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Abstract
In this paper, we study degenerate complete and partial Bell polynomials and
establish some new identities for those polynomials. In addition, we investigate the
connections between modified degenerate complete and partial Bell polynomials,
which are closely related to the degenerate complete and partial Bell polynomials,
and the joint distribution of weighted sums of independent degenerate Poisson
random variables.
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1 Introduction
The recent research on degenerate versions of some special numbers and polynomials
have led us to introduce the fascinating degenerate gamma functions (see [18]), and λ-
umbral calculus which is about the study of λ-Sheffer sequences (see [14]). Thus we may
say that studying degenerate versions of many special polynomials and numbers is by now
well justified.

The complete Bell polynomials and the partial Bell polynomials are, respectively, multi-
variate versions for Bell polynomials and Stirling numbers of the second kind. They have
applications in such diverse areas as combinatorics, probability, algebra and analysis. For
example, higher-order derivatives of composite functions can be expressed in terms of
the partial Bell polynomials, which is known as the Faà di Bruno formula and the nth mo-
ment of a random variable is the nth complete Bell polynomial in the first n cumulants.
The number of monomials appearing in the partial Bell polynomial Bn,k(x1, x2, . . . , xn–k+1)
(see (6), (7)) is the number of partitionings of a set with n elements into k blocks and the
coefficient of each monomial is the number of partitioning a set with n elements as the
corresponding k blocks.

The aim of this paper is to further study the recently introduced degenerate complete
and partial Bell polynomials which are degenerate versions of the complete and partial
Bell polynomials (see (12), (13)). In more detail, we derive several identities connected
with such Bell polynomials whose arguments are given by the sum of two ‘variable-vectors’
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(see Theorems 1–4). Further, we obtain a recurrence relation for the degenerate partial Bell
polynomials in Theorem 5. Also, we mention three results for the degenerate partial Bell
polynomials which can be derived by the same method as for the partial Bell polynomials
(see [9]). Then, as applications to probability theory, we show the connections between the
modified degenerate complete and partial Bell polynomials, which are slightly different
from the degenerate complete and partial Bell polynomials (see (27), (29)) and the joint
distributions of weighted sums of independent degenerate Poisson random variables (see
Theorems 6 and 7).

Even though there are a vast number of papers on Bell polynomials in the literature,
degenerate versions of complete and partial Bell polynomials are first introduced in [17]
and [19]. The contribution of the present paper is twofold. The first one is the derivation
of further results on degenerate complete and incomplete Bell polynomials. The second
one is the applications to probability theory which shows certain connections between the
modified degenerate complete and partial Bell polynomials and the joint distributions of
weighted sums of independent degenerate Poisson random variables. Some of the recent
work on Bell polynomials can be found in [1, 3, 4, 6, 7, 9, 10, 12, 25].

For the rest of this section, we recall the necessary facts that are needed throughout this
paper. For any λ ∈R, the degenerate exponential functions are defined by

ex
λ(t) =

∞∑

l=0

(x)l,λ
tl

l!
, (1)

where

(x)0,λ = 1, (x)n,λ = x(x – λ)(x – 2λ) · · · (x – (n – 1)λ
)

(n ≥ 1),

eλ(t) = e1
λ(t) =

∞∑

l=0

(1)l,λ
tl

l!
(see [13, 15–17, 19–24, 26]).

(2)

Recently, Kim–Kim introduced the degenerate Stirling numbers of the second kind given
by

1
k!

(
eλ(t) – 1

)k =
∞∑

n=k

S2,λ(n, k)
tn

n!
(k ≥ 0) (see [13]). (3)

Note that (x)n,λ =
∑n

l=0 S2,λ(n, l)(x)l, (n ≥ 0), and limλ→0 S2,λ(n, l) = S2(n, l), where S2(n, l)
are the Stirling numbers of the second kind.

In [19], the degenerate Bell polynomials are defined by

ex(eλ(t)–1) =
∞∑

n=0

Beln,λ(x)
tn

n!
(see [2, 5, 8, 9, 11, 13, 15–17, 19–24]). (4)

Thus, by (3) and (4), we get

Beln,λ(x) =
n∑

l=0

S2,λ(n, l)xl (see [19]). (5)
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For any integers with n ≥ k ≥ 0, the partial Bell polynomials are given by

1
k!

( ∞∑

m=1

xm
tm

m!

)k

=
∞∑

n=k

Bn,k(x1, x2, . . . , xn–k+1)
tn

n!
(see [8]). (6)

Thus, we note that

Bn,k(x1, x2, . . . , xn–k+1)

=
∑

l1+···+ln–k+1=k
l1+2l2+···+(n–k+1)ln–k+1=n

n!
l1!l2! · · · ln–k+1!

(
x1

1!

)l1(x2

2!

)l2
· · ·

(
xn–k+1

(n – k + 1)!

)ln–k+1

. (7)

In [9], it was found that

Bn,k(x1, x2, . . . , xn–k+1)

=
1
x1

1
n – k

n–k∑

α=1

(
n
α

)[
(k + 1) –

n + 1
α + 1

]
xα+1Bn–α,k(x1, x2, . . . , xn–α–k+1),

(8)

Bn,k1+k2 (x1, x2, . . . , xn–k1–k2+1)

=
k1!k2!

(k1 + k2)!

n∑

α=0

(
n
α

)
Bα,k1 (x1, . . . , xα–k1+1)Bn–α,k2 (x1, x2, . . . , xn–α–k2+1)

(9)

and

Bn,k+1(x1, x2, . . . , xn–k)

=
1

(k + 1)!

n–1∑

α1=k

α1–1∑

α2=k–1

· · ·
αk–1–1∑

αk =1

(
n
α1

)(
α1

α2

)
· · ·

(
αk–1

αk

)
xn–α1 xα1–α2 · · ·xαk–1–αk xαk

(10)

(n ≥ k + 1, k = 1, 2, . . . ).
From (6), we note that Bn,k(1, 1, . . . , 1) = S2(n, k), (n, k ≥ 0).
Let X be the Poisson random variable with parameter α > 0. Then the probability mass

function of X is given by

p(i) = P{X = i} =
αi

i!
e–α(i = 0, 1, 2, . . . ) (see [26]). (11)

Note that the nth moment of X is given by

E
[
Xn] =

∞∑

k=0

knp(k) = e–α

∞∑

k=0

kn

k!
αk (see [26])

= Beln(α) (n ≥ 0),

where Beln(α) are the ordinary Bell polynomials defined by

eα(et–1) =
∞∑

n=0

Beln(α)
tn

n!
(see [26]).
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Let g be a real valued function. Then the function of E[g(X)] is defined as

E
[
g(X)

]
=

∞∑

k=0

g(k)p(k) (see [26]),

where p(k) is the probability mass function of the discrete random variable X.
For λ ∈ (0, 1), X is the degenerate Poisson random variable with parameter α(> 0) if the

probability mass function of X is given by

pλ(i) = P{X = i} = e–1
λ (α)(1)i,λ

αi

i!
(see [13, 15]).

Note that limλ→0 Pλ(i) = e–α αi

i! is the probability mass function of the Poisson random vari-
able with parameter α > 0.

Recently, the degenerate partial Bell polynomials are defined by

1
k!

( ∞∑

i=1

(1)i,λxi
ti

i!

)k

=
∞∑

n=k

B(λ)
n,k(x1, x2, . . . , xn–k+1)

tn

n!
(see [17, 22–24]), (12)

where k is a nonnegative integer.
By (3), we get

B(λ)
n,k(1, 1, . . . , 1) = S2,λ(n, k) (n ≥ k ≥ 0).

In [17, 19, 24], the degenerate complete Bell polynomials are introduced by

exp

( ∞∑

i=1

xi(1)i,λ
ti

i!

)
=

∞∑

n=0

B(λ)
n (x1, x2, . . . , xn)

tn

n!
. (13)

From (4) and (13), we note that

B(λ)
n (x, x, . . . , x) = Beln,λ(x) (n ≥ 0). (14)

In particular, by (12) and (13), we get

B(λ)
n (x1, x2, . . . , xn) =

n∑

k=0

B(λ)
n,k(x1, x2, . . . , xn–k+1). (15)

2 Degenerate complete and degenerate partial Bell polynomials
In this section, we will derive several properties of the degenerate complete and partial
Bell polynomials. From (13), we note that

∞∑

n=0

B(λ)
n (x1 + y1, x2 + y2, . . . , xn + yn)

tn

n!
(16)

= exp

( ∞∑

i=1

(xi + yi)(1)i,λ
ti

i!

)



Kim et al. Advances in Difference Equations        (2021) 2021:304 Page 5 of 12

= exp

( ∞∑

i=1

xi(1)i,λ
ti

i!

)
exp

( ∞∑

i=1

yi(1)i,λ
ti

i!

)

=
∞∑

j=0

B(λ)
j (x1, x2, . . . , xj)

tj

j!

∞∑

m=0

B(λ)
m (y1, y2, . . . , ym)

tm

m!

=
∞∑

n=0

( n∑

j=0

(
n
j

)
B(λ)

j (x1, x2, . . . , xj)B(λ)
n–j(y1, y2, . . . , yn–j)

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (16), we obtain the following
theorem.

Theorem 1 For n ≥ 0, we have

B(λ)
n (x1 + y1, x2 + y2, . . . , xn + yn) =

n∑

j=0

(
n
j

)
B(λ)

j (x1, x2, . . . , xj)B(λ)
n–j(y1, y2, . . . , yn–j).

Thus, by Theorem 1 and (15), we get

∞∑

n=k

B(λ)
n,k(x1 + y1, x2 + y2, . . . , xn–k+1 + yn–k+1)

tn

n!
(17)

=
1
k!

( ∞∑

m=1

(1)m,λxj
tm

m!
+

∞∑

m=1

(1)m,λym
tm

m!

)k

=
k∑

i=0

1
i!

( ∞∑

m=1

(1)m,λym
tm

m!

)i
1

(k – i)!

( ∞∑

m=1

(1)m,λxm
tm

m!

)k–i

=
k∑

i=0

∞∑

j=i

B(λ)
j,i (y1, y2, . . . , yj–i+1)

tj

j!

∞∑

l=k–i

B(λ)
l,k–i(x1, x2, . . . , xl–k+i+1)

tl

l!

=
k∑

i=0

∞∑

n=k

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1)

tn

n!

=
∞∑

n=k

( k∑

i=0

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1)

)
tn

n!
.

By comparing the coefficients on both sides of (17), we get the following theorem.

Theorem 2 For any integers with n ≥ k ≥ 0, we have

B(λ)
n,k(x1 + y1, x2 + y2, . . . , xn–k+1 + yn–k+1)

=
k∑

i=0

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1).

From (12) with k = 0, we have

B(λ)
n,0(x1, x2, . . . , xn+1) =

⎧
⎨

⎩
1 if n = 0,

0 if n > 0.
(18)
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From Theorem 2 and (18), we note that

B(λ)
n,k(x1 + y1, x2 + y2, . . . , xn–k+1 + yn–k+1) (19)

=
k∑

i=0

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, . . . , yj–i+1)Bn–j,k–i(x1, x2, . . . , xn–j–k+i+1)

=
n–k∑

j=0

(
n
j

)
B(λ)

j,0 (y1, y2, . . . , yj+1)B(λ)
n–j,k(x1, x2, . . . , xn–j–k+1)

+
k∑

i=1

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–k–j+i+1)

= B(λ)
n,k(x1, x2, . . . , xn–k+1)

+
k∑

i=1

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1)

= B(λ)
n,k(x1, x2, . . . , xn–k+1) +

n∑

j=k

(
n
j

)
B(λ)

j,k (y1, y2, . . . , yj–k+1)B(λ)
n–j,0(x1, x2, . . . , xn–j+1)

+
k–1∑

i=1

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1)

= B(λ)
n,k(x1, x2, . . . , xn–k+1) + B(λ)

n,k(y1, y2, . . . , yn–k+1)

+
k–1∑

i=1

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1).

Therefore, by (19), we obtain the following theorem.

Theorem 3 For n, k ∈ Z with n ≥ k and k ≥ 2, we have

k–1∑

i=1

n–k+i∑

j=i

(
n
j

)
B(λ)

j,i (y1, y2, . . . , yj–i+1)B(λ)
n–j,k–i(x1, x2, . . . , xn–j–k+i+1)

= B(λ)
n,k(x1 + y1, x2 + y2, . . . , xn–k+1 + yn–k+1) – B(λ)

n,k(x1, x2, . . . , xn–k+1)

– B(λ)
n,k(y1, y2, . . . , yn–k+1).

From Theorem 1, we have

B(λ)
n (x1 + y1, x2 + y2, . . . , xn + yn) =

n∑

j=0

(
n
j

)
B(λ)

n–j(x1, x2, . . . , xn–j)B(λ)
j (y1, y2, . . . , yj) (20)

= B(λ)
n (x1, . . . , xn) + B(λ)

n (y1, y2, . . . , yn) +
n–1∑

j=1

(
n
j

)
B(λ)

n–j(x1, . . . , xn–j)B(λ)
j (y1, y2, . . . , yj).

Therefore, by (20), we obtain the following theorem.
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Theorem 4 For n ≥ 2, we have

n–1∑

j=1

(
n
j

)
B(λ)

n–j(x1, . . . , xn–j)B(λ)
j (y1, y2, . . . , yj)

= B(λ)
n (x1 + y1, x2 + y2, . . . , xn + yn) – B(λ)

n (x1, . . . , xn) – B(λ)
n (y1, y2, . . . , yn).

From (12), we have

∞∑

n=k

kB(λ)
n,k(x1, . . . , xn–k+1)

tn

n!
(21)

=
1

(k – 1)!

( ∞∑

j=1

(1)j,λxj
tj

j!

)k–1 ∞∑

j=1

(1)j,λxj
tj

j!

=
∞∑

j=k–1

B(λ)
j,k–1(x1, x2, . . . , xj–k+2)

tj

j!

∞∑

l=1

(1)l,λxl
tl

l!

=
∞∑

n=k

( n–1∑

j=k–1

(
n
j

)
B(λ)

j,k–1(x1, x2, . . . , xj–k+2)(1)n–j,λxn–j

)
tn

n!
.

Therefore, by comparing the coefficients on both sides of (21), we obtain the following
theorem.

Theorem 5 For n, k ≥ 1 we have

kB(λ)
n,k(x1, x2, . . . , xn–k+1) =

n–1∑

j=k–1

(
n
j

)
B(λ)

j,k–1(x1, x2, . . . , xj–k+2)(1)n–j,λxn–j.

From (12), we can derive the following equation:

B(λ)
n,k(x1, x2, . . . , xn–k+1)

=
∑ n!

i1!i2! · · · in–k+1!

(
(1)1,λx1

1!

)i1( (1)2,λx2

2!

)i2
· · ·

(
(1)n–k+1,λxn–k+1

(n – k + 1)!

)in–k+1

,
(22)

where the summation is over all integers i1, i2, . . . , in–k+1 ≥ 0 such that i1 + · · · + in–k+1 = k
and i1 + 2i2 + · · · + (n – k + 1)in–k+1 = n.

Thus, by using (22) and proceeding with a similar argument to the ones used in deriving
(8), (9) and (10) (see [9]), we get the following identities:

B(λ)
n,k(x1, x2, . . . , xn–k+1)

=
1
x1

1
n – k

n–k∑

j=1

(
n
j

)[
(k + 1) –

n + 1
j + 1

]
(1)j+1,λxj+1B(λ)

n–j,k(x1, x2, . . . , xn–j–k+1),
(23)

B(λ)
n,k1+k2

(x1, x2, . . . , xn–k1–k2+1)

=
k1!k2!

(k1 + k2)!

n∑

j=0

(
n
j

)
B(λ)

j,k1
(x1, x2, . . . , xj–k1+1)B(λ)

n–j,k2
(x1, x2, . . . , xn–j–k2+1),

(24)
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and

B(λ)
n,k+1(x1, x2, . . . , xn–k)

=
1

(k + 1)!

n–1∑

j1=k

j1–1∑

j2=k=1

· · ·
jk–1–1∑

jk =1

(
n
j1

)(
j1
j2

)
· · ·

(
jk–1

jk

)

× (1)n–j1,λxn–j1 (1)j1–j2,λxj1–j2 · · · (1)jk–1–jk,λxjk–1–jk (1)jk,λxjk ,

(25)

where n ≥ k + 1, k = 1, 2, . . . .
From (13), we note that

B(λ)
n (x1, x2, . . . , xn)

=
∑

l1+2l2+···+nln=n

n!
l1!l2! · · · ln!

(
x1(1)1,λ

1!

)l1(x2(1)2,λ

2!

)l2
· · ·

(
xn(1)n,λ

n!

)ln
,

(26)

where n is a nonnegative integer.

3 Further remarks
For any integers n, k with n ≥ k, we define the modified degenerate partial Bell polynomials
as

Bn,k(x1, x2, . . . , xn–k+1|λ)

=
∑

l1+···+ln–k+1=k
l1+2l2+···+(n–k+1)ln–k+1=n

n!
l1!l2! · · · ln–k+1!

(n–k+1∏

i=1

xi

i!

)li(n–k+1∏

i=1

(1)li ,λ

)
.

(27)

Here one should observe the difference between the modified degenerate partial Bell poly-
nomials and the degenerate partial Bell polynomials which are given by

B(λ)
n,k(x1, x2, . . . , xn–k+1)

=
∑

l1+···+ln–k+1=k
l1+2l2+···+(n–k+1)ln–k+1=n

n!
l1!l2! · · · ln–k+1!

(n–k+1∏

i=1

xi

i!

)li(n–k+1∏

i=1

(1)i,λ

)li

.

Note that limλ→0 Bn,k(x1, x2, . . . , xn–k+1|λ) = Bn,k(x1, x2, . . . , xn–k+1).
Assume that Xi (i = 1, 2, . . . , n) are identically independent degenerate Poisson random

variables with parameter αi(> 0) (i = 1, 2, . . . , n), and let n, k be integers with n ≥ k ≥ 2.
Then we have

P{X1 + X2 + · · · + Xn = k, X1 + 2X1 + · · · + nXn = n} (28)

=
∑

k1+···+kn=k
k1+2k2+···+nkn=n

P{X1 = k1, X2 = k2, . . . , Xn = kn}

=
∑

k1+···+kn=k
k1+2k2+···+nkn=n

P{X1 = k1} · P{X2 = k2} · · ·P{Xn = kn}
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= e–1
λ (α1)e–1

λ (α2) · · · e–1
λ (αn)

×
∑

k1+···+kn–k+1=k
k1+2k2+···+(n–k+1)kn–k+1=n

(1)k1,λ(1)k2,λ · · · (1)kn–k+1,λ

k1!k2! · · ·kn–k+1!
α

k1
1 · · ·αkn–k+1

n–k+1

=
P{X1 + X2 + · · · + Xn = 0}

n!
Bn,k

(
1!α1, 2!α2, . . . , (n – k + 1)!αn–k+1|λ

)
.

Therefore, by (28), we obtain the following theorem.

Theorem 6 Let X1, X2, . . . , Xn be identically independent degenerate Poisson random vari-
ables with parameters α1(> 0),α2(> 0), . . . ,αn(> 0). For any integers n, k with n ≥ k ≥ 2, we
have

Bn,k
(
1!α1, 2!α2, . . . , (n – k + 1)!αn–k+1|λ

)

=
n!

P{X1 + X2 + · · · + Xn = 0}P{X1 + X2 + · · · + Xn = k, X1 + 2X1 + · · · + nXn = n}.

For any positive integer n, we define the modified degenerate complete Bell polynomials
by

Bn(x1, x2, . . . , xn|λ) (29)

=
∑

k1+2k2+···+nkn=n

n!
k1!k2! · · ·kn!

( n∏

i=1

xi

i!

)ki( n∏

i=1

(1)ki ,λ

)
.

Again, one should observe the difference between the modified degenerate complete Bell
polynomials and the degenerate complete Bell polynomials which are given by

B(λ)
n (x1, x2, . . . , xn)

=
∑

k1+2k2+···+nkn=n

n!
k1!k2! · · ·kn!

( n∏

i=1

xi

i!

)ki( n∏

i=1

(1)i,λ

)ki

.

Suppose that Xi (i = 1, 2, . . . , n) are identically independent degenerate Poisson random
variables with parameters αi(> 0) (i = 1, 2, . . . , n). We have

P{X1 + 2X2 + 3X3 + · · · + nXn = n}
=

∑

k1+2k2+···+nkn

P{X1 = k1, X2 = k2, X3 = k3, . . . , Xn = kn}

= e–1
λ (α1)e–1

λ (α2) · · · e–1
λ (αn)

∑

k1+2k2+···+nkn=n

(1)k1,λ(1)k2,λ · · · (1)kn ,λ

k1!k2! · · ·kn!
α

k1
1 α

k2
2 · · ·αkn

n

=
P{X1 + X2 + · · · + Xn = 0}

n!
Bn(1!α1, 2!α2, . . . , n!αn|λ) (n ≥ 0).

Therefore, we obtain the following theorem.
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Theorem 7 Let Xi (i = 1, 2, . . . , n) be identically independents degenerate Poisson random
variables with parameters αi > 0 (i = 1, 2, . . . , n). Then we have

Bn(1!α1, 2!α2, . . . , n!αn|λ)

=
n!

P{X1 + X2 + · · · + Xn = 0}P{X1 + 2X2 + 3X3 + · · · + nXn = n}.

Now, we consider Xi (i = 1, 2, . . . , n) to be identically independent Poisson random vari-
ables with parameters

αi

i!
(1)i,λ(> 0) (i = 1, 2, . . . , n). (30)

Then we have

P{X1 + 2X2 + · · · + nXn = n}
=

∑

k1+2k2+···+nkn=n

P{X1 = k1, X2 = k2, . . . , Xn = kn}

= e–( α1
1! (1)1,λ+ α2

2! (1)2,λ+···+ αn
n! (1)n,λ)

×
∑

k1+2k2+···+nkn=n

1
k1!k2! · · ·kn!

(
α1(1)1,λ

1!

)k1

· · ·
(

αn(1)n,λ

n!

)kn

=
P{X1 + X2 + · · · + Xn = 0}

n!
B(λ)

n (x1, x2, . . . , xn).

By (30), we get

B(λ)
n (x1, x2, . . . , xn) =

n!
P{X1 + X2 + · · · + Xn = 0}P{X1 + 2X2 + · · · + nXn = n}.

Also, we have

P{X1 + X2 + · · · + Xn = k, X1 + 2X2 + · · · + nXn = n}
=

∑

k1+k2+···+kn=k
k1+2k2+···+nkn=n

P{X1 = k1, X2 = k2, . . . , Xn = kn}

= e–
∑n

j=1
αj
j! (1)j,λ

∑

k1+k2+···+kn–k+1=k
k1+2k2+···+(n–k+1)kn–k+1=n

1
k1!k2! · · ·kn–k+1!

(n–k+1∏

j=1

(1)j,λ

j!
xj

)lj

=
P{X1 + · · · + Xn = 0}

n!
B(λ)

n,k(x1, x2, . . . , xn–k+1).

Thus, we have

B(λ)
n,k(x1, x2, . . . , xn–k+1)

=
n!

P{X1 + X2 + · · · + Xn = 0}P{X1 + X2 + · · · + Xn = k, X1 + 2X2 + · · · + nXn = n}.
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4 Conclusion
The complete Bell polynomials and the partial Bell polynomials are, respectively, multi-
variate versions for Bell polynomials and Stirling numbers of the second kind. They have
applications in such diverse areas as combinatorics, probability, algebra and analysis.

In this paper, we studied the recently introduced degenerate complete and partial Bell
polynomials which are degenerate versions of the complete and partial Bell polynomials.
In more detail, we derived several identities connected with such Bell polynomials whose
arguments are given by the sum of two ‘variable-vectors.’ Further, we obtained a recur-
rence relation for the degenerate partial Bell polynomials. Also, we mentioned three re-
sults for the degenerate partial Bell polynomials which can be derived by the same method
as for the partial Bell polynomials. Then, as applications to probability theory, we showed
the connections between the modified degenerate complete and partial Bell polynomials,
which are slightly different from the degenerate complete and partial Bell polynomials,
and the joint distributions of weighted sums of independent degenerate Poisson random
variables.

It is one of our future projects to continue to explore applications to probability theory
of some special numbers and polynomials.
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