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Abstract
In this paper, we discuss a generalization to the Cherednik–Opdam integral operator
to an abstract space of Boehmians. We introduce sets of Boehmians and establish
delta sequences and certain class of convolution products. Then we prove that the
extended Cherednik–Opdam integral operator is linear, bijective and continuous with
respect to the convergence of the generalized spaces of Boehmians. Moreover, we
derive embeddings and discuss properties of the generalized theory. Moreover, we
obtain an inversion formula and provide several results.
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1 Introduction and preliminaries
Generalized functions were designed by Sobolev and Schwartz to fulfil the apparent re-
quirements of science. Being an extension to the concept of ordinary functions, the theory
of generalized functions gives rise to many fruitful results in partial differential equations,
yet at the same time they are arbitrarily singular. In literature, the notion of generalized
functions have witnessed a volcanic growth in PDEs, physics, engineering, mathemati-
cal physics, theoretical stochastic analysis and some numerical aspects as well. Typically
generalized functions are defined as continuous linear mappings on appropriately defined
spaces of test functions, nevertheless, Boehmians are introduced as quotients of convo-
lution products similar to the concept of field of quotients (see, e.g., [1–5] and [6–10]).
Although the construction of a Boehmian space might be obtained by convolution prod-
ucts and delta sequences of shrinking supports to the origin, it may not be possible to
define a notion of a Boehmian when the delta sequences fail to vanish on an open set. The
idea of such a construction has led to many important ideas on the support of a Boehmian
and the abelian-type theorems of the integral transform operators.

Here and throughout, it being understood conventionally that C, R and N are the sets of
complex numbers, real numbers and positive integers, respectively. For arbitrary but fixed
real parameters α and β subject to the constraints α ≥ β ≥ –1/2,α > –1/2 and λ ∈ C, the
Opdam–Cherednik theory is a theory based on the Opdam–Cherednik normalized eigen
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function G(α,β)
λ of the Dunkl–Cherednik differential–difference operator F (α,β), where

F (α,β)G(α,β)
λ (t) = iλG(α,β)

λ (t),

provided G(α,β)
λ (0) = 1, F (α,β)f (t) = f ′(t) + {(α – β) coth t + (2β + 1) coth 2t}F(t) – pf (–t),

p = α + β + 1 and F(t) = f (t) – f (–t) (see, e.g., [11]). An efficient relation between the hy-
pergeometric and the Jacobi functions, G(α,β)

λ and ϕ
(α,β)
λ , was established as

G(α,β)
λ (t) = ϕ

(α,β)
λ (t) –

1
p – iλ

∂

∂t
ϕ

(α,β)
λ (t),

where ϕ
(α,β)
λ (t) = 2F1( p+iλ

2 , p–iλ
2 ;α + 1; – sinh2 t), 2F1 being the hypergeometric function.

A translation formula, in this division, was introduced as

τ (α,β)
x f (y) =

∫
R

f (w) dμ(α,β)
x,y (w), (1)

where

dμ(α,β)
x,y (w) =

⎧⎪⎪⎨
⎪⎪⎩

Kα,β (x, y, w)Aα,β (w) dw, xy �= 0,

dδx(w), y = 0,

dδy(w), x = 0,

(2)

Kα,β (x, y, w) = Axyw

∫ –2α

0
gα–β–1

x,y,w,θ
(
1 – σ θ

x,y,w + σ θ
x,w,y + σ θ

w,y,x + hβ ,α
x,y,w,θ

)
sin2β θ dθ ,

Axyw =
μα+β

| sinh x sinh y sinh w|2α
, hβ ,p

x,y,w,θ =
α coth x coth y coth w sin2 θ

β + 1
2

,

x, y, w ∈R\{0}, and

gx,y,w,θ = 1 – cosh2 x – cosh2 y cosh2 w + 2 cosh x cosh y cosh w cos θ ,

satisfy the triangular inequality ||x| – |y|| < |w| < |x| + |y|, provided that

σ θ
x,y,w =

⎧⎨
⎩

cosh x+cosh y–cosh w cos θ

sinh w sinh y , xy �= 0,

0, xy = 0,

for x, y, w ∈R, θ ∈ [0, 1] and Kα,β (x, y, w) = 0 otherwise. It will be very useful to report here
that a change of variables in Kα,β , for x, y, w ∈R, yields (see, e.g., [12])

Kα,β (x, y, w) = Kα,β (y, x, w) = Kα,β (–x, w, y) = Kα,β (–w, y, –x).

In the literature, the Opdam–Cherednik integral operator is defined, on the space Cc(R)
of continuous functions with compact support on R, as a Fourier integral operator in
trigonometric Dunkl settings given by [13]

γ (f )(λ) =
∫
R

f (t)G(α,β)
λ (–t)�dα,βt, (3)



Al-Omari et al. Advances in Difference Equations        (2021) 2021:336 Page 3 of 12

where α ≥ β ≥ – 1
2 , α > – 1

2 and λ ∈ C. The inversion formula of the Opdam–Cherednik
integral operator can be recovered from the Opdam–Cherednik integral operator as

γ –1(h)(λ) =
∫
R

h(λ)G(α,β)
λ (t)

(
1 –

p
iλ

)
1

8π |Cα,β (λ)|2 dλ.

The Roe and the Paley–Wiener theorems in the context of Cherednik operators were es-
tablished by using tempered distributions with spectral gaps in the Opdam–Cherednik
operator (see, e.g., [14, 15]). On the other hand, uncertainty principles and local uncer-
tainty principles of Donoho–Strak type were derived by Achak and Daher [16]. Further,
in an attractive perspective, they have adequately established certain analogs of Hardy,
Beurling, Cowling-Price, Gelfand–Shilov and Miyachi theorems, with the aid of compo-
sition properties of the Opdam–Cherednik operator. However, various investigations and
real applications of this integral operator may be observed in [11, 12, 17–20] and the ref-
erences therein.

Although there were discussed various integral operators on different spaces of Boehmi-
ans, the theory of the Cherednik–Opdam integral operator of a Boehmian has not yet been
reported in the literature. The starting point in such an approach relies on a convolution
theorem which, in addition to delta sequences, allows embeddings to act as isomorphisms
between the classical spaces L1(R, �dα,βx) and L1

E(R, �dα,βx), �dα,βx = Aα,β (|x|) dx, Aα,β(|x|) =
sinh2α+1 |x| cosh2β+1 |x|, and the generalized spaces β

(α,β)
1 and β

(α,β)
2 of Boehmians, respec-

tively. Here and hereafter, we will be concerned with themes in the context of Boehmian
spaces and the framework of the Cherednik–Opdam integral operator on the real line. We
will consider a Cherednik–Opdam set of delta sequences and provide various axioms to
legitimate the Cherednik–Opdam sets of Boehmians. Similar argument is also applied to
the Cherednik–Opdam inversion formula. To be more precise, we expand our results into
three sections. In Sect. 1, we recall the general description of the Opdam hypergeomet-
ric functions, convolution products and some related results. In Sect. 2, we define delta
sequences and prove numerous results that presumably exhibits the Cherednik–Opdam
spaces of Boehmians. In Sect. 3, we discuss the generalized theory of the Cherednik–
Opdam integral and its inversion formula in the class of Boehmians.

2 Opdam–Cherednik generalized spaces
In this section, we generate two imperative sets of Boehmians and extend the Opdam–
Cherednik integral operator to the given sets. For certain deterministic needs, we intro-
duce Opdam–Cherednik sets of delta sequences, convolution products, convolution the-
orems and establish vital axioms for such extension. By L1(R, �dα,βx), we denote the set of
all measurable functions such that the integral formula

‖f ‖α,β =
∫
R

∣∣f (x)
∣∣�dα,βx (4)

is finite. Likewise, by D(R) we denote the subspace of the measurable space L1(R, �dα,βx) of
test functions of compact supports over R. The convolution product between two suitable
functions f1 and f2 in the space L1(R, �dα,βx) is defined, when the integral exists, as [13]

f1 ∗α,β f2(x) =
∫
R

τ (α,β)
x f1(–y)f2(y)�dα,βy. (5)
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In the course of the following two lemmas, we recite some properties of the product ∗α,β

as follows.

Lemma 1 ([13, Remark 4.8]) Let f1, f2, f3 ∈ L1(R, �dα,βx). Then the following holds:

f1 ∗α,β f2 = f2 ∗α,β f1 and (f1 ∗α,β f2) ∗α,β f3 = f1 ∗α,β (f2 ∗α,β f3).

For p = q = r = 1, the following result is very beneficial for the sequel.

Lemma 2 ([13, Proposition 4.10]) Let f1, f2 ∈ L1(R, �dα,βx). Then f1 ∗α,β f2 ∈ L1(R, �dα,βx) and

‖f1 ∗α,β f2‖α,β ≤ Cα,β‖f1‖α,β‖f2‖α,β ,

where the coefficients are given by

Cα,β =

⎧⎨
⎩

4 + 
(α+1)
(β+ 1
2 )


(α+ 1
2 )
(β+1)

, α > β > – 1
2 ,

5
2 , α = β > – 1

2 .
(6)

As delta sequences are essential parts in this treatment, the Opdam–Cherednik set of delta
sequences can be presented as follows.

Definition 3 By �(α,β), we denote the subset of D(R) consisting of all sequences (δn) such
that the identities P1, P2 and P3 hold:

P1 :
∫
R

δn(x)G(α,β)
0 (–x)�dα,βx = 1 for every n ∈N,

P2 : ‖δn‖α,β ≤ M for some constant M > 0 and every n ∈N,

P3 : lim
n→∞

∫
|x|>ε

∣∣δn(x)
∣∣�dα,βx = 0 for every real number ε > 0.

We have the following assertion.

Proposition 4 The set �(α,β) is an Opdam–Cherednik set of delta sequences.

Proof To show that �(α,β) is an Opdam–Cherednik set of delta sequences we have to show
that P1–P3 hold for all �(α,β) elements. Let (δn), (θn) ∈ �(α,β). Then, by the convolution
theorem γ (f ∗α,β g)(λ) = γ (f )(λ)γ (g)(λ) which can deduced from [13, Proposition 4.9] and
[21], we write

γ (δn ∗α,β θn)(0) = γ (δn)(0)γ (θn)(0). (7)

Therefore, we rewrite (7) in an explicit form as

∫
R

(δn ∗α,β θn)(x)Gα,β
0 (–x)�dα,βx =

∫
R
δn(x)Gα,β

0 (–x)�dα,βx
∫
R

θn(x)Gα,β
0 (–x)�dα,βx.
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Hence, from the previous equation it can be easily inferred that

∫
R

(δn ∗α,β θn)(x)Gα,β
0 (–x)�dα,βx = 1. (8)

Hence, P1 is completely proved. To prove P2, let (δn) and (θn) be in �(α,β). Then
we have ‖δn‖α,β ≤ M1 and ‖θn‖α,β ≤ M2 for some real numbers M1 and M2. There-
fore, from Lemma 2, we get ‖δn ∗α,β θn‖α,β ≤ M where M = Cα,βM1M2. Finally, if
limn→∞

∫
|x|>ε

|δn(x)|�dα,βx = 0 and limn→∞
∫
|x|>ε

|θn(x)|�dα,βx = 0, then we have

lim
n→∞

∫
|x|>ε

∣∣(δn ∗α,β θn)(x)
∣∣�dα,βx ≤ lim

n→∞

∫
|x|>ε

∣∣δn(x)
∣∣�dα,βx lim

n→∞

∫
|x|>ε

∣∣θn(x)
∣∣�dα,βx.

Hence, we have obtained

lim
n→∞

∫
|x|>ε

∣∣(δn ∗α,β θn)(x)
∣∣�dα,βx = 0.

This completes the proof of the proposition. �

We now establish the prerequisite axioms for generating the Boehmian space β
(α,β)
1 with

the set L1(R, �dα,βx), the subset D(R), the product ∗α,β and the set �(α,β) of delta sequences.

Theorem 5 Let f , g, h, fn → f as n → ∞ in L1(R, �dα,βx), δ, θ ∈ D(R) and α ∈ C. Then we
have:

(i) α(f ∗α,β g) = (αf ) ∗α,β g .
(ii) (f + g) ∗α,β δ = f ∗α,β δ + g ∗α,β δ.

(iii) f ∗α,β g = g ∗α,β f , and (f ∗α,β g) ∗α,β h = f ∗α,β (g ∗α,β h).
(iv) fn ∗α,β δ → f ∗α,β δ as n → ∞.

Proof The proofs of (i) and (ii) are straightforward. The proof of (iii) is consistent with the
proof of Lemma 2. Hence, the proofs are omitted. The proof of (iv) follows from Lemma 2
and the fact that

∥∥(fn – f ) ∗α,β δ
∥∥

α,β ≤ Cα,β‖fn – f ‖α,β‖δ‖α,β → 0 as n → ∞.

This finishes the proof of the theorem. �

Finally, we establish the following lemma.

Lemma 6 Let f ∈ L1(R, �dα,βx) and (δn) ∈ �(α,β). Then f ∗α,β δn → f as n → ∞ in
L1(R, �dα,βx).

Proof Let (δn) ∈ �(α,β) and f ∈ L1(R, �dα,βx) be given. Then by [11, Lemma 4.6] we have

∥∥τ (α,β)
x f

∥∥
α,β ≤ Cα,β‖f ‖α,β , (9)
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where Cα,β has a significance of (6). Also, from [12] we see that the function G(α,β)
0 is strictly

positive and bounded above and, for every λ ∈R, we have

∣∣G(α,β)
λ (x)

∣∣ ≤ G0(x) for every x ∈R. (10)

Therefore, by Definition 3 and Fubini’s theorem, we write

‖f ∗α,β δn – f ‖α,β

≤
∫
R

(∫
R

∣∣(τ (α,β)
x f (–y) – f (x)G(α,β)

0 (–y)
)
δn(y)�dα,βy

∣∣
)

�dα,βx

≤
∫
R

(∫
R

∣∣τ (α,β)
x f (–y) – f (x)G(α,β)

0 (–y)
∣∣∣∣δn(y)

∣∣|�dα,βy|
)

�dα,βx

≤
∫
R

(∫
R

(∣∣τ (α,β)
x f (–y)

∣∣ +
∣∣f (x)G(α,β)

0 (–y)
∣∣)∣∣δn(y)

∣∣|�dα,βx|
)

�dα,βx.

Let C be an upper bound for G(α,β)
0 , then, by [15, Proposition 4.4], we have

‖f ∗α,β δn – f ‖α,β

≤
∫
R

(∫
R

(∣∣τ (α,β)
y f (–x)

∣∣ + C
∣∣f (x)

∣∣)∣∣δn(y)
∣∣|�dα,βy|

)
�dα,βx

≤
∫
R

(
Cα,β‖f ‖α,β + C‖f ‖α,β

)∣∣δn(y)
∣∣|�dα,βy|

≤ (
Cα,β‖f ‖α,β + C‖f ‖α,β

)∫
R

∣∣δn(y)
∣∣|�dα,βy|

≤ (
Cα,β‖f ‖α,β + C‖f ‖α,β

)‖δn‖α,β → 0 as n → ∞.

This finishes the proof of the theorem. �

If (ϕn) ∈ L1(R, �dα,βx) and (δn) ∈ �(α,β), then the pair (ϕn, δn) (or ϕn
δn

) is said to be a quotient
of sequences if ϕn ∗α,β δm = ϕm ∗α,β δn,∀n, m ∈ N. Therefore, if ϕn

δn
and gn

εn
are quotients of

sequences and ψ ∈ L1(R, �dα,βx), then it is easy to see that

ψ ∗α,β δn

δn
and

ϕn ∗α,β δn + gn ∗α,β δn

δn ∗α,β εn

are quotients of sequences. Further, we can easily check the following equivalence rela-
tions:

ϕn

δn ∗α,β ψ
∼ ϕn ∗α,β ψ

δn
and

ϕn

δn ∗α,β gn
∼ ϕn ∗α,β gn

δn
.

Two quotients of sequences ϕn
δn

and gn
εn

are said to be equivalent if ϕn ∗α,β εm = gm ∗α,β

δn,∀n, m ∈N. The equivalent class w̆ = ( ϕn
δn

) of quotients of sequences containing ϕn
δn

is said
to be a Boehmian. The space of such Boehmians is denoted by β

(α,β)
1 . For two Boehmians

w̆ = ( ϕn
δn

) and z̆ = ( gn
εn

) in β
(α,β)
1 , the following are well-defined on β

(α,β)
1 :

(i) w̆ + z̆ =
(

ϕn ∗α,β δn + gn ∗α,β δn

δn ∗α,β εn

)
, (ii) βw̆ =

(
βϕn

δn

)
,
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(iii) w̆ ∗α,β z̆ =
(

ϕn ∗α,β gn

δn ∗α,β εn

)
, (iv) Dkw̆ =

(
Dkϕn

δn

)
, and

(v) w̆ ∗α,β ψ =
(

ϕn ∗α,β ψ

δn

)
,

where k ∈R, β ∈C and Dkw̆ is the kth derivative of w̆ and ψ ∈ L1(R, �dα,βx).

Definition 7 For n = 1, 2, 3, . . . and w̆n, w̆ ∈ β
(α,β)
1 , the sequence (w̆n) is said to be δ-

convergent to w̆, denoted by δ – limn→∞ w̆n = w̆, provided there can be found a delta se-
quence (δn)such that

(a) (w̆n ∗α,β δk), (w̆ ∗α,β δk) in L1(R, �dα,βx), for all n, k ∈N,

(b) lim
n→∞ w̆n ∗α,β δk = w̆ ∗α,β δk in L1(R, �dα,βx), for every k ∈N.

Definition 8 For n = 1, 2, 3, . . . and w̆n, w̆ ∈ β
(α,β)
1 , the sequence (w̆n) is said to be �(α,β)-

convergent to w̆, denoted by �α,β -limn→∞ w̆n = w̆, provided there can be found a delta
sequence (δn) such that

(a) (w̆n – w̆) ∗α,β δn ∈ L1(R, �dα,βx) (∀n ∈N),

(b) lim
n→∞(w̆n – w̆) ∗α,β δn = 0 in L1(R, �dα,βx).

Remark 9 Let ψ ∈ L1(R, �dα,βx) and (δn) ∈ �(α,β) be fixed. Then we have the mapping

ψ → w̆, (11)

where w̆ = ( ψ∗α,βδn
δn

) is an injective mapping from L1(R, �dα,βx) into β
(α,β)
1 .

Therefore, it can be easily checked that L1(R, �dα,βx) may be identified as a subspace of
β

(α,β)
1 .

Remark 10 Let (δn) ∈ �(α,β). Then, if ψn → ψ in L1(R, �dα,βx) as n → ∞, then, for all k ∈N,

ψn ∗α,β δk → ψ ∗α,β δk

as n → ∞. That is, w̆n → w̆ in β
(α,β)
1 as n → ∞.

The above remark states the following.

Theorem 11 The mappings ψ → w̆, w̆ = ( ψ∗α,βδn
δn

), is a continuous embedding of the space
L1(R, �dα,βx) into the space β

(α,β)
1 .

Now, let L1
E(R, �dα,βx), DE(R) and �

(α,β)
E be the Opdam–Cherednic operators of the spaces

L1(R, �dα,βx), D(R) and �(α,β), respectively. Then we have the following definition.

Definition 12 Let F ∈ L1
E(R, �dα,βx) and � ∈ DE(R). Then between F and � , we define an

operation ∗E
α,β as

F ∗E
α,β �(x) = (F�)(x), (12)

where (F�)(x) = F(x)�(x) is the usual product of two functions.
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Accordingly, the construction of the Boehmian space β
(α,β)
2 with the sets L1

E(R, �dα,βx),
DE(R) and �

(α,β)
E follows from the following theorem.

Theorem 13 Let F , G, Fn, F be in L1
E(R, �dα,βx),ψ1,ψ2 ∈ DE(R), (θE

n ), (δE
n ) ∈ �

(α,β)
E , ᾱ ∈ C

and Fn → F as n → ∞. Then we have
(i) ᾱ(F ∗E

α,β G) = (ᾱF) ∗E
α,β G.

(ii) (θE
n ∗E

α,β δE
n ) ∈ �

(α,β)
E .

(iii) F ∗E
α,β (ψ1 ∗E

α,β ψ2) = (F ∗E
α,β ψ1) ∗E

α,β ψ2.
(iv) Fn ∗E

α,β ψ1 → F ∗E
α,β ψ1 as n → ∞.

(v) F ∗E
α,β δE

n → F as n → ∞ in L1
E(R, �dα,βx).

(vi) (F + G) ∗E
α,β ψ1 = F ∗E

α,β +G ∗E
α,β ψ1.

Proof of (i) By using (12), two times, we get ᾱ(F ∗E
α,β G)(λ) = ᾱ(FG)(λ) = (ᾱF(λ))G(λ) =

(ᾱF) ∗E
α,β G. This proves (i). To prove (ii), let (θn), (δn) ∈ �(α,β) be such that θE

n = γ θn and
δE

n = γ δn for all n ∈N. Then, by [13, Proposition 4.9], we have

(
θE

n ∗E
α,β δE

n
)
(λ) =

(
γ θn ∗E

α,β γ δn
)
(λ) = γ (θn ∗α,β δn)(λ) ∈ �

(α,β)
E

as �(α,β) is a delta sequence and θn ∗α,β δn ∈ �(α,β). The proofs of (iii)–(vi) follow from [13,
Proposition 4.9] and the fact that β

(α,β)
1 is a Boehmian space. Hence we omit the details.

The proof of this theorem is therefore finished. �

For every (Fn) ∈ L1
E(R, �dα,βx) and (δE

n ) ∈ �
(α,β)
E , the pair of sequences (Fn, δE

n ) (or Fn
δE

n
) is said

to be a quotient of sequences in β
(α,β)
2 if Fn ∗E

α,β δE
m = Fm ∗E

α,β δE
n , for all n, m ∈N. Hence, we

may easily check that
F∗E

α,βδE
n

δE
n

, Fn
δE

n ∗E
α,β F

=
Fn∗E

α,β F

δE
n

,
Fn∗E

α,βδE
n +Gn∗E

α,βδE
n

δE
n ∗α,βθE

n

Fn
δE

n ∗E
α,β Gn

and =
Fn∗E

α,β Gn

δE
n

when
Fn
δE

n
and Gn

θE
n

are quotients of sequences and F ∈ L1
E(R, �dα,βx). Moreover, the quotients Fn

δE
n

and
Gn
θE

n
are said to be equivalent if Fn ∗E

α,β θE
m = Gm ∗E

α,β δE
n for every n, m ∈ N. The equivalent

class of quotients of sequences containing Fn
δE

n
is the Boehmian W̆ = ( Fn

δE
n

). The space of

such Boehmians is denoted β
(α,β)
2 . For W̆ = ( Fn

δE
n

) and Z̆ = ( Gn
θE

n
) in β

(α,β)
2 , addition and scalar

multiplication are, respectively, defined as W̆ + Z̆ = (
Fn∗E

α,βδE
n +Gn∗E

α,βδE
n

δE
n ∗E

α,βθE
n

) and βW̆ = ( βFn
δE

n
), β ∈

C. Moreover, we have W̆ ∗E
α,β F = (

Fn∗E
α,β F

δE
n

) for F ∈ L1
E(R, �dα,βx).

δE-convergence: In β
(α,β)
2 , (W̆n) is δE-convergent to W̆ , denoted by δE – limn→∞ W̆n = W̆ ,

provided there can be found a delta sequence (δE
n ) such that

(i)
(
W̆n ∗E

α,β δE
k
)
,
(
W̆ ∗E

α,β δE
k
)

in L1
E(R, �dα,βx), for all n, k ∈N,

(ii) lim
n→∞ W̆n ∗E

α,β δk = W̆ ∗α,β δk in L1
E(R, �dα,βx), for every k ∈N.

�
(α,β)
E -convergent: In β

(α,β)
2 , (W̆n) is �

(α,β)
E -convergent to W̆ , denoted by

�
(α,β)
E -limn→∞ W̆n = W̆ , provided there can be found a delta sequence (δE

n ) such that

(i) (W̆n – W̆ ) ∗E
α,β δE

n ∈ L1
E(R, �dα,βx) (∀n ∈N),

(ii) lim
n→∞(W̆n – W̆ ) ∗E

α,β δE
n = 0 in L1

E(R, �dα,βx).
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Theorem 14 Let (�n) ∈ �
(α,β)
E , �n = γψn for some fixed (ψn) ∈ �(α,β) and W ∈

L1
E(R, �dα,βx) where W = γψ ,ψ ∈ L1(R, �dα,βx), then we have the mapping

W → W̆ , (13)

where W̆ = (
W∗E

α,β�n
�n

) is an injective mapping from L1
E(R, �dα,βx) into β

(α,β)
2 .

Hence, from Theorem 14, it can be seen that the space L1
E(R, �dα,βx) may be identified as

a subspace of β
(α,β)
2 . This, indeed, leads to the following results.

Theorem 15 Let (�n) ∈ �
(α,β)
E . If Wn → W in L1

E(R, �dα,βx) as n → ∞, then, for all k ∈ N,

Wn ∗E
α,β �k → W ∗E

α,β �k

as n → ∞. That is, W̆n → W̆ in β
(α,β)
2 as n → ∞.

Theorem 16 The mapping W → W̆ defined by (13) is a continuous embedding of
L1

E(R, �dα,βx) into the space β
(α,β)
2 .

3 The generalized Opdam–Cherednik transform
This section discusses a pair of generalized Opdam–Cherednik operators and derive some
general properties. Based on the structure of the Boehmian spaces β

(α,β)
1 and β

(α,β)
2 and the

convolution theorem we present the following definition.

Definition 17 The generalized Opdam–Cherednik integral operator of a Boehmian w̆ in
β

(α,β)
1 is the Boehmian W̆ in β

(α,β)
2 defined by

γEw̆ = W̆ , (14)

where w̆ = ( fn
δn

), fn ∈ L1(R, �dα,βx), δn ∈ �(α,β),∀n ∈N, and W̆ = ( γ fn
γ δn

).

Theorem 18 Let w̆ = ( fn
δn

) be a Boehmian in β
(α,β)
1 . Then the mapping w̆ → W̆ , defined by

W̆ = γEw̆, coincides with the corresponding mapping γ : L1(R, �dα,βx) → L1
E(R, �dα,βx).

Proof Let w ∈ L1(R, �dα,βx), then w̆ = ( w∗α,βδn
δn

) is the identification of w in β
(α,β)
1 . On the

other hand, (14) and [13, Proposition 4.9] reveal that the Boehmian

W̆ = γEw̆ =
(

γ (w ∗α,β δn)
γ (δn)

)
=

(
W�n

�n

)
=

(W ∗E
α,β �n

�n

)

can be identified with W ∈ L1
E(R, �dα,βx) in β

(α,β)
1 provided �n = γ (δn) and W = γ w.

The proof is therefore finished. �

We state without proof the following characterization theorem.

Theorem 19 Let w̆ = ( fn
δn

) and W̆ = γEw̆. Then the mapping w̆ → W̆ is linear, bijective
and continuous with respect to the convergence of the Boehmian spaces. The proof of this
theorem is analogous to the proofs given in the literature (see, e.g., [22–25]). Hence, it has
been omitted.
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We introduce the inverse integral operator of the operator γE as the Boehmian in β
(α,β)
1

defined by follows.

Definition 20 Let W̆ ∈ β
(α,β)
2 , where W̆ = γEw̆, w̆ = ( fn

δn
), (fn) ∈ L1(R, �dα,βx) and (δn) ∈

�(α,β). We define the inverse γE operator of W̆ as

(γE)–1W̆ = w̆.

Theorem 21 The inverse operator w̆ → W̆ is linear.

Proof Let W̆ and X̆ be the Boehmians in β
(α,β)
2 such that W̆ = γEw̆ and X̆ = γEx̆ where

w̆ = ( ψn
δn

), x̆ = ( xn
εn

). Then, for all n ∈ N [13, Proposition 4.9], the linearity of the integral
leads to

W̆ + X̆ =
(

γψn ∗E
α,β γ εn + γ xn ∗E

α,β γ εn

γ δn ∗E
α,β γ εn

)
=

(
γ (ψn ∗α,β εn + xn ∗α,β δn)

γ (δn ∗α,β εn)

)
.

Hence, employing Definition 20 yields

(γE)–1(W̆ + X̆) =
(

ψn ∗α,β εn + xn ∗α,β δn

δn ∗α,β εn

)
.

Notion of addition in β
(α,β)
1 reveals (γE)–1(W̆ + X̆) = w̆ + x̆. To complete the proof of the

theorem, we, indeed, have to mention that, for some η ∈C and all n ∈ N, we have

(γE)–1(ηW̆ ) = ηw̆.

This finishes the proof of the theorem. �

Theorem 22 Let W̆ ∈ β
(α,β)
2 , W̆ = γEw̆, w̆ = ( ψn

εn
) and X ∈ L1

E(R, �dα,βx), X = γ x,
x ∈ L1(R, �dα,βx). Then we have (γE)–1(W̆ ∗E

α,β X) = w̆ ∗α,β x.

Proof Assume W̆ ∈ β
(α,β)
2 where W̆ = γEw̆, w̆ = ( ψn

εn
). Hence, we have

(γE)–1(W̆ ∗E
α,β X

)
=

(
γψn ∗E

α,β γ x
�εn

)
.

Upon using [13, Proposition 4.9] and Definition 20, we obtain

(γE)–1(W̆ ∗E
α,β X

)
= (γE)–1

(
γ (ψn ∗α,β x)

γ εn

)
=

(
ψn

εn
∗α,β x

)
= w̆ ∗α,β x.

The proof of this theorem is, therefore, finished. �

Theorem 23 Let W̆ ∈ β
(α,β)
2 , W̆ = γEw̆, w̆ = ( ψn

δn
) and X ∈ L1

E(R, �dα,βx), X = γ x, x ∈
L1(R, �dα,βx). Then we have γE(w̆ ∗α,β x) = W̆ ∗E

α,β X.

The proof of this theorem is analogous to the proof of Theorem 22. Details are, therefore,
omitted.
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Theorem 24 Let W̆ ∈ β
(α,β)
2 , W̆ = γEw̆, w̆ = ( fn

δn
), then W̆ is in the range of γE iff γ fn is in

the range of γ , for (fn) ∈ L1(R, �dα,βx) and (δn) ∈ �(α,β).

Proof Let W̆ be in the range of γE , W̆ = γEw̆, w̆ = ( fn
δn

), fn ∈ L1(R, �dα,βx) and δn ∈ �(α,β), for
all n ∈N. Then it is clear that fn is in the range of γ for all n ∈ N. On the other hand, if W̆ is
in the range of γE , then W̆ = γEw̆, w̆ = ( fn

δn
), fn ∈ L1(R, �dα,βx), δn ∈ �(α,β),∀n ∈ N. Therefore,

the equivalence relation in β
(α,β)
2 leads to

γ fn ∗E
α,β γ δm = γ fm ∗E

α,β γ δn.

Therefore, [13, Proposition 4.9] states that γ (fn ∗α,β δm) = γ (fm ∗α,β δn). Hence, it follows
that fn ∗α,β δm = fm ∗α,β δn. That is, fn

δn
is a quotient of sequences and the equivalence class

( fn
δn

) = w̆ containing fn
δn

is the Boehmian in β
(α,β)
1 satisfying γEw̆ = W̆ .

This finishes the proof of the theorem. �

4 Conclusion
This paper has demonstrated the possibility of extending the Opdam–Cherednik integral
operator into a class of generalized functions. It proposes sets of delta sequences and con-
volution products and investigates the classes of Boehmians. Moreover, this paper consid-
ers a generalization of the Opdam–Cherednik integral operator and its inversion formula
on the constructed spaces of Boehmians. Furthermore, it derives various properties of the
new pair of generalized Opdam–Cherednik integral operators in a generalized context.
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