θ2
0 b02v2

2

+
(
b30a3

01 + b21a01a2
10 – b21a2

01a10 – b03a3
10

)
v3

1 + θ0
(
2b12a01a10

– b21a2
01 – 3b03a2

10
)
v2

1v2 + θ2
0 (b12a01 – 3b03a10)v1v2

2 – θ3
0 b03v3.

By using the normal form theory in [42], we need the following quantity l1 to study the
properties of the limit cycle, which is calculated as follows:

l1 =
1

16
[
S1

v1v1v1 + S1
v1v2v2 + S2

v1v1v2 + S2
v2v2v2

]
+

1
16θ0

[
S1

v1v2

(
S1

v1v1 + S1
v2v2

)

– S2
v1v2

(
S2

v1v1 + S2
v2v2

)
– S1

v1v1 S2
v1v1 + S1

v2v2 S2
v2v2

]
,

where the partial derivative values are calculated at the critical point, i.e., (v1, v2; m) =
(0, 0; mh). By applying the result given in [42], the existing limit cycle (Hopf bifurcation) is
supercritical and subcritical if l1 < 0 and l1 > 0 correspondingly.

Example 5.2 Here, we choose the fixed parameter values e = 0.05, b = 1, p = 1, s = 0.5,
a = 1 c = 0.2, n = 1, r0 = 1, k = 2.7055 and varying m. We observe at some critical threshold
m = mh = 0.2 = c, system (2.4a)–(2.4b) has the positive equilibrium E4(x4 = 0.154807, y4 =
0.154807), also the trace of JE4 is zero (Tr(mh) = 0) and the determinant of JE4 is positive
(Det(mh) = 0.0345387 > 0) and d

dmα(m)|m=mh = 1
2 [ d

dm Tr(x4(m), y4(m))]m=mh = 0.268271 
= 0
ensures that system (2.4a)–(2.4b) has limit cycle oscillation near E4 at mh. Also, system
(2.4a)–(2.4b) has θ0 = 0.185849 and the first Lyapunov coefficient l1 = –1.53282 < 0. There-
fore, the existing Hopf bifurcation around E4 is supercritical (unstable and surrounded by
a stable limit cycle), see Figs. 3, 4, 5, and 6.

5.4 Bogdanov–Takens bifurcation
In the previous subsection, we discussed the existence of one-parameter bifurcation for
system (2.4a)–(2.4b). In this subsection the possible existence of a codimension-2 bifur-
cation, namely Bogdanov–Takens (BT) bifurcation for (2.4a)–(2.4b), is analyzed. For this,
we have to take two parameter values m and k as the varying parameters and fix all other
parameter constants. Here, we only discuss it numerically.
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Figure 4 The bifurcation diagram by fixing k = 2.5 and varyingm in (0.16, 0.2). In (a), (b) the x and y
components of equilibria Ê, E2, E3 are plotted respectively, the blue line represents Ê and it is always stable,
the red line represents E3 and it is unstable, the red dotted line represents an unstable branch of E2, and the
black line represents a stable branch of E2. The complex behavior of system (2.4a)–(2.4b) by separating critical
values ofm by black dotted lines into the regions namely A, B, C, D, and E. In A, Ê only exists and in B, C, D the
Ê, E2, E3 exist. In C, the unstable E2 is surrounded by stable limit cycle (green curve), and whenm = c = 0.2 the
Ê, E3 coincide with the saddle equilibrium E0

Figure 5 The bifurcation diagram by fixingm = 0.18 (red curve),m = 0.2 (blue curve),m = 0.22 (green curve)
and varying k in (2, 4). The existence of limit cycle (Hopf bifurcation) for various values ofm

Remark 5.2 System (2.4a)–(2.4b) has a Bogdanov–Takens bifurcation for the varying pa-
rameters m and k if it satisfies Det(JE∗ ) = 0 and Tr(JE∗ ) = 0 at the critical threshold value
(m, k) = (mb, kb).

Example 5.3 Take other parameter as e = 0.05, b = 1, p = 1, s = 0.5, a = 1 c = 0.2,
n = 1, r0 = 1 and choose mb = 0.117545, kb = 1.6083, we get the unique interior equi-
librium E1(0.058598, 0.14105) and Det(JE1 ) = Tr(JE1 ) = 0. Hence, system (2.4a)–(2.4b) has
Bogdanov–Takens bifurcation around E1 (see Figs. 3 and 8).

Remark 5.3 In most of the existing literature, authors have incorporated fear and Allee
effect separately on predator–prey models, see [27, 28, 32, 40, 43]. For example, the issue
on the impact of fear effect in the predator–prey model with Holling type II predator–prey
interaction was reported in [40], where they stated that fear constant is able to stabilize
the proposed system at an interior steady state, that is, both the species can exist together,
or it can create the oscillatory coexistence of species populations. Weak Allee effect on
the stability of a discrete-time predator–prey model was given in [43], and they observed
that the system becomes stable from chaotic dynamics as the Allee parameter increases.
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Figure 6 Phase portrait for system (2.4a)–(2.4b) for case (i) E2 form < c, we have (a), (b), and (c); for case (ii) E4
form = c, we have (d), (e), and (f); for case (iii) E5 form > c, we have (g), (h), and (i). Here (a), (d), and (g) are
locally asymptotically stable; (b), (e), and (h) are periodic solutions; (c), (f), and (i) are unstable phase portraits.
The red line represents prey nullcline, the black line represents predator nullcline, the red and green arrow
lines represent stable trajectories along x and y axes respectively, which approach Ê and Ē. The black dashed
arrow line represents the separatrix curve separating the trajectories which approach Ē and interior equilibria
E2,4,5 in the x-y plane

Authors in [44] discussed a food chain model that experienced strange dynamics by vary-
ing Allee effect parameters, that is, the system state changes from stable to chaotic via
period doubling as Allee effect increases. The effects of both Allee and fear parameters
in predator–prey interaction model with prey-dependent functional response were con-
sidered in [29]. It is worth mentioning that our derived ratio-dependent modified Leslie
type model (2.4a)–(2.4b) incorporates fear effect in the prey population and Allee effect
in the predators growth. Moreover, system (2.4a)–(2.4b) exhibits complex dynamics with
respect to both fear and Allee parameters, which is explained theoretically through bifur-
cation analysis and is verified in terms of numerical simulations.

6 Numerical simulations
In this section, in order to obtain a better visualization of how different parameter selec-
tion values influence the system (2.4a)–(2.4b) dynamics, numerical simulations are shown.
Since we aim to investigate the effect of fear(k) and the Allee effect(m), all other parame-
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Figure 7 (a) and (b) Time trajectories for prey and predator populations with various initial conditions, where
green curves are the trajectories approaching Ē, blue curves are the trajectories approaching E2, and red
curves are the trajectories approaching Ê. (c) Bi-stability region in prey vs predator plane, i.e., initial conditions
green, blue, and red points approach Ē, E2, and Ê respectively

Figure 8 (a) Local amplification of Fig. 3 around BT point. (b) Phase portrait for system (2.4a)–(2.4b) around BT
point

ters of system (2.4a)–(2.4b) are fixed as e = 0.05, b = 1, p = 1, h = 0.5, n = 0.2, q = 1, r0 = 1.
The scenario of no equilibrium, unique interior equilibrium, and two interior equilibria is
given in Example 4.1 and showed in Fig. 1 with respect to the parameters m and k. The
saddle-node bifurcation behavior for system (2.4a)–(2.4b) for parameter m is shown in
Fig. 2(a) and for k in Fig. 2(b), where the blue dashed line represents the stable equilib-
rium branch and the red line represents the unstable equilibrium branch. The regions for
existence of interior equilibria are shown in Fig. 2(c), where Region I is the space below the
black darker line, here interior equilibrium point is not possible. Region II is the space be-
tween the black dashed line and the black thick line, here two interior equilibrium points
arise. On and above the black dashed line representing Region III, the unique interior equi-
librium point appears. In Fig. 3, the two-parameter bifurcation diagram is plotted, since
the trace value is zero on the blue line, which separates the stable and unstable region, and
the red dot denotes the Bogdanov–Takens bifurcation point, i.e., the intersection point of
trace and determinant equals zero.

In order to show the birth of periodic solution of system (2.4a)–(2.4b), fixing k = 2.5 and
varying m in (0, 0.2), the one-parameter bifurcation diagram is plotted in Fig. 4. When
0.16 < m < 0.174, the only equilibrium Ē exists and is stable. For 0.174 < m < 0.185, the
periodic solution around the interior equilibrium E2 exists and it is stable in 0.185 < m <
0.2. Hence, it states that the Allee parameter has a stabilizing effect on system (2.4a)–



Vinoth et al. Advances in Difference Equations        (2021) 2021:338 Page 19 of 22

Figure 9 For system (2.4a)–(2.4b), black dashed lines represent trace value is zero, (a) Trace values for E2,
which changes from negative to positive. (b) Determinant values for E2, which is always positive. (c) Trace
values for E3, which changes from negative to positive. (d) Determinant values for E3, which is always
negative. Also, confirms the results in Fig. 3

(2.4b). Also, in Fig. 5, the one-parameter bifurcation diagram is plotted with respect to
the parameter k considering the cases in Lemma 4.1: For case (i) m < c = 0.18 in red, for
case (ii) m = c = 0.2 in blue, and for case (iii) m > c = 0.22 in green, which shows the birth of
periodic solution on increasing k. Therefore, the fear parameter k has a destabilizing role
for system (2.4a)–(2.4b). The existence of stable, periodic, and unstable phase portraits
around the equilibrium E2 for different choice of m and k is shown in Fig. 6.

The time trajectories may tend to either Ē and Ê or E2, it depends on the choice of the
initial condition. As in Fig. 6, there is a separatrix curve separating the trajectories that
approach Ē = (0, 0.3) and E2 = (0.137202, 0.167202), thus system (2.4a)–(2.4b) has three
stable equilibria at m = 0.17, k = 2.14 and the remaining parameters are the same as in
Example 4.1. Since the system is sensitive to the initial condition, we attempt to evaluate
the 133 × 133 initial conditions in prey vs predator plane and mark in different colors
in 7(c), red color approaches Ê, green color approaches Ē, and blue color approaches E2.
In Figs. 7(a) and 7(b), it is shown that the different initial conditions approach different
equilibria in time trajectories for both prey and predator, respectively.

The local amplification of two-parameter spaces k and m in Fig. 3 around the BT point
(Bogdanov–Takens bifurcation point) is shown in Fig. 8(a) for clear view, which is (k, m) =
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Figure 10 Two-parameter bifurcation diagram for system (2.4a)–(2.4b) with different choice of parameter
values, the blue curve represents Hopf bifurcation curve, the black curve represents determinant zero (below
in (b), (c) and above in (d), system (2.4a)–(2.4b) has no interior equilibria), and the black dashed curve
representsm = c

(1.6083, 0.1175466), and the corresponding phase portrait around E1 = (0.0585234,
0.140977) is shown Fig. 8(b), which is the cusp of co-dimension 2.

The values of trace and determinant are shown in the colored density graph for E2 in
Figs. 9(a), 9(b) and for E3 in Figs. 9(c), 9(d). In Fig. 9(a) the black dashed line (Tr(E2) = 0)
states that the trace value changes from negative to positive, also in Fig. 9(b) the deter-
minant value is always positive. Hence system (2.4a)–(2.4b) shows limit cycle oscillations.
However, in Fig. 9(c), even the trace values change from negative to positive, the deter-
minant values are always negative in Fig. 9(d). Therefore, system (2.4a)–(2.4b) is stable
near E2 and unstable near E3. Finally, in Fig. 10, the two-parameter bifurcation diagram
is plotted for the equilibria E2, E4, and E5, which includes Hopf bifurcation curve, stable
and unstable regions with different choices of system parameters. Note that if E3 exists, it
is always unstable.

7 Conclusion
In the present study, the fear effect in the prey population and the Allee effect in the
predator population were considered in the modified Leslie type predator–prey model
with ratio-dependent interaction term. First, we discuss the positivity, boundedness, and
permanence analysis for system (2.4a)–(2.4b). Then the condition for existence of possi-
ble equilibria of system (2.4a)–(2.4b) is derived which showed that two equilibria arise,
annihilate, and disappear with influence of both fear and Allee effects. Furthermore, we
studied the local stability of all possible equilibria. For certain threshold values of Allee
effect term, system (2.4a)–(2.4b) has two interior equilibria. Hence, we discussed the an-
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alytical conditions for local stability of arbitrary interior equilibria and plotted the stable
and unstable regions using two-parameter bifurcation diagram. The colored map of trace
and determinant values supports the study of stability of two possible interior equilibria.
In addition, the considered system experiences the various bifurcation behaviors by vary-
ing a suitable parameter, and we observed that the increase of fear effect can change the
system dynamics from stable to unstable via Hopf bifurcation. Also, we found that the
existing Hopf bifurcation is supercritical by calculating the first Lyapunov coefficient. We
showed that the Allee effect in predator helps to stabilize the unstable behavior caused
by fear effect. Additionally, the existence of saddle-node bifurcation is discussed with the
help of Sotomayor’s theorem. It is important to analyze the effect of fear and Allee effects
on other system parameters, for this we have plotted various two-parameter bifurcation
diagrams with the choice of different parameter values. Hence, the fear and the Allee ef-
fects play a vital role in the system dynamical behavior, it is important to analyze the long
term survival for both species. Thus, it could be interesting and meaningful to study the
dynamics of a predator–prey model with the Allee effects in both prey and predator. How-
ever, these terms will increase the complexity of the system, and we will leave this as future
research.
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