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Abstract
The aim of this paper is to study the complete and incomplete degenerate Bell
polynomials, which are degenerate versions of the complete and incomplete Bell
polynomials, and to derive some properties and identities for those polynomials. In
particular, we introduce some new polynomials associated with the incomplete
degenerate Bell polynomials. In fact, they are the coefficients of the reciprocal of the
power series given by 1 plus the one appearing as the exponent of the generating
function of the complete degenerate Bell polynomials.
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1 Introduction
In recent years, we have seen that studying degenerate versions of many special polynomi-
als and numbers, which was initiated in [2] by Carlitz, yielded very fruitful and interesting
results. Especially, it is amusing to note that these studies are not just restricted to poly-
nomials but also include transcendental functions like gamma functions.

The aim of this paper is to further study the complete and incomplete degenerate Bell
polynomials (see (10), (12)) which are degenerate versions of the complete and incomplete
Bell polynomials. In more detail, we deduce recurrence relations for them. As a corollary,
we get a recurrence relation for the degenerate Stirling numbers of the second kind. We
consider the problem of finding the reciprocal power series of the invertible formal power
series which is equal to 1 plus the power series appearing as the exponent of the generating
function of the complete degenerate Bell polynomials in (10). This leads us to introduce
the new polynomials Tn,λ(a1, a2, . . . , an) (see (21)) that are associated with the incomplete
degenerate Bell polynomials. As a corollary, this gives us an expression for the reciprocal
of the degenerate exponential function eλ(at). In addition, we obtain some identities re-
garding the degenerate Stirling numbers. For the rest of this section, we recall the facts
that are needed throughout this paper.
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For any λ ∈R, it is known that the degenerate exponential function is defined as

ex
λ(t) =

∞∑

n=0

(x)n,λ

n!
tn (see [2, 6, 8, 12, 14]), (1)

where (x)0,λ = 1, (x)n,λ = x(x – λ) · · · (x – (n – 1)λ), (n ≥ 1).
In particular, for x = 1, we write eλ(t) = e1

λ(t).
In [10], the degenerate Bell polynomials are given by

ex(eλ(t)–1) =
∞∑

n=0

Beln,λ(x)
tn

n!
. (2)

When x = 1, Beln,λ = Beln,λ(1) are called the degenerate Bell numbers. When λ = 1, the
falling factorial sequence is given by (x)0 = 1, (x)n = (x)n,1 = x(x – 1) · · · (x – n + 1), (n ≥ 1).

It is well known that the Stirling numbers of the first kind are defined by

(x)n =
n∑

l=0

S1(n, l)xl (n ≥ 0) (see [1, 5, 15]). (3)

As the inversion formula of (3), the Stirling numbers of the second kind are defined as

xn =
n∑

l=0

S2(n, l)(x)l (n ≥ 0) (see [3, 9, 12, 15]). (4)

Recently, the degenerate Stirling numbers of the first kind were given by

(x)n =
n∑

l=0

S1,λ(n, l)(x)l,λ (n ≥ 0) (see [9, 15]). (5)

As the inversion formula of (5), the degenerate Stirling numbers of the second kind are
defined by

(x)n,λ =
n∑

l=0

S2,λ(n, l)(x)l (n ≥ 0) (see [6, 7]). (6)

Here we recall that the degenerate Stirling numbers of the first kind and those of the sec-
ond kind satisfy the orthogonality relations. Namely, they are related by the following:

n∑

l=0

S2(n, l)S1(l, k) = δn,k ,
n∑

l=0

S1(n, l)S2(l, k) = δn,k , (7)

where δn,k is Kronecker’s delta.
As is well known, the complete Bell polynomials are defined by

exp

( ∞∑

i=1

xi
ti

i!

)
=

∞∑

n=0

Bn(x1, x2, . . . , xn)
tn

n!
, (8)



Kim et al. Advances in Difference Equations        (2021) 2021:326 Page 3 of 10

where Bn(1, 1, . . . , 1) = Beln, (n ≥ 0), are the ordinary Bell numbers given by

eet–1 =
∞∑

n=0

Beln
tn

n!
(see [3, 4]).

For k ≥ 0, the incomplete Bell polynomials are given by

1
k!

( ∞∑

i=1

xi
ti

i!

)k

=
∞∑

n=k

Bn,k(x1, x2, . . . , xn–k+1)
tn

n!
, (9)

where

Bn,k(x1, x2, . . . , xn–k+1)

=
∑

l1+···+ln–k+1=k
l1+2l2+···+(n–k+1)ln–k+1=n

n!
l1!l2! · · · ln–k+1!

(
x1

1!

)l1(x2

2!

)l2
· · ·

(
xn–k+1

(n – k + 1)!

)ln–k+1

,

Bn,k(1, 1, . . . , 1) = S2(n, k) (n ≥ k ≥ 0) (see [3, 4]).

In [10], the complete degenerate Bell polynomials are constructed by

exp

( ∞∑

i=1

(1)i,λxi
ti

i!

)
=

∞∑

n=0

B(λ)
n (x1, x2, . . . , xn)

tn

n!
, (10)

where

B(λ)
n (x1, x2, . . . , xn) =

∑

l1+2l2+···+nln=n

n!
l1!l2! · · · ln!

(
(1)1,λx1

1!

)l1( (1)2,λx2

2!

)l2
· · ·

(
(1)n,λxn

n!

)ln
.

Note that

B(λ)
n (1, 1, . . . , 1) = Beln,λ (n ≥ 0) (see [7, 9–11]). (11)

In the light of (9), the incomplete degenerate Bell polynomials are given by

1
k!

( ∞∑

i=1

(1)i,λxi
ti

i!

)k

=
∞∑

n=k

B(λ)
n,k(x1, x2, . . . , xn–k+1)

tn

n!
, (12)

where

B(λ)
n,k(x1, x2, . . . , xn–k+1)

=
∑

l1+···+ln–k+1=k
l1+2l2+···+(n–k+1)ln–k+1=n

n!
l1!l2! · · · (ln–k+1)!

×
(

(1)1,λx1

1!

)l1( (1)2,λx2

2!

)l2
· · ·

(
(1)n–k+1,λxn–k+1

(n – k + 1)!

)ln–k+1

,
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and

B(λ)
0,0(x1, x2, . . . , xn+1) = 1, B(λ)

n,0(x1, x2, . . . , xn+1) = 0 (n ∈N) (see [11, 13]).

From (12), we note that

B(λ)
n,k(1, 1, . . . , 1) = S2,λ(n, k) (n, k ≥ 0) (see [11, 13]). (13)

Now, we observe that

∞∑

n=0

B(λ)
n (x1, x2, . . . , xn)

tn

n!
= exp

( ∞∑

i=1

(1)i,λxi
ti

i!

)
(14)

=
∞∑

k=0

1
k!

( ∞∑

i=1

(1)i,λxi
ti

i!

)k

=
∞∑

k=0

∞∑

n=k

B(λ)
n,k(x1, . . . , xn–k+1)

tn

n!

=
∞∑

n=0

( n∑

k=0

B(λ)
n,k(x1, x2, . . . , xn–k+1)

)
tn

n!
.

By comparing the coefficients on both sides of (14), we get

B(λ)
n (x1, x2, . . . , xn) =

n∑

k=0

B(λ)
n,k(x1, x2, . . . , xn–k+1) (n ≥ 0) (see [9, 11, 13]). (15)

2 Complete and incomplete degenerate Bell polynomials
From (10), we note that

exp

( ∞∑

i=1

(1)i,λxi
ti

i!

)
=

∞∑

n=0

B(λ)
n (x1, x2, . . . , xn)

tn

n!

= 1 +
∞∑

n=1

B(λ)
n (x1, x2, . . . , xn)

tn

n!
.

(16)

Taking the derivative with respect to t on both sides of (16), we have

∞∑

i=1

(1)i,λxi
ti–1

(i – 1)!
exp

( ∞∑

i=1

(1)i,λxi
ti

i!

)
=

∞∑

n=1

B(λ)
n (x1, x2, . . . , xn)

tn–1

(n – 1)!

=
∞∑

n=0

B(λ)
n+1(x1, x2, . . . , xn+1)

tn

n!
.

(17)

On the other hand,

∞∑

i=1

(1)i,λxi
ti–1

(i – 1)!
exp

( ∞∑

i=1

(1)i,λxi
ti

i!

)
(18)
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=
∞∑

i=0

(1)i+1,λxi+1
ti

i!

∞∑

l=0

B(λ)
l (x1, x2, . . . , xl)

tl

l!

=
∞∑

n=0

( n∑

i=0

(
n
i

)
(1)i+1,λxi+1B(λ)

n–i(x1, x2, . . . , xn–i)

)
tn

n!
.

Therefore, by (17) and (18), we obtain the following theorem.

Theorem 1 For n ≥ 0, we have

B(λ)
n+1(x1, x2, . . . , xn+1) =

n∑

i=0

(
n
i

)
(1)i+1,λxi+1B(λ)

n–i(x1, x2, . . . , xn–i).

For k, n ∈ Z with n ≥ k ≥ 1, taking the derivative with respect to t on both sides of (12),
we get

∞∑

n=k

B(λ)
n,k(x1, . . . , xn–k+1)

tn–1

(n – 1)!

=
1

(k – 1)!

( ∞∑

i=0

(1)i,λxi
ti

i!

)k–1 ∞∑

i=1

(1)i,λxi
ti–1

(i – 1)!
(19)

=
∞∑

l=k–1

B(λ)
l,k–1(x1, . . . , xl–k+2)

tl

l!

∞∑

i=1

(1)i,λxi
ti–1

(i – 1)!

=
∞∑

n=k

n–k+1∑

i=1

(
n – 1
i – 1

)
(1)i,λxiB(λ)

n–i,k–1(x1, . . . , xn–i–k+2)
tn–1

(n – 1)!

=
∞∑

n=k

n–k∑

i=0

(
n – 1

i

)
(1)i+1,λxi+1B(λ)

n–1–i,k–1(x1, . . . , xn–i–k+1)
tn–1

(n – 1)!
.

Therefore, by comparing the coefficients on both sides of (19), we obtain the following
theorem.

Theorem 2 For k, n ∈ Z with n ≥ k ≥ 1, we have

B(λ)
n,k(x1, x2, . . . , xn–k+1) =

n–k∑

i=0

(
n – 1

i

)
(1)i+1,λxi+1B(λ)

n–1–i,k–1(x1, x2, . . . , xn–i–k+1).

Recalling (13), we obtain the following corollary.

Corollary 3 For n, k ∈ Z with n ≥ k ≥ 1, we have

S2,λ(n, k) =
n–k∑

i=0

(
n – 1

i

)
(1)i+1,λS2,λ(n – 1 – i, k – 1).

We need the following lemma for the next result, which is stated without proof in [3,
p. 136].
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Lemma 4 For n, k ∈ Z with n ≥ k ≥ 1, we have

B(λ)
n,k(x1, x2, . . . , xn–k+1) =

1
k

n–1∑

l=k–1

(
n
l

)
(1)n–l,λxn–lB(λ)

l,k–1(x1, . . . , xl–k+2)

=
1
k

n–k∑

l=0

(
n

l + 1

)
(1)l+1,λxl+1B(λ)

n–l–1,k–1(x1, . . . , xn–l–k+1).

Proof From (12), we see that

∞∑

n=k

B(λ)
n,k(x1, . . . , xn–k+1)

tn

n!
=

1
k

1
(k – 1)!

( ∞∑

i=1

(1)i,λxi
ti

i!

)k–1 ∞∑

i=1

(1)i,λxi
ti

i!

=
1
k

∞∑

l=k–1

B(λ)
l,k–1(x1, . . . , xl–k+2)

tl

l!

∞∑

i=1

(1)i,λxi
ti

i!
,

from which the first identity follows.
The second identity is deduced from the first by replacing l by n – 1 – l. �

For a given formal power series
∑∞

l=0(1)l,λal
tl

l! , with a0 = 1, we want to determine the
reciprocal power series

∑∞
m=0(1)m,λbm

tm

m! satisfying
∑∞

l=0(1)l,λal
tl

l!
∑∞

m=0(1)m,λbm
tm

m! = 1.

Theorem 5 Assume
∑∞

l=0(1)l,λal
tl

l!
∑∞

m=0(1)m,λbm
tm

m! = 1, with a0 = 1. Then we have

(1)0,λb0 = 1,

(1)n,λbn =
n∑

k=1

B(λ)
n,k(a1, . . . , an–k+1)(–1)kk! (n ≥ 1). (20)

In other words, we have

1

1 + a1(1)1,λ
t
1! + a2(1)2,λ

t2
2! + a3(1)3,λ

t3
3! + · · · =

∞∑

n=0

Tn,λ(a1, a2, . . . , an)
tn

n!
,

where the new polynomials Tn,λ(a1, a2, . . . , an) (n ≥ 0), associated with the incomplete de-
generate Bell polynomials, are defined by

Tn,λ(a1, a2, . . . , an) =
n∑

k=1

B(λ)
n,k(a1, a2, . . . , an–k+1)(–1)kk! (n ≥ 1), (21)

T0,λ(a1, a2, . . . , an) = 1.

Proof We observe first that 1 =
∑∞

n=0(
∑n

l=0
(n

l
)
(1)l,λal(1)n–l,λbn–l) tn

n! . Thus we have

(1)0,λb0 = 1,
n∑

l=0

(
n
l

)
(1)l,λal(1)n–l,λbn–l = 0 (n ≥ 1). (22)
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We show the identity in (20) by induction on n ≥ 1. From (22), we note that

(1)n,λbn = –
n∑

l=1

(
n
l

)
(1)l,λal(1)n–l,λbn–l. (23)

If n = 1, we note from (23) that (1)1,λb1 = –(1)1,λa1 =
∑1

k=1 B(λ)
1,k(a1)(–1)kk!.

Assume that n > 1 and that (20) holds for all positive integers smaller than n. From (23)
and Lemma 4, we have

(1)n,λbn = –
n∑

l=1

(
n
l

)
(1)l,λal(1)n–l,λbn–l

= –
n–1∑

l=1

(
n
l

)
(1)l,λal

n–l∑

k=1

B(λ)
n–l,k(a1, . . . , an–l–k+1)(–1)kk! – (1)n,λan

= –
n–1∑

k=1

(–1)kk!
n–k∑

l=1

(
n
l

)
(1)l,λalB(λ)

n–l,k(a1, . . . , an–l–k+1) – (1)n,λan

= –
n∑

k=1

(–1)k–1(k – 1)!
n–k∑

l=0

(
n

l + 1

)
(1)l+1,λal+1B(λ)

n–l–1,k–1(a1, . . . , an–l–k+1)

=
n∑

k=1

(–1)kk!
1
k

n–k∑

l=0

(
n

l + 1

)
(1)l+1,λal+1B(λ)

n–l–1,k–1(a1, . . . , an–l–k+1)

=
n∑

k=1

(–1)kk!B(λ)
n,k(a1, . . . , an–k+1). �

Letting ai = ai for all integers i ≥ 0, we obtain the following corollary.

Corollary 6 The following identity holds true:

1
eλ(at)

=
∞∑

k=0

Tk,λ
(
a1, a2, . . . , ak) tk

k!

= 1 +
∞∑

k=1

( k∑

l=1

B(λ)
k,l

(
a1, a2, . . . , ak–l+1)(–1)ll!

)
tk

k!
.

From (6), we can easily derive the following equation:

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0). (24)

Now, we observe that

e–λ(t) – 1 = e–1
λ (–t) – 1 =

1
eλ(–t)

(
1 – eλ(–t)

)

=
1 – eλ(–t)

1 – (1 – eλ(–t))
=

∞∑

k=1

(
1 – eλ(–t)

)k (25)



Kim et al. Advances in Difference Equations        (2021) 2021:326 Page 8 of 10

=
∞∑

k=1

(–1)k(eλ(–t) – 1
)k =

∞∑

k=1

(–1)kk!
1
k!

(
eλ(–t) – 1

)k

=
∞∑

k=1

(–1)kk!
∞∑

n=k

S2,λ(n, k)(–1)n tn

n!

=
∞∑

n=1

( n∑

k=1

(–1)kk!(–1)nS2,λ(n, k)

)
tn

n!
.

On the other hand

e–λ(t) – 1 =
∞∑

n=0

(1)n,–λ

tn

n!
– 1 =

∞∑

n=1

(1)n,–λ

tn

n!
. (26)

From (25) and (26), we note that

n∑

k=1

(–1)n–kk!S2,λ(n, k) = (1)n,–λ (n ≥ 1). (27)

The rising λ-factorial sequence is defined by

〈x〉0,λ = 1, 〈x〉n,λ = x(x + λ)(x + 2λ) · · · (x + (n – 1)λ
)

(n ≥ 1), (see [7]). (28)

Therefore, by (27) and (28), we obtain the following theorem, the second of which follows
from the orthogonality relations in (7) for the degenerate Stirling numbers.

Theorem 7 For n ∈N, we have

n∑

k=1

(–1)n–kk!S2,λ(n, k) = 〈1〉n,λ,
n∑

k=1

(–1)n–k〈1〉k,λS1,λ(n, k) = n!.

Note that

Tn,λ(1, 1, . . . , 1) =
n∑

k=1

B(λ)
n,k(1, 1, . . . , 1)(–1)kk!

=
n∑

k=1

S2,λ(n, k)(–1)kk! (29)

= (–1)n
n∑

k=1

S2,λ(n, k)(–1)n–kk!

= (–1)n〈1〉n,λ (n ≥ 1).

Therefore, by (29), we obtain the following corollary.

Corollary 8 For n ∈N, we have

Tn,λ(1, 1, . . . , 1) = (–1)n〈1〉n,λ.
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3 Conclusion
In recent years, we have seen that degenerate versions of many special polynomials and
numbers were investigated by means of various different tools like generating functions,
combinatorial methods, umbral calculus techniques, probability theory, p-adic analysis,
special functions, analytic number theory and differential equations. Studying them has
been rewarding; yielding many interesting results not only in combinatorics and number
theory but also in probability, differential equations and symmetric identities. Moreover,
they have potential applications in engineering and the sciences.

In this paper, we studied the complete and incomplete degenerate Bell polynomials
which are degenerate versions of the complete and incomplete Bell polynomials and ob-
tained some identities and properties as to such polynomials. Above all, we considered the
problem of finding the reciprocal power series of the invertible formal power series which
is equal to 1 plus the power series appearing as the exponent of the generating function of
the complete degenerate Bell polynomials. This led us to introduce the new polynomials
Tn,λ(a1, a2, . . . , an) that are associated with the incomplete degenerate Bell polynomials.
As a corollary, this gave us an expression for the reciprocal of the degenerate exponential
function eλ(at).

It is one of our future projects to continue to explore various degenerate versions of some
special polynomials and numbers and to find many applications in mathematics, science
and engineering.
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