
Li et al. Advances in Difference Equations        (2021) 2021:488 
https://doi.org/10.1186/s13662-021-03466-x

R E V I E W Open Access

Dynamics model analysis of bacteriophage
infection of bacteria
Xiaoping Li1, Rong Huang2 and Minyuan He1*

*Correspondence:
hmy0735@126.com
1College of Mathematics and
Finance, Xiangnan University,
Hunan, P.R. China
Full list of author information is
available at the end of the article

Abstract
A bacteriophage (in short, phage) is a virus that can infect and replicate within
bacteria. Assuming that uninfected and infected bacteria are capable of reproducing
with logistic law, we investigate a model of bacteriophage infection that resembles
simple SI-models widely used in epidemiology. The dynamics of host-parasite
co-extinctions may exhibit four scenarios: hosts and parasites go extinct, parasites go
extinct, hosts go extinct, and hosts and parasites coexist. By using the Jacobian matrix
and Bendixson–Dulac theory, local and global stability analysis of uninfected and
infected steady states is provided; the basic reproduction number of the model is
given; general results are supported by numerical simulations. We show that
bacteriophages can reduce a host density. This provides a theoretical framework for
studying the problem of whether phages can effectively prevent, control, and treat
infectious diseases.
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1 Introduction
A bacteriophage (in short, phage) is a virus that can infect and replicate within bacte-
ria. Bacteriophages were discovered by Frederick Twort in 1915 [1] and Felix d’Herelle in
1917 [2]. Bacteriophages consist of a core of genetic material (nucleic acid) surrounded
by a protein capsid. Usually a phage follows one of two life cycles: lytic (virulent) or lyso-
genic (temperate). When lytic phages infect bacteria, they attach their tails to the bacterial
surface and then inject DNA from their heads into the bacteria. The DNA that enters the
bacteria, being biosynthesised of the raw material of the host bacteria, causes prolifera-
tion of new daughter phages. Reaching a certain amount, these phages give rise to bacterial
cells bursting, after which they can multiply rapidly and form hundreds of daughter phage
particles. Lysogenic phages incorporate their nucleic acid into the chromosome of the host
cell and replicate with it as a unit without destroying the cell. Under certain conditions,
lysogenic phages can be induced for which a lytic cycle takes place. Each daughter phage
can infect another bacterial cell, and the process is repeated over and over again, so that
the phages can kill many cells. It has long been noted that phage therapy can be used to
treat pathogenic bacterial infections. In particular, phage therapy has been widely used in
livestock and poultry breeding (see [3, 4]), aquaculture (see [5]), food production (see [6]),
and other fields (see [7, 8]). Also, phage therapy proved itself as an important tool in the
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treatment of human diseases such as diarrheal diseases caused by e. coli, shigella or vibrio,
and wound infections caused by skin facultative pathogens (for example, staphylococcus
and streptococcus). In recent years, phage therapy has also been used for systemic and
even intracellular infections. It has been 100 years since the discovery of phage, and the
research on phage has never stopped. With the emergence of antibiotics, phage therapy
was gradually ignored. However, the widespread antibiotic resistance of bacteria in recent
years has made the research on bacteriophages a hot spot. To which extent phages can
replace antibiotics as a new treatment for bacterial infections is still under debate, and
probably it will take some time for them to appear in clinical trials. However, finding a
theoretical basis for studying the relationship between phage and bacteria is a problem of
great importance and formidable complexity. This paper attempts to model the dynamic
stability of phage infected bacteria, to discuss the relationship between phage and bacteria,
and to provide some theoretical basis for whether phages can effectively prevent, control,
and treat infectious diseases.

Phages can be thought of as organisms that prey on bacteria, or parasites that host bac-
teria. To the best of our knowledge, there are many dynamics models of viral infection in
host cells (see [9–20] and the references therein). For example, in [11], Ebert et al. con-
sidered a model of microparasite transmission for a horizontally transmitted parasite and
established the host-born density-dependent cabin model by ignoring the possibility of
host recovery. The model equations are

⎧
⎨

⎩

ẋ = r(x + fy)[1 – c(x + y)] – μx – βxy,

ẏ = βxy – (μ + ν)y,
(1)

where x, y are the densities of uninfected (susceptible) and infected (infective) hosts at
time t, respectively; r is the maximum per capita birth rate of uninfected hosts; f is the
relative fecundity of infected hosts; c measures the per capita density-dependent reduction
in birth rate; μ is the parasite-independent host background mortality; β is the infection
rate constant; and ν is the parasite-induced excess death rate.

This model predicts the existence of a stable equilibrium of infected and uninfected
hosts, and the population is predicted to approach this equilibrium either monotonically
or by damped oscillations.

In this paper, we modify Ebert’s model by assuming that infected hosts (bacteria) are
capable of reproducing with logistic law, and investigate a class of parasites (phages) in-
fection models. The model is given by the following system of differential equations:

⎧
⎨

⎩

Ṡ = r1S(1 – S+I
M ) – d1S – βSI,

İ = βSI + r2I(1 – S+I
M ) – (d1 + ε)I.

(2)

Here, r1, r2 are the proliferation constants of uninfected and infected hosts, M is the en-
vironmental tolerance of a host population, d1 stands for the phage-independent bac-
teria background mortality, β is the proportionality coefficient of parasite infection, ε

denotes the phage-induced excess death rate. In this model, we assume that the total
hosts population N is composed of two population classes: the first one consists of un-
infected hosts (denoted S), while the second one consists of the virus infected hosts (de-
noted I). Thus, N(t) = S(t) + I(t). We make the following assumption: both uninfected
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and infected hosts are capable of reproducing with logistic law, and the logistic growth
of the uninfected bacteria and infected bacteria is given by r1S(t)[1 – (S(t) + I(t))/M] and
r2I(t)[1 – (S(t) + I(t))/M], respectively.

To establish our results, the existence and number of steady states, as well as local sta-
bility and global stability of uninfected and infected steady states, are analyzed by the Ja-
cobian matrix and Bendixson–Dulac theory. Under certain assumptions (reasonable from
the biological viewpoint), we derive the basic reproduction number R0: E1 is locally asymp-
totically stable if R0 < 1, and E1 is unstable if R0 > 1. Our theoretical discoveries are sup-
ported by numerical simulations.

At present, there is not much work on mathematical modeling of phage infection bac-
teria, so our study has certain significance. In particular, the parasite (phage) population
is not explicitly modeled in this model, which is a striking feature of this model.

The organization of this paper is as follows. In Sect. 2, we discuss the positively invariant
set and equilibria. In Sect. 3, we give local and global stability analysis. In Sect. 4, we derive
the basic reproduction number. Then, in Sect. 5, we give numerical simulations to support
our main result. Section 6 ends the paper with a discussion about phage therapy that could
be a new savior for patients infected with superbugs.

2 Positively invariant set and equilibria
To begin with, let us find a positively invariant set with respect to (2). Adding the equations
in (2), one obtains

Ṡ + İ ≤ r1S
(

1 –
S + I

M

)

+ r2I
(

1 –
S + I

M

)

– d1S – (d1 + ε)I

≤ r(S + I)
(

1 –
S + I

M

)

– d1(S + I),

where r = max{r1, r2}. Clearly,

lim
t→∞ sup

{
S(t) + I(t)

} ≤ N ,

where N = N is the positive root of the quadratic equation (r – d1)N – r
M N2 = 0. Hence,

the bounded set

� =
{

(S, I) ∈ R2
+ : S + I ≤ N

}
(3)

is positively invariant with respect to (2).
Next, we will study equilibria of system (2) (i.e. zeros of the right-hand side of (2)). It is

easy to verify that system (2) admits one vanishing equilibrium and two boundary equi-
libria. More precisely, the following statement (its proof is straightforward) is true.

Proposition 2.1 Assume that d2 = d1 + ε, 0 < di < ri < 1, i = 1, 2. Then, system (2) has one
vanishing equilibrium E0 = (0, 0) and two boundary equilibria E1 = (S, 0) and E2 = (0, I),
where S = M

r1
(r1 – d1), I = M

r2
(r2 – d2).

Also, the following statement is true.
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Proposition 2.2 Under the assumptions of Proposition 2.1, suppose, in addition, that ω :=
r1d2 – r2d1, β1 = max{ r2–r1

M , ω

r1S }, β2 = min{ r2–r1
M , ω

r1S }. Then system (2) has a unique positive
equilibrium E∗ = (S∗, I∗), where

S∗ =
ω – βr2I

β(r1 – r2 + Mβ)
, I∗ =

βr1S – ω

β(r1 – r2 + Mβ)

provided that one of the following conditions holds:
(i) β1 < β < ω

r2I ;
(ii) ω

r2I < β < β2.

Proof Consider the algebraic system

⎧
⎨

⎩

r1(1 – S+I
M ) – d1 – βI = 0,

βS + r2(1 – S+I
M ) – d2 = 0.

(4)

If r1 – r2 + Mβ �= 0, then (4) admits a unique solution (S∗, I∗) given by

⎧
⎨

⎩

S∗ = Mβd2–Mβr2+r1d2–r2d1
β(r1–r2+Mβ) ,

I∗ = Mβr1–αMβd1–r1d2+r2d1
β(r1–r2+Mβ) .

(5)

Let ω := r1d2 – r2d1, S := M
r1

(r1 – d1) and I := M
r2

(r2 – d2). Then (5) is positive if and only if
the following condition holds:

⎧
⎨

⎩

(ω – βr2I)(βr1S – ω) > 0,

(ω – βr2I)[(r1 + βM) – r2] > 0.
(6)

Since (6) implies ω > 0 and S > I , it is easy to see that if β1 < β < ω

r2I or ω

r2I < β < β2, then (2)
admits the unique positive equilibrium, and the result follows. �

3 Stability analysis
3.1 Local stability of the equilibria E0, E1, E2

We assume that the hypotheses of Propositions 2.1–2.2 are satisfied. The Jacobian matrix
of (2) is given by

J(E) =

[
r1(1 – S+I

M ) – r1S
M – βI – d1 – r1S

M – βS
βI – r2I

M βS + r2(1 – S+I
M ) – r2I

M – d2

]

, (7)

hence,

J(E0) =

[
r1 – d1 0

0 r2 – d2

]

. (8)

By assumption, r1 – d1 > 0 and r2 – d2 > 0, therefore, E0 = (0, 0) is always an unstable node.
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Next (see (7)):

J(E1) =

[
r1(1 – S

M ) – r1S
M – d1 – r1S

M – βS
0 βS + r2(1 – S

M ) – d2

]

. (9)

It follows from (9) that the eigenvalues of J(E1) are

λ1 := r1

(

1 –
S
M

)

–
r1S
M

– d1 = d1 – r1 and μ1 := βS + r2

(

1 –
S
M

)

– d2 =
βr1S – ω

r1
.

By assumption,

d1 – r1 < 0 and r1 > 0,

hence,

λ1 < 0 and sign(μ1) = sign(βr1S – ω). (10)

Finally (see (7)),

J(E2) =

[
r1(1 – I

M ) – βI – d1 0
βI – r2I

M r2(1 – I
M ) – r2I

M – d2

]

. (11)

It follows from (11) that the eigenvalues of J(E2) are

λ2 := r2

(

1 –
I

M

)

–
r2I
M

– d2 = d2 – r2 and μ2 := r1

(

1 –
I

M

)

– βI – d1 =
ω – βr2I

r2
.

By assumption,

d2 – r2 < 0 and r2 > 0,

hence,

λ2 < 0 and sign(μ2) = sign(ω – βr2I). (12)

Combining (8)–(12), one obtains the following.

Theorem 3.1 Under the notations and assumptions of Propositions 2.1–2.2, the following
statements are true:

(i) E0 is always an unstable node;
(ii) If β < ω

r1S , then E1 = ( M
r1

(r1 – d1), 0) is locally asymptotically stable; if β > ω

r1S , then E1

is a saddle and, as such, is unstable;
(iii) If β > ω

r2I , then E2 = (0, M
r2

(r2 – d2)) is locally asymptotically stable; if β < ω

r2I , then E2

is a saddle and, as such, is unstable.
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3.2 Local stability of the positive equilibrium
It follows from (7) that the Jacobian matrix of (2) at the positive equilibrium point E∗ =
(S∗, I∗) is given by

J
(
E∗) =

[
r1(1 – S∗+I∗

M ) – r1S∗
M – d1 – βI∗ – r1S∗

M – βS∗

(β – r2
M )I∗ βS∗ – r2

M I∗ + r2(1 – S∗+I∗
M ) – d2

]

.

By direct computation,

tr J
(
E∗) = r1

(

1 –
S∗ + I∗

M

)

–
r1S∗

M
– d1 – βI∗ + βS∗ –

r2I∗

M
+ r2

(

1 –
S∗ + I∗

M

)

– d2

= –
r1S∗

M
–

r2I∗

M
< 0

and

det J
(
E∗) =

[

r1

(

1 –
S∗ + I∗

M

)

–
r1S∗

M
– d1 – βI∗

][

βS∗ –
r2I∗

M
+ r2

(

1 –
S∗ + I∗

M

)

– d2

]

+
(

r1S∗

M
+ βS∗

)(

β –
r2

M

)

I∗

=
(

βr1

M
+ β2 –

βr2

M

)

S∗I∗

=
β

M
[
(r1 + Mβ) – r2

]
S∗I∗.

In particular, if β > r2–r1
M (resp. β < r2–r1

M ), then det J(E∗) > 0 (resp. det J(E∗) < 0). This way,
we arrive at the following result.

Theorem 3.2 Under the notations and assumptions of Propositions 2.1–2.2, the following
statements are true:

(i) If β > r2–r1
M and ω

r1S < β < ω

r2I , then E∗ is locally asymptotically stable;
(ii) If β < r2–r1

M , then E∗ is a saddle and, as such, is unstable.

3.3 Global stability analysis
We complete this section with the following global stability result.

Theorem 3.3 Under the notations and assumptions of Propositions 2.1–2.2, the following
statements are true:

(i) If β < ω

r1S , then E1 is globally asymptotically stable;
(ii) If β > ω

r2I , then E2 is globally asymptotically stable;
(iii) If β > r2–r1

M , then the unique infection equilibrium E∗ is globally asymptotically
stable.

Proof Take μ(S, I) = 1
SI to serve as a Dulac multiplier.

Denote

P := r1S
(

1 –
S + I

M

)

– d1x – βSI and Q := βSI + r2I
(

1 –
S + I

M

)

– dI.
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Then

∂(μP)
∂S

+
∂(μQ)

∂I
= –

r2

MS
–

r1

MI
< 0

for all S > 0, I > 0. Thus, (2) has no periodic orbits in � (see (3)). A simple application of
the classical Poincaré–Bendixson theory shows that all solutions in � converge to a single
equilibrium, from which the result follows. �

4 Basic reproduction number
In this section, using the method of the next generation matrix (see [21]), we derive the
basic reproduction number R0(β) of model (2).

We have

F = βS + r2

(

1 –
S
M

)

, V = (d2),

and the next generation matrix is

FV –1 =
1
d2

[

βS + r2

(

1 –
S
M

)]

.

Hence, the basic reproduction number is given by

R0(β) =
1
d2

[

βS + r2

(

1 –
S
M

)]

. (13)

Clearly (see (13)), R0(β) is increasing in β , and R0(βc) = 1, where βc = ω

r1S .
It is easy to see that

βS + r2

(

1 –
S
M

)

– d2 = d2
(
R0(β) – 1

)
.

Theorem 4.1 Under the notations and assumptions of Propositions 2.1–2.2, the following
statements are true:

(i) If R0(β) < 1, then E1 is locally asymptotically stable;
(ii) If R0(β) > 1, then E1 is a saddle and, as such, unstable.

5 Numerical simulations
In this section, we illustrate our results by numeric examples simulating an infection-free
equilibrium point and an infection equilibrium point of system (2), as well as give the
corresponding time series diagrams. The parameters in the model have been given in Ta-
ble 1. In Fig. 1, we choose the death rate d1 = 0.01 day–1 and carrying capacity constant
M = 10 mm–3. Also, take ε = 0.2 day–1, r1 = r2 = 0.4. Then S = 9.75, I = 4.75, ω = 0.08,
ω

r1S = 0.0205, ω

r2I = 0.0421. When β = 0.0205, we have R0(β) = 1.
In Fig. 1(1), we choose β = 0.018 mm3/cells/day, in which case R0(β) < 1. Clearly, the

solution approaches the boundary steady state (S, 0).
According to the stability results presented in Sect. 3, the above choice of parameter

values guarantees that the equilibrium E2 is asymptotically stable when β > ω

r2I . Figure 1(2)
shows that, for β = 0.052, the solution approaches the boundary equilibrium (0, I).
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Table 1 Parameters involved in the model

Parameter Parameter describe Parameter value Reference

r1 proliferation constants of uninfected hosts 0.4 [11]
r2 proliferation constants of infected hosts 0.4 [11]
M environmental tolerance of a host population 10 assume
d1 parasite-independent hosts background mortality 0.01 [11]
β humoral response coefficient of a susceptible host population 0.001–0.1 [11]
ε parasite-induced excess death rates 0.2 [11]

Figure 1 Numerical simulations of system (2) with parameter values r1 = r2 = 0.4, d1 = 0.01, ε = 0.2, M = 10

Figure 2 Numerical simulations of system (2) with
parameter values r1 = r2 = 0.4, d1 = 0.01, ε = 0.2,
M = 10, β = 0.0039. Clearly, solution approaches a
positive steady state (0.3879, 4.7403)

Table 2 Global results for system (2)

Conditions Result

1 E0 is always an unstable point
2 β < ω

r1S
E1 is globally asymptotically stable

3 β > ω
r2 I

E2 is globally asymptotically stable

4 β > r2–r1
M , ω

r1S
< β < ω

r2 I
E∗ is globally asymptotically stable

Next, taking β = 0.039 mm3/cells/day and leaving other model parameters unchanged,
we provide numerical simulations related to the positive equilibrium E∗ (see Fig. 2). These
simulations are consistent with the theoretical results related to the local asymptotic sta-
bility of E∗ obtained in Sect. 3, see Table 2.
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6 Discussion
A phage is a virus that lives in bacteria and can infect lysed host bacteria in a specific envi-
ronment. It has been successfully used to treat infections caused by e. coli, pseudomonas
aeruginosa, and staphylococcus (see [22–24]). In recent years, many scholars (both do-
mestic and foreign) conducted in-depth research on phage biology and genome sequenc-
ing. It was confirmed that phages of many strains can effectively kill mycobacterium tu-
berculosis, see [25, 26] and the references therein. Also, it was predicted that this “bac-
terial killer” may become an alternative to antibiotics in the future. There is a complex
dynamic relationship between phage and bacteria, which has been described as a variety
of dynamic behaviors at the population level, including ARD (arm race dynamics) model
[27], FSD (fluctuating selection dynamics) model [27], KtW (kill-the-winner) model [28],
and PtW (piggyback-the-winner) model [29]. The study of the dynamic changes of phage
and bacteria is helpful to elucidate their changing rules and lay a foundation for the bet-
ter application of phage in medical treatment, animal husbandry, and other industries.
However, there is a lack of research on mathematical modeling of phage infection. Beretta
and Kuang [30, 31] proposed a mathematical model of phage infection in the ocean and
analyzed its mathematical characteristics based on the observations of marine organisms
made by biologist A. Okubo. In the present paper, we revised the mathematical model es-
tablished by Ebert et al. [11] by assuming that (a) infected hosts (bacteria) are capable of
reproducing with logistic law, and (b) the relative fecundity of an infected host is equal to
zero.

In particular, we studied the nonlinear dynamic model of vertical transmission of infec-
tion bacteria. The parasite (phage) population is not explicitly modeled, which is a striking
feature of this model. As such, our model is similar to SI-models widely used in epidemi-
ology.

We established four possibilities for the host-parasitic relationships: both uninfected
and infected hosts become extinct simultaneously; extinction of uninfected hosts; extinc-
tion of infected hosts; uninfected and infected hosts coexist. The local and global stability
of the four equilibrium points was analyzed by using the Jacobian matrix and Bendixson–
Dulac theory. In particular, the instability of the extinction equilibrium was established.
We also figured out the basic reproduction number R0 of the system: E1 is locally asymp-
totically stable (resp. unstable) if R0 < 1 (resp. R0 > 1).

Figure 3 Here, r1 = 0.4, r2 = 0, d1 = 0.01, ε = 0.2, M = 10. In Fig. 3(4), β = 0.0238, solutions tend to E∗
monotonically. In Fig. 3(5), β = 0.158, solutions tend to E∗ by damped oscillations
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The model simulations presented in Fig. 2 show the existence of the positive equilibrium
to which population approaches monotonically. The model simulations presented in Fig. 3
show that when r2 = 0, the population approaches the equilibrium either monotonically
or by damped oscillations. Actually, it is a special case of system (1), and the results are
consistent with Ebert’s prediction in [11]. We established that phages and bacteria can
coexist, and the concentration of bacteria can reduce. Also, phages cause the increase
in the death rate of the bacterial host, keeping the bacteria at a low concentration that
prevents them from becoming ill and spreading to others. Finally, we predict that phage
therapy could be a new savior for patients infected with superbugs.
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