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Abstract
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1 Introduction
The objective of this paper is to give an extension of know results on generalized Verma–
Jain polynomials [13] and the Hahn polynomials [1, 6, 12, 30]. Here, we will give and prove

generating functions for the q-polynomials ω
(a,b,c

d,e )
n (x, y, z|q), ζ (a,b,c

d,e )
n (x, y, z|q), and several q-

identities by using the q-difference equations and the fractional q-integrals. In this article,
we begin our investigation by reviewing some definitions as in [33] with 0 < q < 1. The
basic hypergeometric function r�s is defined in [16, 25] (see also for details [24, Chap. 3]
and [32, p. 347, Eq. (272)]):

r�s

[
a1, a2, . . . , ar;
b1, b2, . . . , bs;

q; z

]
=

∞∑
n=0

(a1, a2, . . . , ar; q)n

(q, b1, b2, . . . , bs; q)n

[
(–1)nq(n

2)
]1+s–rzn. (1.1)

For all z if r ≤ s and for |z| < 1 if r = s+ 1, the basic hypergeometric function converges ab-
solutely. (See [31] for some recent applications of the basic hypergeometric function.) For
any real or complex parameter x, the q-shifted factorials of r�s are defined, respectively,
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by

(x; q)0 = 1, (x; q)n =
n–1∏
k=0

(
1 – xqk), n ≥ 1, x ∈C (1.2)

and

(x; q)∞ =
∞∏

k=0

(
1 – xqk). (1.3)

For m ∈ {1, 2, 3, . . .}, the product of several q-shifted factorials are given by

(x1, x2, . . . , xm; q)n = (x1; q)n(x2; q)n . . . (xm; q)n,

(x1, x2, . . . , xm; q)∞ = (x1; q)∞(x2; q)∞ . . . (xm; q)∞.

Taking x = aq–n, a �= qn in (1.2), we have the following relation:

(
aq–n; q

)
n =

(aq–n; q)∞
(a; q)∞

= (q/a; q)n(–a)nq–n–( n
2 ). (1.4)

The q-binomial coefficient is defined as [16]

[
n
k

]
q

=
(q–n; q)k

(q; q)k
(–1)kqnk–( k

2 ), 0 ≤ k ≤ n. (1.5)

Chen et al. [15] introduced the homogeneous q-difference operator Dxy, Saad and Sukhi
[23] introduced the dual homogeneous q-difference operator θxy as

Dxy
{

f (x, y)
}

:=
f (x, q–1y) – f (qx, y)

x – q–1y
, θxy

{
f (x, y)

}
:=

f (q–1x, y) – f (x, qy)
q–1x – y

. (1.6)

Al-Salam and Carlitz [2, Eqs. (1.11) and (1.15)] have introduced the following polyno-
mials:

φ(a)
n (x|q) =

n∑
k=0

[
n
k

]
q

(a; q)kxk and ψ (a)
n (x|q) =

n∑
k=0

[
n
k

]
q

qk(k–n)(aq1–k ; q
)

kxk . (1.7)

Since then, these polynomials are called “Al-Salam–Carlitz polynomials” by many au-
thors. Because of their considerable role in the theories of q-series and q-orthogonal poly-
nomials, many authors investigated an extension of the Al-Salam–Carlitz polynomials (see
[7, 12, 28, 35]).

Recently, Cao [7, Eq. (4.7)] has introduced two families of generalized Al-Salam–Carlitz
polynomials,

φ(a,b,c)
n (x, y|q) =

n∑
k=0

[
n
k

]
q

(a, b; q)k

(c; q)k
xkyn–k , (1.8)
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ψ (a,b,c)
n (x, y|q) =

n∑
k=0

[
n
k

]
q

(–1)kq(k+1
2 )–nk(a, b; q)k

(c; q)k
xkyn–k , (1.9)

together with the following generating functions [7, Eqs. (4.10) and (4.11)]:

∞∑
n=0

φ(a,b,c)
n (x, y|q)

tn

(q; q)n
=

1
(xt; q)∞

2�1

[
a, b;

c;
q; yt

] (
max

{|yt|, |xt|} < 1
)
, (1.10)

∞∑
n=0

ψ (a,b,c)
n (x, y|q)

(–1)nq(n
2)tn

(q; q)n
= (xt; q)∞2�1

[
a, b;

c;
q; yt

] (|xt| < 1
)
. (1.11)

Motivated by the work of Cao [7], the authors [12] introduced a new extension of the

Al-Salam–Carlitz polynomials φ
(a,b,c

d,e )
n (x, y|q), ψ(a,b,c

d,e )
n (x, y|q),

φ
(a,b,c

d,e )
n (x, y|q) =

n∑
k=0

[
n
k

]
q

(a, b, c; q)k

(d, e; q)k
xn–kyk , (1.12)

ψ
(a,b,c

d,e )
n (x, y|q) =

n∑
k=0

[
n
k

]
q

(–1)kqk(k–n)(a, b, c; q)k

(d, e; q)k
xn–kyk , (1.13)

and obtained the following results.

Proposition 1 ([12, Theorem 4]) Let f (a, b, c, d, e, x, y) be a seven-variable analytic func-
tion in a neighborhood of (a, b, c, d, e, x, y) = (0, 0, 0, 0, 0, 0, 0) ∈C

7.

(I) f (a, b, c, d, e, x, y) can be expanded in terms of φ
(a,b,c

d,e )
n (x, y|q) if and only if

x
{

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, x, yq)

– (d + e)q–1[f (a, b, c, d, e, x, yq) – f
(
a, b, c, d, e, x, yq2)]

+ deq–2[f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, x, yq3)]}

= y
{[

f (a, b, c, d, e, x, y) – f (a, b, c, d, e, xq, y)
]

– (a + b + c)
[
f (a, b, c, d, e, x, yq) – f (a, b, c, d, e, xq, yq)

]
+ (ab + ac + bc)

[
f
(
a, b, c, d, e, x, yq2) – f

(
a, b, c, d, e, xq, yq2)]

– abc
[
f
(
a, b, c, d, e, x, yq3) – f

(
a, b, c, d, e, xq, yq3)]}. (1.14)

(II) f (a, b, c, d, e, x, y) can be expanded in terms of ψ
(a,b,c

d,e )
n (x, y|q) if and only if

x
{

f (a, b, c, d, e, xq, y) – f (a, b, c, d, e, xq, yq)

– (d + e)q–1[f (a, b, c, d, e, xq, yq) – f
(
a, b, c, d, e, xq, yq2)]

+ deq–2[f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, xq, yq3)]}

= y
{[

f (a, b, c, d, e, xq, yq) – f (a, b, c, d, e, x, yq)
]

– (a + b + c)
[
f
(
a, b, c, d, e, xq, yq2) – f

(
a, b, c, d, e, x, yq2)]

+ (ab + ac + bc)
[
f
(
a, b, c, d, e, xq, yq3) – f

(
a, b, c, d, e, x, yq3)]
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– abc
[
f
(
a, b, c, d, e, xq, yq4) – f

(
a, b, c, d, e, x, yq4)]}. (1.15)

Subsequently, Cao et al. [13], gave another extension of Al-Salam–Carlitz polynomials
called “generalized Verma–Jain polynomials”,

ω
(a,b,c

d,e )
n (x, y, z|q) =

n∑
k=0

[
n
k

]
q

(a, b, c; q)k

(d, e; q)k
Pn–k(x, y)zk , (1.16)

μ
(a,b,c

d,e )
n (x, y, z|q) =

n∑
k=0

[
n
k

]
q

(a, b, c; q)k

(d, e; q)k
Pn–k(y, x)zk , (1.17)

where

Pn(x, y) = (x – y)(x – qy)...
(
x – qn–1y

)
= (y/x; q)nxn (1.18)

are the Cauchy polynomials.

Remark 2 Upon setting (y, z) = (0, y), the polynomial (1.16) reduces to (1.12).

Motivated by the recent work of Cao [7], Cao et al. [12, 13] and with the aid of the

polynomials (1.17), we introduce the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q).

Definition 3 The q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q) are defined by

ζ
(a,b,c

d,e )
n (x, y, z|q) =

n∑
k=0

[
n
k

]
q

q(k
2)(a, b, c; q)k

(d, e; q)k
Pn–k(y, x)zk . (1.19)

Remark 4 The q-polynomials (1.19) can be viewed as a general form of the Hahn polyno-
mials.

(1) Taking r = s = 3, a = (a, b, c) and b = (d, e, 0) in [29, Definition 1], the q-polynomials
(1.19) is a special case of the generalized q-hypergeometric polynomials
�

(a,b)
n (x, y, z|q), i.e.,

ζ
(a,b,c

d,e )
n (x, y, z|q) = (–1)nq( n

2 )� (a,b)
n (x, y, z|q).

(2) Upon setting (y, z) = (0, y), the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q) defined in (1.19)

reduce to the polynomials ψ
(a,b,c

d,e )
n (x, y, z|q) [12],

ζ
(a,b,c

d,e )
n (x, 0, y|q) = (–1)nq–(n

2)ψ
(a,b,c

d,e )
n (x, y|q).

(3) For b = c = d = e = 0 and z = –b, the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q) reduce to the

generalized Hahn polynomials hn(x, y, a, b|q) [30],

ζ
(a,0,0

0,0 )
n (x, y, –b|q) = hn(x, y, a, b|q).
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(4) Setting a = b = c = d = e = 0 and z = –z, the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q) reduce to

the trivariate q-polynomials Fn(x, y, z; q) [1],

ζ
(0,0,0

0,0 )
n (x, y, –z|q) = (–1)nq(n

2)Fn(x, y, z; q).

(5) If we let a = b = c = d = e = 0, y = ax and z = –y, the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q)

reduce to ψ
(a)
n (x, y|q) [6],

ζ
(0,0,0

0,0 )
n (x, ax, –y|q) = (–1)nq(n

2)ψ (a)
n (x, y|q).

(6) For b = c = d = e = 0, x = 0, y = x and z = –y, the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q)

reduce to the polynomials Pn(x, y, a) [3],

ζ
(a,0,0

0,0 )
n (0, x, –y|q) = Pn(x, y, a).

(7) Also, a = b = c = d = e = 0, y = ax and z = –1, the q-polynomials ζ
(a,b,c

d,e )
n (x, y, z|q)

reduce to Hahn polynomials ψ
(a)
n (x|q) [2],

ζ
(0,0,0

0,0 )
n (x, ax, –1|q) = (–1)nq(n

2)ψ (a)
n (x|q).

The paper is organized as follows. In Sect. 2, we give and prove our main results to be
used in the sequel. In Sect. 3, we obtain generating function for q-polynomials. In Sect. 4,
we obtain the Srivastava–Agarwal type generating function for q-hypergeometric poly-
nomials. In Sect. 5, we deduce mixed generating functions for the Rajković–Marinković–
Stanković polynomials. In Sect. 6, we derive U(n + 1) generalizations of the generating
functions for q-hypergeometric polynomials.

2 Proof of main results
In this section, we will give and prove our main results to be used in the sequel.

Theorem 5 Let f (a, b, c, d, e, x, y, z) be an eight-variable analytic function in a neighbor-
hood of (a, b, c, d, e, x, y, z) = (0, 0, 0, 0, 0, 0, 0, 0) ∈C

8.

(I) If f (a, b, c, d, e, x, y, z) can be expanded in terms of ω
(a,b,c

d,e )
n (x, y, z|q) if and only if

(
x – q–1y

){[
f (a, b, c, d, e, x, y, z) – f (a, b, c, d, e, x, y, qz)

]
– (d + e)q–1[f (a, b, c, d, e, x, y, qz) – f

(
a, b, c, d, e, x, y, q2z

)]
+ deq–2[f

(
a, b, c, d, e, x, y, q2z

)
– f

(
a, b, c, d, e, x, y, q3z

)]}
= z

{[
f
(
a, b, c, d, e, x, q–1y, z

)
– f (a, b, c, , d, e, qx, y, z)

]
– (a + b + c)

[
f
(
a, b, c, d, e, x, q–1y, qz

)
– f (a, b, c, d, e, qx, y, qz)

]
+ (ab + ac + bc)

[
f
(
a, b, c, d, e, x, q–1y, q2z

)
– f

(
a, b, c, d, e, qx, y, q2z

)]
– abc

[
f
(
a, b, c, d, e, x, q–1y, q3z

)
– f

(
a, b, c, d, e, qx, y, q3z

)]}
. (2.1)
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(II) If f (a, b, c, d, e, x, y, z) can be expanded in terms of ζ
(a,b,c

d,e )
n (x, y, z|q) if and only if

(
q–1x – y

){[
f (a, b, c, d, e, x, y, z) – f (a, b, c, d, e, x, y, qz)

]
– (d + e)q–1[f (a, b, c, d, e, x, y, qz) – f

(
a, b, c, d, e, x, y, q2z

)]
+ deq–2[f

(
a, b, c, d, e, x, y, q2z

)
– f

(
a, b, c, d, e, x, y, q3z

)]}
= z

{[
f (a, b, c, d, e, x, qy, qz) – f

(
a, b, c, d, e, q–1x, y, qz

)]
– (a + b + c)

[
f
(
a, b, c, d, e, x, qy, q2z

)
– f

(
a, b, c, d, e, q–1x, y, q2z

)]
+ (ab + ac + bc)

[
f
(
a, b, c, d, e, x, qy, q3z

)
– f

(
a, b, c, d, e, q–1x, y, q3z

)]
– abc

[
f
(
a, b, c, d, e, x, qy, q4z

)
– f

(
a, b, c, d, e, q–1x, y, q4z

)]}
. (2.2)

Remark 6 For (y, z) = (0, y), Eq. (2.1) reduces to (1.14).

To prove Theorem 5, we need the following lemmas.

Lemma 7 ([17, Hartogs theorem]) If a complex-valued function is holomorphic (analytic)
in each variable separately in an open domain D ∈ C

n, then it is holomorphic (analytic)
in D.

Lemma 8 ([20, Proposition 1]) If f (x1, x2, . . . , xk) is analytic at the origin (0, 0, . . . , 0) ∈ C
k ,

then f can be expanded in an absolutely convergent power series,

f (x1, x2, . . . , xk) =
∞∑

n1,n2,...,nk =0

αn1,n2,...,nk xn1
1 xn2

2 ...xnk
k .

Proof of Theorem 5 (I) From Lemmas 7 and 8, we assume that there exists a sequence {An}
such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

An(a, b, c, d, e, x, y)zn. (2.3)

First, substituting (2.3) into Eq. (2.1), we have

(
x – q–1y

) ∞∑
n=0

[
1 – qn – (d + e)qn–1 + (d + e)q2n–1 + deq2n–2 – deq3n–2]

× An(a, b, c, d, e, x, y)zn

=
∞∑

n=0

[
1 – (a + b + c)qn + (ab + bc + ac)q2n – abcq3n]

× [
An

(
a, b, c, d, e, x, q–1y

)
– An(a, b, c, d, e, qx, y)

]
zn+1,

which is equal to

(
x – q–1y

) ∞∑
n=0

(
1 – qn)(1 – dqn–1)(1 – eqn–1)An(a, b, c, d, e, x, y)zn
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=
∞∑

n=0

(
1 – aqn)(1 – bqn)(1 – cqn)

× [
An

(
a, b, c, d, e, x, q–1y

)
– An(a, b, c, d, e, qx, y)

]
zn+1. (2.4)

Comparing coefficients of znn ≥ 1, on both sides of Eq. (2.4), we readily find that

(
x – q–1y

)(
1 – qn)(1 – dqn–1)(1 – eqn–1)An(a, b, c, d, e, x, y)

=
(
1 – aqn–1)(1 – bqn–1)(1 – cqn–1)
× [

An–1
(
a, b, c, d, e, x, q–1y

)
– An–1(a, b, c, d, e, qx, y)

]
,

which is equivalent to

An(a, b, c, d, e, x, y) =
(1 – aqn–1)(1 – bqn–1)(1 – cqn–1)

(1 – qn)(1 – dqn–1)(1 – eqn–1)
DxyAn–1(a, b, c, d, e, x, y).

By iteration, we obtain

An(a, b, c, d, e, x, y) =
(a, b, c; q)n

(q, d, e; q)n
Dn

xy
{

A0(a, b, c, d, e, x, y)
}

. (2.5)

Taking f (a, b, c, d, e, x, y, 0) = A0(a, b, c, d, e, x, y) =
∑∞

n=0 βnPn(x, y) yields

Ak(a, b, c, d, e, x, y) =
(a, b, c; q)k

(q, d, e; q)k
·

∞∑
n=0

βn
(q; q)n

(q; q)n–k
Pn–k(x, y), (2.6)

and we have

f (a, b, c, d, e, x, y, z) =
∞∑

k=0

(a, b, c; q)k

(q, d, e; q)k

∞∑
n=0

βn
(q; q)n

(q; q)n–k
Pn–k(x, y)zk

=
∞∑

n=0

βn

∞∑
k=0

[
n
k

]
q

(a, b, c; q)k

(d, e; q)k
Pn–k(x, y)zk

=
∞∑

n=0

βnω
(a,b,c

d,e )
n (x, y, z|q).

Second, if f (a, b, c, d, e, x, y, z) can be expanded in terms of ω
(a,b,c

d,e )
n (x, y, z|q), we can verify

that it satisfies (2.1).
In almost the same way, we assume that there exists a sequence {Bn} such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

Bn(a, b, c, d, e, x, y)zn. (2.7)

Now, substituting Eq. (2.7) into Eq. (2.2), we have

(
q–1x – y

) ∞∑
n=0

[
1 – qn – (d + e)qn–1 + (d + e)q2n–1 + deq2n–2 – deq3n–2]
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× Bn(a, b, c, d, e, x, y)zn

=
∞∑

n=0

[
qn – (a + b + c)q2n + (ab + bc + ac)q3n – abcq4n]

× [
Bn(a, b, c, d, e, x, qy) – Bn

(
a, b, c, d, e, q–1x, y

)]
zn+1,

which is equal to

(
q–1x – y

) ∞∑
n=0

(
1 – qn)(1 – dqn–1)(1 – eqn–1)Bn(a, b, c, d, e, x, y)zn

=
∞∑

n=0

qn(1 – aqn)(1 – bqn)(1 – cqn)

× [
Bn(a, b, c, d, e, x, qy) – Bn

(
a, b, c, d, e, q–1x, y

)]
zn+1. (2.8)

Comparing coefficients of znn ≥ 1, on both sides of Eq. (2.8), we readily find that

(
q–1x – y

)(
1 – qn)(1 – dqn–1)(1 – eqn–1)Bn(a, b, c, d, e, x, y)

= qn–1(1 – aqn–1)(1 – bqn–1)(1 – cqn–1)
× [

Bn–1(a, b, c, d, e, x, qy) – Bn–1
(
a, b, c, d, e, q–1x, y

)]
,

which is equivalent to

Bn(a, b, c, d, e, x, y) = –qn–1 (1 – aqn–1)(1 – bqn–1)(1 – cqn–1)
(1 – qn)(1 – dqn–1)(1 – eqn–1)

θxyBn–1(a, b, c, d, e, x, y).

By iteration, we obtain

Bn(a, b, c, d, e, x, y) =
(–1)nq(n

2)(a, b, c; q)n

(q, d, e; q)n
θn

xy
{

B0(a, b, c, d, e, x, y)
}

. (2.9)

Upon setting f (a, b, c, d, e, x, y, 0) = B0(a, b, c, d, e, x, y) =
∑∞

n=0 βnPn(y, x),

Bk(a, b, c, d, e, x, y) =
q(k

2)(a, b, c; q)k

(q, d, e; q)k
·

∞∑
n=0

βn
(q; q)n

(q; q)n–k
Pn–k(y, x), (2.10)

we have

f (a, b, c, d, e, x, y, z) =
∞∑

k=0

q(k
2)(a, b, c; q)k

(q, d, e; q)k

∞∑
n=0

βn
(q; q)n

(q; q)n–k
Pn–k(x, y)zk

=
∞∑

n=0

βn

∞∑
k=0

[
n
k

]
q

q(k
2)(a, b, c; q)k

(d, e; q)k
Pn–k(x, y)zk

=
∞∑

n=0

βnζ
(a,b,c

d,e )
n (x, y, z|q).
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Finally, if f (a, b, c, d, e, x, y, z) can be written in terms of ζ
(a,b,c

d,e )
n (x, y, z|q), we can verify that

f (a, b, c, d, e, x, y, z) satisfies (2.2). The proof of Theorem 5 is complete. �

3 Generating function for new generalized q-polynomials
In this section, our aim is to give and prove the generating functions for q-polynomials by
means of the q-difference equations.

Theorem 9 It is asserted that

∞∑
n=0

ω
(a,b,c

d,e )
n (x, y, z|q)

tn

(q; q)n
=

(yt; q)∞
(xt; q)∞

3�2

[
a, b, c;

d, e;
q; zt

] (
max

{|xt|, |zt|} < 1
)

(3.1)

and

∞∑
n=0

ζ
(a,b,c

d,e )
n (x, y, z|q)

tn

(q; q)n
=

(xt; q)∞
(yt; q)∞

3�3

[
a, b, c;
0, d, e;

q; –zt

] (|yt| < 1
)
. (3.2)

Remark 10 Equations (3.1) and (3.2) reduce to Eqs. (1.10) and (1.11), respectively, when
c = e = y = 0 in Theorem 9.

Proof of Theorem 9 We denote the right-hand side of Eq. (3.1) by f (a, b, c, d, e, x, y, z). One
can verify that f (a, b, c, d, e, x, y, z) satisfies (2.1). So, there exists a sequence {βn}, such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

βnω
(a,b,c

d,e )
n (x, y, z|q). (3.3)

Upon setting z = 0 in Eq. (3.3) and then using the obvious fact ω
(a,b,c

d,e )
n (x, y, 0|q) = Pn(x, y),

we have

f (a, b, c, d, e, x, y, 0) =
∞∑

n=0

βnPn(x, y) =
(yt; q)∞
(xt; q)∞

=
∞∑

n=0

Pn(x, y)
tn

(q; q)n
.

So, the function f (a, b, c, d, e, x, y, z) is equivalent to

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

tn

(q; q)n
ω

(a,b,c
d,e )

n (x, y, z|q),

which equals the right-hand side of Eq. (3.1). Similarly, we prove Eq. (3.2).
The proof of Theorem 9 is complete. �

4 Srivastava–Agarwal type generating function for q-hypergeometric
polynomials

We recall that the following Srivastava–Agarwal type generating functions for the Al-
Salam–Carlitz polynomials. See also [10, 19] for some recent work on generating func-
tions.
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Proposition 11 ([27, Eq. (3.20)] and [5, Eq. (5.4)]) We have

∞∑
n=0

φ(α)
n (z|q)

(λ; q)ntn

(q; q)n
=

(λt; q)∞
(t; q)∞

2�1

[
λ,α;
λt;

q; zt

] (
max

{|t|, |xt|} < 1
)

(4.1)

and

∞∑
n=0

ψ (α)
n (x|q)(1/λ; q)n

(λtq)n

(q; q)n
=

(xtq; q)∞
(λxtq; q)∞

2�1

[
1/λ, 1/(αx);

1/(λxt);
q;αq

]

(
max

{|λxtq|, |αq|} < 1
)
. (4.2)

In this section, we state and prove the Srivastava–Agarwal type bilinear generating
functions for q-hypergeometric polynomials by the method of homogeneous q-difference
equations.

Theorem 12 It is asserted that

∞∑
n=0

φ(α)
n (x|q)ω(a,b,c

d,e )
n (u, v, z|q)

tn

(q; q)n

=
(vt,αx; q)∞
(ut, x; q)∞

∞∑
k=0

(ut,α; q)kqk

(q/x, vt, q; q)k
3�2

[
a, b, c;

d, e;
q; ztqk

]

(
max

{|ut|, |zt|, |x|} < 1
)

(4.3)

and

∞∑
n=0

ψ (α)
n (x|q)ζ (a,b,c

d,e )
n (u, v, z|q)

tn

(q; q)n

=
(q/x, uxtq; q)∞
(αq, vxtq; q)∞

×
∞∑

n=0

(–1)nq( n
2 )(1/(αx), 1/(uxt); q)n

(q/x, 1/(vxt), q; q)n

(
αuq

v

)n

3�3

[
a, b, c;
0, d, e;

q; –zxtq1–n

]

(
max

{|αq|, |vxt|} < 1
)
. (4.4)

Remark 13 For c = e = 0, b = d and y = 0, x = 1 in Theorem 12, Eq. (4.3) reduces to (4.1)

To prove Theorem 12, the following proposition is necessary.

Proposition 14 ([4, Theorem 5.2] and [16, Eq. (III.4)]) We have

2�1

[
a, b;

c;
q; z

]
=

(abz/c; q)∞
(az/c; q)∞

3�2

[
b, c/a, 0;

qc/(az), c;
q; q

]
(4.5)

and

2�1

[
a, b;

c;
q; z

]
=

(bz; q)∞
(z; q)∞

2�2

[
b, c/a;
bz, c;

q; az

]
. (4.6)
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Proof of Theorem 12 If we use f (a, b, c, d, e, x, y, z) to denote the right-hand side of (4.3),
we calculate that f (a, b, c, d, e, x, y, z) satisfies (2.1). Thus, there exists a sequence {an} inde-
pendent of x, y and z such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

anω
(a,b,c

d,e )
n (u, v, z|q). (4.7)

Letting z = 0 in Eq. (4.7) and utilizing the obvious fact ω
(a,b,c

d,e )
n (u, v, 0|q) = Pn(u, v), we have

f (a, b, c, d, e, u, v, 0) =
∞∑

n=0

anPn(u, v) =
(vt,αx; q)∞
(ut, x; q)∞

∞∑
k=0

(ut,α; q)kqk

(q/x, vt, q; q)k

=
(vt,αx; q)∞
(ut, x; q)∞

3�2

[
ut,α, 0;
q/x, vt;

q; q

]
by (4.5)

=
(vt; q)∞
(ut; q)∞

2�1

[
v/u,α;

vt;
q; xut

]

=
∞∑

n=0

φ(α)
n (x)Pn(u, v)

tn

(q; q)n
.

Hence

f (a, b, c, d, e, u, v, z) =
∞∑

n=0

φ(α)
n (x)ω(a,b,c

d,e )
n (u, v, z|q)

tn

(q; q)n
,

which is equal to the left-hand side of (4.3).
Similarly, if we use f (a, b, c, d, e, x, y, z) to denote the right-hand side of (4.4), we test that

g(a, b, c, d, e, x, y, z) satisfies (2.2). Thus, there exists a sequence {bn} independent of x, y and
z such that

g(a, b, c, d, e, u, v, z) =
∞∑

n=0

bnζ
(a,b,c

d,e )
n (u, v, z|q). (4.8)

Setting z = 0 in Eq. (4.8), using the obvious fact ζ
(a,b,c

d,e )
n (u, v, 0|q) = Pn(v, u), we have

g(a, b, c, d, e, u, v, 0)

=
∞∑

n=0

bnPn(v, u) =
(q/x, uxtq; q)∞
(αq, vxtq; q)∞

∞∑
n=0

(–1)nq( n
2 )(1/(αx), 1/(uxt); q)n

(q/x, 1/(vxt), q; q)n

(
αuq

v

)n

=
(q/x, uxtq; q)∞
(αq, vxtq; q)∞

2�2

[
1/(αx), 1/(uxt);

q/x, 1/(vxt);
q;

αuq
v

]
by (4.6)

=
(uxtq; q)∞
(vxtq; q)∞

2�2

[
u/v, 1/(αx);

1/(vxt);
q;αq

]

=
∞∑

n=0

ψ (α)
n (x|q)Pn(v, u)

(qt)n

(q; q)n
.
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Hence

g(a, b, c, d, e, u, v, z) =
∞∑

n=0

ψ (α)
n (x)ζ (a,b,c

d,e )
n (u, v, z|q)

(qt)n

(q; q)n
,

which is equal to the left-hand side of (2.2). This completes the proof of Theorem 12. �

Theorem 15 For s ∈N, we have

∞∑
n=0

ω
(a,b,c

d,e )
n+s (x, y, z|q)

tn

(q; q)n
=

(yt; q)∞
ts(xt; q)∞

s∑
k=0

(q–s, xt; q)kqk

(q; yt; q)k
3�2

[
a, b, c;

d, e;
q; ztqk

]

(
max

{|xt|, |zt|} < 1
)

(4.9)

and

∞∑
n=0

ζ
(a,b,c

d,e )
n+s (x, y, z|q)

tn

(q; q)n
=

(xt; q)∞
ts(yt; q)∞

s∑
k=0

(q–s, yt; q)kqk

(q; xt; q)k
3�3

[
a, b, c;
d, e, 0;

q; –ztqk

]

(|yt| < 1
)
. (4.10)

Corollary 16 ([35, Eq. (2.1)]) For s ∈N and max{|z|, |xz|, |b|} < 1, we have

∞∑
n=0

�n+s(x; a, b|q)
zn

(q; q)n
=

(b, axz, bzqs; q)∞
(z, xz, bqs; q)∞

3�2

[
q–s, a, x;

axz, q1–s/b;
q;

qx
b

]
. (4.11)

Remark 17 For c = e = 0, b = d and x = 1 in Theorem 15, Eq. (4.9) reduces to (4.11).

To prove Theorem 15, we need the following lemma.

Lemma 18 ([16, Eq. (II.6)]) The q-Chu–Vandermonde formula is given by

2�1

[
q–n, a;

c;
q; q

]
=

(c/a; q)n

(c; q)n
an (

n ∈N0 := N∪ {0}). (4.12)

Proof of Theorem 15 If we denote the right-hand side of Eq. (4.9) equivalently by

f (a, b, c, d, e, x, y, z) = t–s
s∑

k=0

(q–s; q)kqk

(q; q)k

(ytqk ; q)∞
(xtqk ; q)∞

3�2

[
a, b, c;

d, e;
q; ztqk

]
,

we test that f (a, b, c, d, e, x, y, z) satisfies Eq. (2.1). Thus, there exists a sequence {αn} inde-
pendent of x, y and z such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

αnω
(a,b,c

d,e )
n (x, y, z|q).
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We set z = 0 in the above equation, using the notable fact ω
(a,b,c

d,e )
n (x, y, 0|q) = Pn(x, y), we

have

f (a, b, c, d, e, x, y, 0) =
∞∑

n=0

βnPn(x, y) =
(yt; q)∞

ts(xt; q)∞
2�1

[
q–s, xt;

yt;
q; q

]
by (4.12)

=
(ytqs; q)∞Ps(x, y)

(xt; q)∞
=

∞∑
n=0

Pn+s(x, y)
tn

(q; q)n
=

∞∑
n=s

Pn(x, y)
tn–s

(q; q)n–s
.

We immediately conclude that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

ω
(a,b,c

d,e )
n (x, y, z|q)

tn–s

(q; q)n–s
=

∞∑
n=0

ω
(a,b,c

d,e )
n+s (x, y, z|q)

tn

(q; q)n
,

which is equal to the left-hand side of (4.9).
Similarly, we get (4.10). This completes the proof of Theorem 15. �

5 Some new mixed generating functions for the
Rajković–Marinković–Stanković polynomials

In this section, we give and prove the mixed generating functions for the Rajković–
Marinković–Stanković polynomials.

Let a and b be two real numbers, the Thomae–Jackson q-integral is defined as [16, 18,
34]

∫ b

a
f (x) dqx = (1 – q)

∞∑
n=0

[
bf

(
bqn) – af

(
aqn)]qn. (5.1)

Assume that α ∈ R
+ and 0 < a < x < 1, the generalized Riemann–Liouville fractional q-

integral operator is defined by [22] (see [11])

(
Iα

q,af
)
(x) =

xα–1


q(α)

∫ x

a
(qt/x; q)α–1f (t) dqt. (5.2)

Due to the q-integral (5.1), we rewrite fractional q-integral (5.2) equivalently as follows
(see [9, 11, 14]):

(
Iα

q,af
)
(x) =

xα–1(1 – q)

q(α)

∞∑
n=0

[
x
(
qn+1; q

)
α–1f

(
xqn) – a

(
aqn+1/x; q

)
α–1f

(
aqn)]qn. (5.3)

Recall that the Rajković–Marinković–Stanković polynomials are defined [22] (see [8, 11])
by

Pn(α, a, x|q) = Iα
q,a

{
xn} =

∞∑
k=0

[
n
k

]
q

[k]q!an–k


q(α + k + 1)
xα+k(a/x; q)α+k , (5.4)

where α ∈ R
∗ and 0 < a < x < 1.

We have the following lemmas.
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Lemma 19 ([8, Lemma 10]) For α ∈R
+, 0 < a < x < 1, we have

∞∑
n=0

Pn(α, a, x|q)
wn

(q; q)n
=

(1 – q)α

(aw; q)∞

∞∑
k=0

xα+k(a/x; q)α+kwk

(q; q)α+k
. (5.5)

Lemma 20 ([8, Theorem 3]) For α ∈R
+, 0 < a < x < 1 and if max{|at|, |az|} < 1, we have

Iα
q,a

{
(bxz, tx; q)∞
(xs, xz; q)∞

}

=
(1 – q)α(abz, at; q)∞

(as, az; q)∞

∞∑
k=0

xα+k(a/x; q)α+k

ak(q; q)α+k
3�2

[
q–k , as, az;

at, abz;
q; q

]
. (5.6)

Remark 21 Upon taking z = 0 in (5.6) and by the means of the q-Chu–Vandermonde for-
mula (4.12), we obtain

Iα
q,a

{
(xt; q)∞
(xs; q)∞

}
=

(1 – q)α(at; q)∞
(as; q)∞

∞∑
k=0

xα+k(a/x; q)α+k

(q; q)α+k

(t/s; q)ksk

(at; q)k
, |as| < 1. (5.7)

Using Lemma 20 and the theory of q-difference equations, we are able to deduce the
following new mixed generating functions for the Rajković–Marinković–Stanković poly-
nomials.

Theorem 22 For α ∈ R
+, 0 < a < x < 1, and max{|aws|, |awt|} < 1, we have

∞∑
n=0

Pn(α, a, x|q)ω
(

a1,b1,c1
d1,e1 )

n (s, t, r|q)
wn

(q; q)n

=
(1 – q)α(awt; q)∞

(aws; q)∞

∞∑
n=0

(a1, b1, c1, awt; q)n(r/s)n

(q, d1, e1, t/s; q)n

n∑
k=0

(q–n, aws; q)kqk

(q, awt; q)k

×
∞∑

m=0

xα+m(a/x; q)α+m

am(q; q)α+m
3�2

[
q–m, awsqk , awtqn;

awt, awtqk ;
q; q

]
(5.8)

and

∞∑
n=0

Pn(α, a, x|q)ζ
(

a1,b1,c1
d1,e1 )

n (s, t, r|q)
wn

(q; q)n

=
(1 – q)α(aws; q)∞

(awt; q)∞

∞∑
n=0

q(n
2)(a1, b1, c1, aws; q)n(r/t)n

(q, d1, e1, s/t; q)n

n∑
k=0

(q–n, awt; q)kqk

(q, aws; q)k

×
∞∑

m=0

xα+m(a/x; q)α+m

am(q; q)α+m
3�2

[
q–m, awtqk , awsqn;

aws, awsqk ;
q; q

]
. (5.9)

Proof of Theorem 22 The LHS of Eq. (5.8) is equal to

Iα
q,a

{ ∞∑
n=0

ω
(

a1,b1,c1
d1,e1 )

n (s, t, r|q)
(xw)n

(q; q)n

}
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= Iα
q,a

{
(xwt; q)∞
xws; q∞

3�2

[
a1, b1, c1;

d1, e1;
q; rxw

]}

= Iα
q,a

{
(xwt; q)∞
xws; q∞

∞∑
n=0

(a1, b1, c1; q)n

(q, d1, e1; q)n
(rw)nxn

}

= Iα
q,a

{
(xwt; q)∞
xws; q∞

∞∑
n=0

(a1, b1, c1; q)n(rw)n

(q, d1, e1; q)n

(xwt; q)n

(t/s; q)n(ws)n

n∑
k=0

(q–n, xws; q)k

(q, xwt; q)k
qk

}

= Iα
q,a

{ ∞∑
n=0

(a1, b1, c1; q)n

(q, d1, e1; q)n
(r/s)n (xwt; q)n

(t/s; q)n

n∑
k=0

(xwtqk ; q)∞(q–n; q)k

(xwsqk ; q)∞(q; q)k
qk

}

=
∞∑

n=0

(a1, b1, c1; q)n

(q, d1, e1; q)n

(r/s)n

(t/s; q)n

n∑
k=0

(q–n; q)kqk

(q; q)k
Iα

q,a

{
(xwt, xwtqk ; q)∞

(xwtqn, xwsqk ; q)∞

}

=
(1 – q)α(awt; q)∞

(aws; q)∞

∞∑
n=0

(a1, b1, c1, awt; q)n(r/s)n

(q, d1, e1, t/s; q)n

n∑
k=0

(q–n, aws; q)kqk

(q, awt; q)k

×
∞∑

m=0

xα+m(a/x; q)α+m

am(q; q)α+m
3�2

[
q–m, awsqk , awtqn;

awt, awtqk ;
q; q

]
,

which equals the RHS of Eq. (5.8) after using (5.6). Similarly, we get (5.9). This completes
the proof of Theorem 22. �

Remark 23 For (t, r) = (0, 0) in Theorem 22, we get (5.5).

6 The U(n + 1) generalizations of generating functions for q-hypergeometric
polynomials

Lemma 24 ([21, Theorem 5.42]) Let b, z and x1, . . . , xn be indeterminate, and let n ≥ 1.
Suppose that none of the denominators in the following identity vanishes, 0 < |q| < 1 and
|z| < |x1, . . . , xn||xm|–n|q|(n–1)/2, for m = 1, 2, . . . , n. Then we have

∑
yk≥0

k=1,2,...,n

{ ∏
1≤r<s≤n

[1 – xr
xs

qyr–ys )
1 – xr

xs

] n∏
r,s=1

(
q

xr

xs
; q

)–1

yr

n∏
i=1

(xi)nyi–(y1+···+yn)(–1)(n–1)(y1+···+yn)

× qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)(b; q)y1+···+yn zy1+···+yn

}

=
(bz; q)∞
(z; q)∞

, (6.1)

where e2(y1, . . . , yn) is the second elementary symmetric function of {y1, . . . , yn}.

In this part, using the method of homogeneous q-difference equations, we derive the
following U(n + 1) type generating functions for q-hypergeometric polynomials.

Theorem 25 Let b, z, x1, . . . xn, n ≥ 1 be indeterminate. Suppose that none of the denom-
inators in the following identity vanishes, and that 0 < |q| < 1, and |z| < |x1, . . . , xn| ×
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|xm|–n|q|(n–1)/2, for m = 1, 2, . . . , n. Then we have the following:

∑
yk≥0

k=1,2,...,n

{ ∏
1≤r<s≤n

[1 – xr
xs

qyr–ys )
1 – xr

xs

] n∏
r,s=1

(
q

xr

xs
; q

)–1

yr

n∏
i=1

(xi)nyi–(y1+···+yn)(–1)(n–1)(y1+···+yn)

× qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)ω
(a,b,c

d,e )
s+y1+···+yn (x, y, z|q)ty1+···+yn

}

=
(yt; q)∞

ts(xt; q)∞

s∑
k=0

(q–s, xt; q)kqk

(q, yt; q)k
3�2

[
a, b, c;

d, e;
q; ztqk

]
, (6.2)

where a = q–M and |xt| < 1.

Remark 26 Setting n = 1 in Theorem 25, the assertion (6.2) reduces to (4.9).

Proof of Theorem 25 Upon taking (b, z) = (yqs/x, xt) in Eq. (6.1), we obtain

∑
yk≥0

k=1,2,...,n

{ ∏
1≤r<s≤n

[1 – xr
xs

qyr–ys )
1 – xr

xs

] n∏
r,s=1

(
q

xr

xs
; q

)–1

yr

n∏
i=1

(xi)nyi–(y1+···+yn)(–1)(n–1)(y1+···+yn)

× qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)Ps+y1+···+yn

(
x, yqs)ty1+···+yn

}

=
(ytqs; q)∞
(xt; q)∞

. (6.3)

If we use f (a, b, c, d, e, x, y, z) to denote the left-hand side of Eq. (6.2), we can verify that
f (a, b, c, d, e, x, y, z) satisfies Eq. (2.1). There exists a sequence {βn} such that

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

βnω
(a,b,c

d,e )
n (x, y, z|q). (6.4)

Setting z = 0 in Eq. (6.4) and then, using the obvious fact ω
(a,b,c

d,e )
n (x, y, 0|q) = Pn(x, y), we have

f (a, b, c, d, e, x, y, 0)

=
∞∑

n=0

βnPn(x, y)

=
∑
yk≥0

k=1,2,...,n

{ ∏
1≤r<s≤n

[1 – xr
xs

qyr–ys )
1 – xr

xs

] n∏
r,s=1

(
q

xr

xs
; q

)–1

yr

n∏
i=1

(xi)nyi–(y1+···+yn)(–1)(n–1)(y1+···+yn)

× qy2+2y3+···+(n–1)yn+(n–1)[(y1
2 )+···+(yn

2 )]–e2(y1,...,yn)Ps+y1+···+yn

(
x, yqs)ty1+···+yn

}

=
Ps(x, y)(ytqs; q)∞

(xt; q)∞

=
∞∑

n=0

Ps+n(x, y)
tn

(q; q)n
.
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Hence

f (a, b, c, d, e, x, y, z) =
∞∑

n=0

ω
(a,b,c

d,e )
n (x, y, z|q)

tn–s

(q; q)n–s
,

which is equal to the right-hand side of (6.2) by (4.9). The proof of Theorem 25 is com-
plete. �

We remark in passing that, in a recently-published survey-cum-expository review ar-
ticle, the so-called (p, q)-calculus was exposed to be a rather trivial and inconsequential
variation of the classical q-calculus, the additional parameter p being redundant or super-
fluous (see, for details, [26, p. 340]).
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