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Abstract
This article proposes four distinct kinds of symmetric contraction in the framework of
complete F-metric spaces. We examine the condition to guarantee the existence and
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1 Introduction
Among the most interesting and published research topics in the last few decades, we can
count the metric fixed-point theory, see, e.g., [1–8], and fractional differential/integral
equations, see, e.g., [9–25]. In [20], the authors considered certain fractional and ordinary
differential equations and provided solutions by using the metric fixed-point theory tech-
niques. In this paper, we follows the same direction as in [20] and propose solutions for
certain fractional differential equations which are based on the new fixed-point theory
approaches.

One of the interesting approaches was introduced in [26], where the authors initiated
the idea of interpolative-type contractions and established brand new fixed-point results;
see also [27–32]. It is worth mentioning that the abstract space structure is as important
as the conditions of the contraction in the fixed-point theory. One of the recent exciting
results in this direction was introduced by Jleli and Samet [8], who gave a new extension
of a metric notion called F -metric space (abbreviated as F -MS).

Let F be a set of functions f : (0, +∞) → (–∞, +∞) such that
(F1) f is nondecreasing, that is, for all 0 < c < d, we have f (c) ≤ f (d);
(F2) for each sequence {dn} ⊂ (0, +∞), we have

lim
n→+∞ dn = 0 if and only if lim

n→+∞ f (dn) = –∞.
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Definition 1.1 ([8]) Let A �= ∅ with D : A × A → [0, +∞) be a given mapping. Suppose
there exists (f ,μ) ∈F × [0, +∞) such that

(D1) (w,υ) ∈ A × A, D(w,υ) = 0 ⇐⇒ w = υ ;
(D2) D(w,υ) = D(υ, w) for all (w,υ) ∈ A × A;
(D3) For every (w,υ) ∈ A × A, for each natural number N ≥ 2, and for every (ui)N

i=1 ⊂ A
with (u1, uN ) = (w,υ), we have that

D(w,υ) > 0 implies f
(
D(w,υ)

)≤ f

(N–1∑

i=1

d(ui, ui+1)

)

+ μ.

Then, D is said to be an F -metric on A.

Here, the pair (A, D) is called an F -MS.
A sequence {wn} in (A, D) is F -Cauchy if limn,m→∞ D(wn, wm) = 0. Furthermore, (A, D)

is F -complete if every F -Cauchy sequence is F -convergent in A.
The following example was stated in [8].

Example 1.2 The set of natural numbers N = X is an F -MS if we define D by

D(w,υ) =

⎧
⎨

⎩
(w – υ)2, if (w,υ) ∈ [0, 3] × [0, 3],

|w – υ|, if (w,υ) /∈ [0, 3] × [0, 3],

for all (w,υ) ∈ A × A, f (t) = ln(t) and μ = ln(3). Notice that D is not a metric but (X, D) is
an F -MS.

Jleli and Samet [8] proposed a simple fixed-point theorem as follows.

Theorem 1.3 ([8]) Let (A, D) be an F -MS. Let g : A → A be a self mapping. Suppose the
following conditions are met:

(i) (A, D) is F -complete;
(ii) there exists a constant k ∈ (0, 1) such that

D
(
g(w), g(υ)

)≤ kD(w,υ), (w,υ) ∈ A × A.

Then, g attains a unique fixed point w∗ ∈ A.

In 2012, Samet et al. introduced a class of α-admissible mappings as follows:

Definition 1.4 ([33]) Let T : A → A and α : A × A → [0, +∞). Then T is said to be α-
admissible if w,υ ∈ A, α(w,υ) ≥ 1 implies that α(Tw, Tυ) ≥ 1.

Next, Salimi et al. [34] modified the concept of α-admissible mappings as follows:

Definition 1.5 ([34]) Let T : A → A and α,η : A × A → [0, +∞) two functions. Then T
is called an α-admissible mapping with respect to η if w,υ ∈ A, α(w,υ) ≥ η(w,υ) implies
that α(Tw, Tυ) ≥ η(Tw, Tυ).
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Definition 1.6 ([35]) Consider a metric space (A, d), a mapping T : A → A, and let
α,η : A × A → [0,∞) be two functions. Then the mapping T is called an α–η-continuous
mapping in (A, d) whenever given w ∈ A and a sequence {wn} with

wn → w at ∞, α(wn, wn+1) ≥ η(wn, wn+1), ∀n ∈N implies Twn → Tw.

For more details, see, e.g., [36, 37].

A mapping T : A → A is called orbitally continuous at v ∈ A if limn→∞ Tnw = v implies
that limn→∞ Tnw = Tv. A mapping T is orbitally continuous on A if T is orbitally contin-
uous ∀v ∈ A.

2 Main results
In this part, we firstly present a new symmetric fractional α–η-contraction of type I.

Definition 2.1 Let T : A → A be a mapping on anF -metric space (A, D) and consider two
functions α,η : A×A → [0, +∞). We say that T is a symmetric fractional α–η-contraction
of type I along with constants λ ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) if, whenever α(w,υ) ≥ η(w,υ),
we have

D(Tw, Tυ) ≤ λ
(
Š1(w,υ)

)
, (2.1)

where

Š1(w,υ) = D(w,υ) · [D(w, Tw)
] 1

(β–ŵ)(β–γ ) · [D(υ, Tυ)
] 1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ )

· [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ)

for all w,υ ∈ A\Fix(T).

Example 2.2 Let A = {0, 1, 2, 3} be endowed with an F -metric D defined by

D(w,υ) =

⎧
⎨

⎩
(w – υ)2, if (w,υ) ∈ A × A,

|w – υ|, if (w,υ) /∈ A × A.

Consider f (t) = ln(t) and μ = ln(3). Define T : A → A by

T0 = 0, T1 = 1, T2 = T3 = 0,

and α,η : A × A → [0, +∞) by

α(w,υ) =

⎧
⎨

⎩
1, if w,υ ∈ A,

0, otherwise,
η(w,υ) =

⎧
⎨

⎩

1
2 , if w,υ ∈ A,

0, otherwise,
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if w,υ ∈ A. Clearly, α(w,υ) ≥ η(w,υ) and

D(T2, T3) = 0

≤ λ
[
D(2, 3) · D(2, T2)

1
(β–ŵ)(β–γ ) · D(3, T3)

1
(β–ŵ)(β–γ )

· (D(2, T2) + D(3, T3)
) 1

(ŵ–β)(ŵ–γ )
(
D(2, T3) + D(3, T2)

) 1
(γ –β)(γ –ŵ)

]

= λ
[
1 · D(2, 0)

1
(β–ŵ)(β–γ ) D(3, 0)

1
(β–ŵ)(β–γ )

(
D(2, 0) + D(3, 0)

) 1
(ŵ–β)(ŵ–γ )

· (D(2, 0) + D(3, 0)
) 1

(γ –β)(γ –ŵ)
]

= λ
[
(4)

1
(β–ŵ)(β–γ ) · (9)

1
(β–ŵ)(β–γ ) · (4 + 9)

1
(ŵ–β)(ŵ–γ ) · (4 + 9)

1
(γ –β)(γ –ŵ)

]

≤ λ
[
(4)

1
(β–ŵ)(β–γ ) · (9)

1
(β–ŵ)(β–γ ) · (4 · 9)

1
(ŵ–β)(ŵ–γ ) · (4 · 9)

1
(γ –β)(γ –ŵ)

]

= λ
[
(4) · (9)

] 1
(β–ŵ)(β–γ ) + 1

(ŵ–β)(ŵ–γ ) + 1
(γ –β)(γ –ŵ) = λ.

Clearly, (2.1) holds for all w,υ ∈ A\Fix(T), if one takes any values of the constants λ ∈
[0, 1), β , ŵ,γ ∈ (0, 1). Note that T has two fixed points, which are 0 and 1.

Now, we state brand new fixed-point theorems for symmetric fractional α–η-contrac-
tion of type I in an F -complete F -MS setting.

Theorem 2.3 Let (A, D) be a complete F -metric space and T be a symmetric fractional
α–η-contraction of type I satisfying the following:

(i) T is a α-admissible mapping with respect to η;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) T is α–η-continuous.
Then, T possesses a fixed point at A.

Proof Let w0 be in A such that α(w0, Tw0) ≥ η(w0, Tw0). For w0 ∈ A, we build a sequence
{wn}∞n=1 in such a way that w1 = Tw0, w2 = Tw1 = T2w0. Proceeding like this, we obtain
wn+1 = Twn = Tn+1w0, for every n ∈ N. Now, since the mapping T is α-admissible with
respect to η, we have α(w0, w1) = α(w0, Tw0) ≥ η(w0, Tw0) = η(w0, w1). Carrying on this
way, we get

α(wn–1, wn) ≥ η(wn–1, wn) = η(wn–1, Twn–1), for all n ∈ N. (2.2)

If wn+1 = wn for some n ∈N then wn = w∗ is a fixed point of T . So, we assume that wn �= wn+1,
accompanied by

D(Twn–1, Twn) = D(wn, Twn) > 0, for all n ∈N.

As T is a symmetric fractional α–η-contraction of type I, for n ∈N, we have

D(wn, wn+1) = D(Twn–1, Twn)

≤ λ
[
D(wn–1, wn) · D(wn–1, Twn–1)

1
(β–ŵ)(β–γ )
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· D(wn, Twn)
1

(β–ŵ)(β–γ ) · [D(wn–1, Twn–1) + D(wn, Twn)
] 1

(ŵ–β)(ŵ–γ )

· [D(wn–1, Twn) + D(wn, Twn–1)
] 1

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn) · D(wn–1, wn)

1
(β–ŵ)(β–γ ) · D(wn, wn+1)

1
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] 1

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn+1) + D(wn, wn)
] 1

(γ –β)(γ –ŵ)
]

≤ λ
[
D(wn–1, wn) · D(wn–1, wn)

1
(β–ŵ)(β–γ ) · D(wn, wn+1)

1
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] 1

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] 1

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn) · D(wn–1, wn)

1
(β–ŵ)(β–γ ) · D(wn, wn+1)

1
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] 1

(ŵ–β)(ŵ–γ ) + 1
(γ –β)(γ –ŵ)

]

≤ λ
[
D(wn–1, wn) · D(wn–1, wn)

1
(β–ŵ)(β–γ ) · D(wn, wn+1)

1
(β–ŵ)(β–γ )

· [D(wn–1, wn) · D(wn, wn+1)
] 1

(ŵ–β)(ŵ–γ ) + 1
(γ –β)(γ –ŵ)

]

= λD(wn–1, wn)1+ 1
(β–ŵ)(β–γ ) + 1

(ŵ–β)(ŵ–γ ) + 1
(γ –β)(γ –ŵ)

· D(wn, wn+1)
1

(β–ŵ)(β–γ ) + 1
(ŵ–β)(ŵ–γ ) + 1

(γ –β)(γ –ŵ)

= λD(wn–1, wn).

We deduce that

D(wn, wn+1) ≤ λD(wn–1, wn) (2.3)

and {D(wn–1, wn)} is a nonincreasing sequence with nonnegative terms. Thus, there is a
nonnegative constant � such that limn→∞ D(wn–1, wn) = �. Note that � ≥ 0. From (2.3), we
have

D(wn, wn+1) ≤ λD(wn–1, wn) ≤ λnD(w0, w1),

which provides that

m–1∑

i=n

D(wi, wi+1) ≤ λn

1 – λ
D(w0, w1), m > n.

In the limit we reach

lim
n→+∞

λn

1 – λ
D(w0, w1) = 0,

that is, there exists some N ∈ N such that

0 <
λn

1 – λ
D(w0, w1) < δ, n ≥ N .
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Let ε > 0 be fixed, (f ,μ) ∈ F × [0,∞), and let (D3) be satisfied. By (F2), there exists δ > 0
such that

0 < t < δ implies f (t) < f (ε) – μ. (2.4)

Hence by (2.4) and (F1), we get

f

(m–1∑

i=n

D(wi, wi+1)

)

≤ f
(

λn

1 – λ
D(w0, w1)

)
< f (ε) – μ, (2.5)

where m, n ∈ N with m > n ≥ N and D(wn, wm) > 0. Therefore, by using (D3) and (2.5), we
have

f
(
D(wm, wn)

)≤ f

(m–1∑

i=n

(
D(wi, wi+1)

)
)

+ μ < f (ε),

which by (F1) implies

D(wm, wn) < ε, for m > n ≥ N .

Consequently, {wn} is an F -Cauchy sequence. Since (A, D) is an F -complete metric space,
there exists an w∗ ∈ A such that wn is F -convergent to w∗, i.e.,

lim
n→∞ D

(
wn, w∗) = 0. (2.6)

Now T is α–η-continuous, α(wn–1, wn) ≥ η(wn–1, wn), for each n ∈N, and so wn+1 = Twn →
Tw∗ as n → ∞, in other words, w∗ = Tw∗. Now we are going to prove that w∗ is a fixed point
of T . We argue by contradiction by supposing that D(Tw∗, w∗) > 0. By (D3), we have

f
(
D
(
Tw∗, w∗))≤ f

(
D
(
Tw∗, Twn

)
+ D
(
Twn, w∗)) + μ, n ∈N.

Using (F1) and the contractivity condition gives

f
(
D
(
Tw∗, w∗)) ≤ f

⎛

⎜⎜
⎜⎜
⎝

λ

⎛

⎜⎜
⎜⎜
⎝

D
(
w∗, wn

) · D
(
Tw∗, w∗) 1

(β–ŵ)(β–γ ) · D(wn, Twn)
1

(β–ŵ)(β–γ )

· [D(Tw∗, w∗) + D(wn, Twn)
] 1

(ŵ–β)(ŵ–γ )

· [D(Twn, w∗) + D
(
wn, Tw∗)] 1

(γ –β)(γ –ŵ) + D
(
wn+1, w∗)

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎠

+ μ,

for all n ∈N. On the other hand, by using (F2) and (2.6), we get

lim
n→∞ f

(
λD
(
w∗, wn

)
+ D
(
wn+1, w∗)) + μ = –∞,

which gives a contradiction. Therefore, D(Tw∗, w∗) = 0, and hence w∗ possesses a fixed
point of T . �
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Theorem 2.4 Let (A, D) be an F -complete F -metric space and T be symmetric fractional
α–η-contraction of type I fulfilling the following conditions:

(i) T is a α-admissible mapping with respect to η;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) there is a sequence {wn} in A such that α(wn, wn+1) ≥ η(wn, wn+1) with wn → w∗ as
n → ∞ and that α(wn, w∗) ≥ η(wn, w∗) holds for each n ∈N.

Then, T possesses a fixed point in A.

Proof Along the lines of the proof of Theorem 2.3, we acquire α(wn, w∗) ≥ η(wn, w∗) each
n ∈N. Using (D3), we have

f
(
D
(
Tw∗, w∗))≤ f

(
D
(
Tw∗, Twn

)
+ D
(
wn, w∗)) + μ.

From (2.1) and (F1), we have

f
(
D
(
Tw∗, w∗)) ≤ f

((
D
(
Tw∗, Twn

))
+ D
(
Twn, w∗)) + μ

≤ f

⎛

⎜⎜
⎜⎜
⎝

λ

⎛

⎜⎜
⎜⎜
⎝

D
(
w∗, wn

) · D
(
Tw∗, w∗) 1

(β–ŵ)(β–γ ) · D(wn, Twn)
1

(β–ŵ)(β–γ )

· [D(Tw∗, w∗) + D(wn, Twn)
] 1

(ŵ–β)(ŵ–γ )

· [D(Twn, w∗) + D
(
wn, Tw∗)] 1

(γ –β)(γ –ŵ) + D
(
wn+1, w∗)

⎞

⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎠

+ μ.

Employing (2.6) and

lim
n→∞ D

(
wn, w∗) = 0, together with lim

n→∞ D
(
wn+1, w∗) = 0,

we obtain

f
(
D
(
w∗, Tw∗))≤ f

(
D
(
w∗, Tw∗)) + μ.

Making use of (F2), we find that

lim
n→∞ f

(
D
(
w∗, Tw∗)) + μ = –∞,

which is a contradiction. Therefore D(w∗, Tw∗) = 0. In other words, w∗ is a fixed point
of T . �

Example 2.5 Consider A = R ⊃N with an F -metric D : A × A → [0,∞) defined by

D(w,υ) =

⎧
⎨

⎩
(w – υ)2, if (w,υ) ∈N×N,

|w – υ|, if (w,υ) /∈N×N,

accompanied by f (t) = ln(t) and μ = ln(100). Define T : A → A by

Tw =

⎧
⎨

⎩
1 – w

2 , if w ∈N,

0, if w /∈N,
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and α,η : A × A → [0, +∞) by

α(w,υ) =

⎧
⎨

⎩
2, if w,υ ∈ [0,∞),

0, otherwise,
η(w,υ) =

⎧
⎨

⎩
1, if w,υ ∈ [0,∞),

0, otherwise.

Case I. If w = υ then, clearly, D(w,υ) = 0. Hence all conditions of Theorem 2.3 are satis-
fied.

Case II. If w, υ are in N, but Tw /∈N, Tυ /∈N, then

D(Tw, Tυ) = D
(

1 –
w
2

, 1 –
υ

2

)
=
[

1
2
|w – υ|

]
.

Clearly, T is an α-admissible mapping with respect to η, whenever α(w,υ) ≥ η(w,υ), so
that

D(Tw, Tυ) =
1
2
|w – υ| ≤ λ

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

(υ – w)2 ·
∣∣
∣∣
3
2

w – 1
∣∣
∣∣

1
(β–ŵ)(β–γ ) ·

∣∣
∣∣
3
2
υ – 1

∣∣
∣∣

1
(β–ŵ)(β–γ )

·
(∣∣∣
∣
3
2

w – 1
∣
∣∣
∣ +
∣
∣∣
∣
3
2
υ – 1

∣
∣∣
∣

) 1
(ŵ–β)(ŵ–γ )

·
(∣∣
∣∣w –

1
2
υ

∣∣
∣∣ +
∣∣
∣∣υ –

1
2

w
∣∣
∣∣

) 1
(γ –β)(γ –ŵ)

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

by taking constants λ ∈ [0, 1), and β , ŵ,γ ∈ (0, 1), for all w,υ ∈N\Fix(T).
Case III. When both w, υ are not in N, we obtain

D(Tw, Tυ) = 0,

and then, clearly, T is α-admissible mapping with respect to η, whenever α(w,υ) ≥ η(w,υ),
so that

D(Tw, Tυ) = 0 ≤ λ
[|w – υ| · |w| 1

(β–ŵ)(β–γ ) · |υ| 1
(β–ŵ)(β–γ ) · (|w| + |υ|) 1

(ŵ–β)(ŵ–γ ) + 1
(γ –β)(γ –ŵ)

]
,

where λ ∈ [0, 1), and β , ŵ,γ ∈ (0, 1), for all w,υ ∈ N\Fix(T).
Case IV. If one of w, v is in N and the other is not in N, we obtain

D(Tw, Tυ) = D
(

1 –
w
2

, 0
)

=
∣
∣∣
∣1 –

w
2

∣
∣∣
∣.

Clearly, T is α-admissible mapping with respect to η, whenever α(w,υ) ≥ η(w,υ), so that

D(Tw, Tυ) =
∣∣∣
∣1 –

w
2

∣∣∣
∣≤ λ

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎣

|w – υ| ·
∣∣
∣∣
3
2

w – 1
∣∣
∣∣

1
(β–ŵ)(β–γ ) · |υ| 1

(β–ŵ)(β–γ )

·
(∣∣∣
∣
3
2

w – 1
∣
∣∣
∣ + |υ|

) 1
(ŵ–β)(ŵ–γ )

·
(

|w| +
∣∣
∣∣υ +

1
2

w – 1
∣∣
∣∣

) 1
(γ –β)(γ –ŵ)

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎦

.
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Therefore, all conditions of Theorem 2.3 are satisfied. Hence T is a symmetric fractional
α–η-contraction of type I.

Definition 2.6 Let (A, D) be an F -metric space (A, D) and α,η : A × A → [0, +∞) two
functions. ThenF is said to be α–η-complete on A if and only if everyF -Cauchy sequence
{wn}, satisfying

α(wn, wn+1) ≥ η(wn, wn+1) for each n ∈N,

F -converges in A.

Remark 2.7 Theorems 2.3 and 2.4 also hold for an α–η-complete F -metric space instead
of F -complete F -metric space (for details, see [7]).

3 Symmetric fractional α–η-contraction of type II
In this section, a symmetric fractional α–η-contraction of type II is introduced in the
setting of an F -complete F -metric space. Using this notion, we shall provide a fixed point
theorem.

Definition 3.1 Consider a self-mapping T : A → A on an F -metric space (A, D) and let
two functions α,η : A × A → [0, +∞) be given. We say that T is a symmetric fractional
α–η-contraction of type II provided there are constants λ ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such
that, whenever α(w,υ) ≥ η(w,υ), we have

D(Tw, Tυ) ≤ λ
(
Š2(w,υ)

)
, (3.1)

where

Š2(w,υ) =

⎧
⎪⎨

⎪⎩

D(w,υ) · [D(w, Tw)
] β

(β–ŵ)(β–γ ) · [D(υ, Tυ)
] β

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] ŵ

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] γ

(γ –β)(γ –ŵ)

⎫
⎪⎬

⎪⎭
,

for all w,υ ∈ A\Fix(T).

Now we show and demonstrate our next theorem.

Theorem 3.2 Let (A, D) be an F -complete F -metric space and T be a symmetric frac-
tional α–η-contraction of type II fulfilling the following conditions:

(i) T is a α-admissible mapping with respect to η;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) T is α–η-continuous.
Then, T possesses a fixed point in A.

Proof Let w0 in A be sucht that α(w0, Tw0) ≥ η(w0, Tw0). For this w0 ∈ A, we build a
sequence {wn}∞n=1 in such a way that w1 = Tw0, w2 = Tw1 = T2w0. Proceeding this way,
wn+1 = Twn = Tn+1w0, for all n ∈N. Since the mapping T is α-admissible with respect to η,
α(w0, w1) = α(w0, Tw0) ≥ η(w0, Tw0) = η(w0, w1). Carrying on in this way, we obtain

α(wn–1, wn) ≥ η(wn–1, wn) = η(wn–1, Twn–1), for all n ∈ N. (3.2)
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If wn+1 = wn for some n ∈N then wn = w∗ is a fixed point of T . So, we assume that wn �= wn+1

and that

D(Twn–1, Twn) = D(wn, Twn) > 0, for every n ∈N.

As T is a symmetric fractional α–η-contraction of type II, for each n ∈N, we get

D(wn, wn+1) = D(Twn–1, Twn)

≤ λ
[
D(wn–1, wn) · D(wn–1, Twn–1)

β
(β–ŵ)(β–γ )

· D(wn, Twn)
β

(β–ŵ)(β–γ ) · [D(wn–1, Twn–1) + D(wn, Twn)
] ŵ

(ŵ–β)(ŵ–γ )

· [D(wn–1, Twn) + D(wn, Twn–1)
] γ

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn) · D(wn–1, wn)

β
(β–ŵ)(β–γ ) · D(wn, wn+1)

β
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn+1) + D(wn, wn)
] γ

(γ –β)(γ –ŵ)
]

≤ λ
[
D(wn–1, wn) · D(wn–1, wn)

β
(β–ŵ)(β–γ ) · D(wn, wn+1)

β
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] γ

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn) · D(wn–1, wn)

β
(β–ŵ)(β–γ ) · D(wn, wn+1)

β
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ

(ŵ–β)(ŵ–γ ) + γ

(γ –β)(γ –ŵ)
]

≤ λ
[
D(wn–1, wn) · D(wn–1, wn)

β
(β–ŵ)(β–γ ) · D(wn, wn+1)

β
(β–ŵ)(β–γ )

· [D(wn–1, wn) · D(wn, wn+1)
] ŵ

(ŵ–β)(ŵ–γ ) + γ

(γ –β)(γ –ŵ)
]

= λ[D(wn–1, wn)1+ β
(β–ŵ)(β–γ ) + ŵ

(ŵ–β)(ŵ–γ ) + γ

(γ –β)(γ –ŵ)

· D(wn, wn+1)
β

(β–ŵ)(β–γ ) + ŵ
(ŵ–β)(ŵ–γ ) + γ

(γ –β)(γ –ŵ)

= λD(wn–1, wn)

and deduce

D(wn, wn+1) ≤ λD(wn–1, wn). (3.3)

We conclude that {D(wn–1, wn)} is a nonincreasing sequence with nonnegative terms. As a
result, there is a nonnegative constant ρ such that limn→∞ D(wn–1, wn) = ρ . We shall show
that ρ > 0. Indeed, from (3.3), we derive that

D(wn, wn+1) ≤ λD(wn–1, wn) ≤ λnD(w0, w1). (3.4)

The rest of the proof follows along the same lines as the proof of Theorem 2.3. �
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Theorem 3.3 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type II satisfying the following conditions:

(i) T is an α-admissible mapping with respect to η;
(ii) there exists an w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) there is a sequence {wn} in A such that α(wn, wn+1) ≥ η(wn, wn+1), wn → w∗ as
n → ∞, and α(wn, w∗) ≥ η(wn, w∗) holds for each n ∈N.

Then, T possesses a fixed point in A.

Proof We follow the lines of the proof of Theorem 2.4. Since, by (iii), α(wn, w∗) ≥ η(wn, w∗)
holds for every n ∈N, using (D3), we get

f
(
D
(
Tw∗, w∗))≤ f

(
D
(
Tw∗, Twn

)
+ D
(
wn, w∗)) + μ.

From (3.1) and (F1), we have

f
(
D
(
Tw∗, w∗)) ≤ f

((
D
(
Tw∗, Twn

))
+ D
(
Twn, w∗)) + μ

≤ f

⎛

⎜
⎜⎜
⎜⎜
⎝

λ

⎛

⎜
⎜⎜
⎜⎜
⎝

D
(
w∗, wn

) · D
(
Tw∗, w∗) β

(β–ŵ)(β–γ ) · D(wn, Twn)
β

(β–ŵ)(β–γ )

· [D(Tw∗, w∗) + D(wn, Twn)
] ŵ

(ŵ–β)(ŵ–γ )

· [D(Twn, w∗) + D
(
wn, Tw∗)] γ

(γ –β)(γ –ŵ) + D
(
wn+1, w∗)

⎞

⎟
⎟⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎟⎟
⎠

+ μ.

Making use of (2.6) and that

lim
n→∞ D

(
wn, w∗) = 0 together lim

n→∞ D
(
wn+1, w∗) = 0,

we obtain

f
(
D
(
w∗, Tw∗))≤ f

(
D
(
w∗, Tw∗)) + μ.

Using (F2), we have

lim
n→∞ f

(
D
(
w∗, Tw∗)) + μ = –∞,

which is a logical inconsistency. Hence D(w∗, Tw∗) = 0, that is, w∗ is a fixed point of T . �

4 Symmetric fractional α–η-contraction of type III
In this section, a symmetric fractional α–η-contraction of type III is considered in the
setting of an F -complete F -metric space. Before stating a fixed-point theorem for such
maps, we define a symmetric fractional α–η-contraction of type III as follows:

Definition 4.1 Let (A, D) be an F -metric space with a self-mapping T : A → A and two
functions α,η : A×A → [0, +∞). We say that T is a symmetric fractional α–η-contraction
of type III if there are constants λ ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that, whenever α(w,υ) ≥
η(w,υ), we have

D(Tw, Tυ) ≤ λ
(
Š3(w,υ)

)
, (4.1)
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where

Š3(w,υ) = λmax

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D(w,υ),
[
D(w, Tw)

] β2
(β–ŵ)(β–γ ) · [D(υ, Tυ)

] β2
(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] ŵ2

(ŵ–β)(ŵ–γ )

· [D(w, Tυ) + D(υ, Tw)
] γ 2

(γ –β)(γ –ŵ)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

for all w,υ ∈ A\Fix(T).

Now we state and prove our next theorem.

Theorem 4.2 Let (A, D) be an F -complete F -metric space and consider a symmetric frac-
tional α–η-contraction T of type III that satisfies the following conditions:

(i) T is a α-admissible mapping with respect to η;
(ii) there exist a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) T is α–η-continuous.
Then, T possesses a fixed point in A.

Proof Let w0 in A be such that α(w0, Tw0) ≥ η(w0, Tw0). Using this w0 ∈ A, we define
{wn}∞n=1 in such a way that w1 = Tw0, w2 = Tw1 = T2w0. Continuing this way, we get
wn+1 = Twn = Tn+1w0, for every n ∈ N. Since the mapping T is α-admissible with respect
to η, α(w0, w1) = α(w0, Tw0) ≥ η(w0, Tw0) = η(w0, w1). Carrying on in this way, we find

α(wn–1, wn) ≥ η(wn–1, wn) = η(wn–1, Twn–1), for all n ∈ N. (4.2)

If wn+1 = wn for some n ∈N then wn = w∗ is a fixed point of T . So, we assume that wn �= wn+1

and that

D(Twn–1, Twn) = D(wn, Twn) > 0, for each n ∈N.

As T is a symmetric fractional α–η-contraction of type III, for any n ∈N, we get

D(wn, wn+1) = D(Twn–1, Twn)

≤ λmax
[
D(wn–1, wn), D(wn–1, Twn–1)

β2
(β–ŵ)(β–γ )

· D(wn, Twn)
β2

(β–ŵ)(β–γ )

· [D(wn–1, Twn–1) + D(wn, Twn)
] ŵ2

(ŵ–β)(ŵ–γ )

· [D(wn–1, Twn) + D(wn, Twn–1)
] γ 2

(γ –β)(γ –ŵ)
]

= λmax
[
D(wn–1, wn), D(wn–1, wn)

β2
(β–ŵ)(β–γ ) · D(wn, wn+1)

β2
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ2

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn+1) + D(wn, wn)
] γ 2

(γ –β)(γ –ŵ)
]
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≤ λmax
[
D(wn–1, wn), D(wn–1, wn)

β2
(β–ŵ)(β–γ ) · D(wn, wn+1)

β2
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ2

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] γ 2

(γ –β)(γ –ŵ)
]

= λmax
[
D(wn–1, wn), D(wn–1, wn)

β2
(β–ŵ)(β–γ ) · D(wn, wn+1)

β2
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ2

(ŵ–β)(ŵ–γ ) + γ 2
(γ –β)(γ –ŵ)

]

≤ λmax
[
D(wn–1, wn), D(wn–1, wn)

β2
(β–ŵ)(β–γ ) · D(wn, wn+1)

β2
(β–ŵ)(β–γ )

· [D(wn–1, wn) · D(wn, wn+1)
] ŵ2

(ŵ–β)(ŵ–γ ) + γ 2
(γ –β)(γ –ŵ)

]

= λmax
[
D(wn–1, wn), D(wn–1, wn)

β2
(β–ŵ)(β–γ ) + ŵ2

(ŵ–β)(ŵ–γ ) + γ 2
(γ –β)(γ –ŵ)

· D(wn, wn+1)
β2

(β–ŵ)(β–γ ) + ŵ2
(ŵ–β)(ŵ–γ ) + γ 2

(γ –β)(γ –ŵ)
]

= λmax
{

D(wn–1, wn), D(wn, wn+1)
}

.

If max{D(wn, wn+1), D(wn–1, wn)} = D(wn, wn+1) then

D(wn, wn+1) ≤ λD(wn, wn+1),

which is a contradiction. Thus we deduce that

D(wn, wn+1) ≤ λD(wn–1, wn), (4.3)

and conclude that {D(wn–1, wn)} is a nonincreasing sequence with nonnegative terms. So
there is a nonnegative constant ρ such that limn→∞ D(wn–1, wn) = ρ . We shall establish
that ρ > 0. Indeed, from (4.3), we derive that

D(wn, wn+1) ≤ λD(wn–1, wn) ≤ λnD(w0, w1). (4.4)

The rest of the argument follows the lines of the proof of Theorem 2.3. �

Theorem 4.3 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type III satisfying the following conditions:

(i) T is an α-admissible mapping with respect to η;
(ii) there exists an w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) there is a sequence {wn} in A such that α(wn, wn+1) ≥ η(wn, wn+1), wn → w∗ as
n → ∞, and that α(wn, w∗) ≥ η(wn, w∗) holds for each n ∈N.

Then T possesses a fixed point in A.

Proof Much as in the proof of Theorem 2.4, considering (iii), we have α(wn, w∗) ≥
η(wn, w∗) for all n ∈N. By (D3), we obtain

f
(
D
(
Tw∗, w∗))≤ f

(
D
(
Tw∗, Twn

)
+ D
(
wn, w∗)) + μ.
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Using (3.1) along with (F1), we have

f
(
D
(
Tw∗, w∗)) ≤ f

((
D
(
Tw∗, Twn

))
+ D
(
Twn, w∗)) + μ

≤ f

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

λ

⎛

⎜⎜
⎜⎜
⎜⎜
⎝

D
(
w∗, wn

)
, D
(
Tw∗, w∗) β2

(β–ŵ)(β–γ ) · D(wn, Twn)
β2

(β–ŵ)(β–γ )

· [D(Tw∗, w∗) + D(wn, Twn)
] ŵ2

(ŵ–β)(ŵ–γ )

· [D(Twn, w∗) + D
(
wn, Tw∗)] γ 2

(γ –β)(γ –ŵ) + D
(
wn+1, w∗)

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

⎞

⎟⎟
⎟⎟
⎟⎟
⎠

+ μ.

Using (2.6) implies

lim
n→∞ D

(
wn, w∗) = 0 as long as lim

n→∞ D
(
wn+1, w∗) = 0,

so we obtain

f
(
D
(
w∗, Tw∗))≤ f

(
D
(
w∗, Tw∗)) + μ.

Utilizing (F2), we have

lim
n→∞ f

(
D
(
w∗, Tw∗)) + μ = –∞,

which is a logical inconsistency. Hence D(w∗, Tw∗) = 0, that is, w∗ a fixed point of T . �

5 Symmetric fractional α–η-contraction of type IV
In this part, we propose a new notion of symmetric fractional α–η-contraction of type IV
in the framework of an F -complete F -metric space.

Definition 5.1 Consider anF -metric space (A, D) with a self-mapping T : A → A and two
functions α,η : A × A → [0, +∞). We name T a symmetric fractional α–η-contraction of
type IV if there are constants λ ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) with β + ŵ + γ < 1 such that,
whenever α(w,υ) ≥ η(w,υ), we have

D(Tw, Tυ) ≤ λ
(
Š4(w,υ)

)
, (5.1)

where

Š4(w,υ) = λ

⎧
⎪⎨

⎪⎩

D(w,υ)
β3

(β–ŵ)(β–γ ) · D(w, Tw)
β3

(β–ŵ)(β–γ ) · [D(w, Tw) + D(υ, Tυ)
] ŵ3

(ŵ–β)(ŵ–γ )

· [D(w, Tυ) + D(υ, Tw)
] γ 3

(γ –β)(γ –ŵ)

⎫
⎪⎬

⎪⎭
,

for all w,υ ∈ A\Fix(T).

Now we state and prove our next theorem.

Theorem 5.2 Consider anF -completeF -metric space (A, D) along with a symmetric frac-
tional α–η-contraction T of type IV that satisfies the following conditions:
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(i) T is a α-admissible mapping with respect to η;
(ii) there exist a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) T is α–η-continuous.
Then T possesses a fixed point in A.

Proof Let w0 in A be such that α(w0, Tw0) ≥ η(w0, Tw0). For this w0 ∈ A, we build a se-
quence {wn}∞n=1 in such a way that w1 = Tw0, w2 = Tw1 = T2w0. Proceeding this way,
wn+1 = Twn = Tn+1w0, for every n ∈ N. Since the mapping T is α-admissible with respect
to η, α(w0, w1) = α(w0, Tw0) ≥ η(w0, Tw0) = η(w0, w1). Carrying on in this way, we get

α(wn–1, wn) ≥ η(wn–1, wn) = η(wn–1, Twn–1), for each n ∈N. (5.2)

If wn+1 = wn for some n ∈N then wn = w∗ is a fixed point of T . So, we assume that wn �= wn+1

and

D(Twn–1, Twn) = D(wn, Twn) > 0, for all n ∈N.

As T is a symmetric fractional α–η-contraction of type IV, for each n ∈N, we have

D(wn, wn+1) = D(Twn–1, Twn)

≤ λ
[
D(wn–1, wn)

β3
(β–ŵ)(β–γ ) · D(wn–1, Twn–1)

β3
(β–ŵ)(β–γ )

· [D(wn–1, Twn–1) + D(wn, Twn)
] ŵ3

(ŵ–β)(ŵ–γ )

· [D(wn–1, Twn) + D(wn, Twn–1)
] γ 3

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn)

β3
(β–ŵ)(β–γ ) · D(wn, wn+1)

β3
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ3

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn+1) + D(wn, wn)
] γ 3

(γ –β)(γ –ŵ)
]

≤ λ
[
D(wn–1, wn)

β3
(β–ŵ)(β–γ ) · D(wn, wn+1)

β3
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ3

(ŵ–β)(ŵ–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] γ 3

(γ –β)(γ –ŵ)
]

= λ
[
D(wn–1, wn)

β3
(β–ŵ)(β–γ ) · D(wn, wn+1)

β3
(β–ŵ)(β–γ )

· [D(wn–1, wn) + D(wn, wn+1)
] ŵ3

(ŵ–β)(ŵ–γ ) + γ 3
(γ –β)(γ –ŵ)

]

≤ λ

⎡

⎢
⎣

D(wn–1, wn)
β3

(β–ŵ)(β–γ ) · D(wn, wn+1)
β3

(β–ŵ)(β–γ )

· [D(wn–1, wn) · D(wn, wn+1)
] ŵ3

(ŵ–β)(ŵ–γ ) + γ 3
(γ –β)(γ –ŵ)

⎤

⎥
⎦

= λ
[
D(wn–1, wn)

β3
(β–ŵ)(β–γ ) + ŵ3

(ŵ–β)(ŵ–γ ) + γ 3
(γ –β)(γ –ŵ)
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· D(wn, wn+1)
β3

(β–ŵ)(β–γ ) + ŵ3
(ŵ–β)(ŵ–γ ) + γ 3

(γ –β)(γ –ŵ)
]

= λ
{

D(wn–1, wn) · D(wn, wn+1)
}β+ŵ+γ

≤ λmax
{

D(wn–1, wn), D(wn, wn+1)
}

.

If max{D(wn, wn+1), D(wn–1, wn)} = D(wn, wn+1) then

D(wn, wn+1) ≤ λD(wn, wn+1),

which is a contradiction. So we deduce that

D(wn, wn+1) ≤ λD(wn–1, wn). (5.3)

The rest of the argument follows the proof of Theorem 2.3. �

Theorem 5.3 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type IV fulfilling the following conditions:

(i) T is a α-admissible mapping with respect to η;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ η(w0, Tw0);

(iii) there is a sequence {wn} in A satisfying α(wn, wn+1) ≥ η(wn, wn+1), such that
wn → w∗ as n → ∞, and α(wn, w∗) ≥ η(wn, w∗) holds for each n ∈N.

Then T possesses a fixed point in A.

Taking η(w,υ) = 1 in Theorems 2.3, 2.4, 3.2, and 3.3, we obtain the following corollaries.

Corollary 5.4 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type I fulfilling the following conditions:

(i) T is a α-admissible mapping;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ 1;

(iii) T is α–η-continuous.
Then T has a fixed point in A.

Corollary 5.5 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type I fulfilling the following conditions:

(i) T is a α-admissible mapping;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ 1;

(iii) there is a sequence {wn} in A satisfying α(wn, wn+1) ≥ 1, such that wn → w∗ as
n → ∞, and α(wn, w∗) ≥ 1 holds for each n ∈N.

Then T possesses a fixed point in A.

Corollary 5.6 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type II satisfying the following conditions:

(i) T is a α-admissible mapping;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ 1;

(iii) T is α–η-continuous.
Then T has a fixed point in A.
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Corollary 5.7 Consider an F -complete F -metric space (A, D) and let T be a symmetric
fractional α–η-contraction of type II satisfying the following conditions:

(i) T is a α-admissible mapping;
(ii) there exists a w0 ∈ A such that α(w0, Tw0) ≥ 1;

(iii) there is a sequence {wn} in A satisfying α(wn, wn+1) ≥ 1 such that wn → w∗ as
n → ∞, and α(wn, w∗) ≥ 1 holds for each n ∈N.

Then T possesses a fixed point in A.

In a similar fashion, we can deduce analogues of Corollaries 5.4, 5.5, 5.6, and 5.7 for a
symmetric fractional α–η-contraction of type III and IV, respectively.

6 Consequences
As a consequence of our results, we derive some results for Suzuki-type contractions,
orbitally T-complete and orbitally continuous mappings in F -metric spaces.

Theorem 6.1 Consider an F -metric space (A, D) and let T be a continuous self-mapping
on A. Assume that there are r ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that

D(w, Tw) ≤ D(w,υ)) implies D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
, (6.1)

where

Š1(w,υ) = D(w,υ) · D(w, Tw)
1

(β–ŵ)(β–γ ) · D(υ, Tυ)
1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ)

for all w,υ ∈ A\Fix(T).
Then T possesses a fixed point in A.

Proof Describe α,η : A × A → [0, +∞) by

α(w,υ) = D(w,υ) and η(w,υ) = D(w, Tw), for all w,υ ∈ A,

and β , ŵ,γ ∈ (0, 1), as well as r ∈ [0, 1). It is clear that

η(w,υ) ≤ α(w,υ), for all w,υ ∈ A,

that is, conditions (i)–(iii) of our Theorem 2.3 hold true. If

η(w, Tw) ≤ α(w,υ) then D(w, Tw) ≤ D(w,υ),

which implies the contractive condition

D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
.

Finally, every assumption of Theorem 2.3 holds true. Hence T possesses a fixed point
in A. �
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Theorem 6.2 Consider anF -metric space (A, D) and let T be a self-mapping of A. Suppose
the following assumptions hold:

(i) (A, D) is an orbitally T-complete F -metric space;
(ii) there exist r ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that

D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
,

where

Š1(w,υ) = D(w,υ) · D(w, Tw)
1

(β–ŵ)(β–γ ) · D(υ, Tυ)
1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ)

for all w,υ ∈ O(ω) for some ω ∈ A, where O(ω) is an orbit of ω;
(iii) if {υn} is a sequence such that {υn} ⊆ O(ω) with υn → υ∗ as n → ∞ then υ∗ ∈ O(ω).

Then T possesses a fixed point.

Proof Describe α,η : A×A → [0, +∞) by setting α(w,υ) = 3 on O(ω)×O(ω) and α(w,υ) =
0 otherwise, and η(w,υ) = 1 for all w,υ ∈ A (see [7, Remark 6]). Then (A, D) is an α–η-
complete F -metric space and T is an α-admissible mapping with respect to η. If α(w,υ) ≥
η(w,υ) then w,υ ∈ O(ω), and so from (ii) we have

D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
,

where

Š1(w,υ) = D(w,υ) · D(w, Tw)
1

(β–ŵ)(β–γ ) · D(υ, Tυ)
1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ) ,

that is, T is a symmetric fractional α–η-contraction of type I. Let {υn} be a sequence such
that α(υn,υn+1) ≥ η(υn,υn+1) and υn → υ∗ for n → ∞. So, {υn} ⊆ O(ω). From (iii), υ∗ ∈
O(ω), that is, α(υn,υ∗) ≥ η(υn,υ∗). Hence every assumption of Theorem 2.4 holds true.
Thus T possesses a fixed point. �

Theorem 6.3 Consider anF -metric space (A, D) and let T be a self-mapping of A. Suppose
the following conditions hold:

(i) for all w,υ ∈ O(ω), there are r ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that

D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
,

where

Š1(w,υ) = D(w,υ) · [D(w, Tw)
] 1

(β–ŵ)(β–γ ) · [D(υ, Tυ)
] 1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ)

for some ω ∈ A;
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(ii) the operator T is orbitally continuous.
Then T possesses a fixed point.

Proof Describe α,η : A×A → [0, +∞) by setting α(w,υ) = 3 on O(ω)×O(ω) and α(w,υ) =
0 otherwise, with η(w,υ) = 1 (see [38, Remark 1.1]). We know that T is an α–η-continuous
mapping. If α(w,υ) ≥ η(w,υ) then w,υ ∈ O(ω). So Tw, Tυ ∈ O(ω), that is, α(Tw, Tυ) ≥
η(Tw, Tυ). Therefore T is an α-admissible mapping with respect to η. From (i) we have

D(Tw, Tυ) ≤ r
(
Š1(w,υ)

)
,

where

Š1(w,υ) = D(w,υ) · D(w, Tw)
1

(β–ŵ)(β–γ ) · D(υ, Tυ)
1

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] 1

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] 1

(γ –β)(γ –ŵ) ,

implying that T is a symmetric fractional α–η-contraction of type I. Hence each assump-
tion of Theorem 2.3 holds true. Thus T has a fixed point. �

Theorem 6.4 Consider anF -metric space (A, D) and let T be a self-mapping of A. Suppose
the following conditions hold:

(i) (A, D) is an orbitally T-complete F -metric space;
(ii) there exist r ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that

D(Tw, Tυ) ≤ r
(
Š2(w,υ)

)
,

where

Š2(w,υ) = D(w,υ) · [D(w, Tw)
] β

(β–ŵ)(β–γ ) · [D(υ, Tυ)
] β

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] ŵ

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] γ

(γ –β)(γ –ŵ)

for all w,υ ∈ O(ω), for some ω ∈ A, where O(ω) is an orbit of ω;
(iii) if {υn} is a sequence such that {υn} ⊆ O(ω) with υn → υ∗ as n → ∞ then υ∗ ∈ O(ω).
Then, T possesses a fixed point.

Theorem 6.5 Consider anF -metric space (A, D) and let T be a self-mapping of A. Suppose
the following conditions hold:

(i) for all w,υ ∈ O(ω), there exist r ∈ [0, 1) and β , ŵ,γ ∈ (0, 1) such that

D(Tw, Tυ) ≤ r
(
Š2(w,υ)

)
,

where

Š2(w,υ) = D(w,υ) · [D(w, Tw)
] β

(β–ŵ)(β–γ ) · [D(υ, Tυ)
] β

(β–ŵ)(β–γ )

· [D(w, Tw) + D(υ, Tυ)
] ŵ

(ŵ–β)(ŵ–γ ) · [D(w, Tυ) + D(υ, Tw)
] γ

(γ –β)(γ –ŵ)

for some ω ∈ A;
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(ii) the operator T is an orbitally continuous.
Then T possesses a fixed point.

Theorems 6.1–6.3 can be derived easily for symmetric fractional contractions of type
III and IV, respectively.

7 Application to fractional differential equations
The local and nonlocal fractional differential equations have recently proved to be signifi-
cant tools in the modeling of many phenomena in numerous fields of science and engineer-
ing. The fractional-order differential equations have numerous applications in viscoelas-
ticity, electrochemistry, control, porous media, electromagnetics, etc. For more details,
see [9–25]. Our aim is to show the existence and uniqueness of a bounded solution to
a boundary value problem involving a generalized fractional derivative in the Riemann–
Liouville sense.

Actually, the left Riemann–Liouville fractional integral of a Lebesgue-integrable func-
tion f with respect to an increasing function g is given as follows [10]:

aIα
g f (t) =

1

(α)

∫ t

a

(
g(t) – g(s)

)α–1f (s)g ′(s) ds, where α > 0. (7.1)

The associated left Riemann–Liouville fractional derivative of f with respect to the same
increasing function g is given by [10]

aDα
g f (t) =

(
1

g ′(t)
d
dt

)n

I(n–α)f (t)

=
(

1
g ′(t)

d
dt

)n 1

(α)

∫ t

a

(
g(t) – g(s)

)n–α–1f (s)g ′(s) ds,
(7.2)

where α ≥ 0, n = [α] + 1, and [α] is the integer part of α. The following theorem combines
the fractional integral and derivative.

Theorem 7.1 ([11]) Let α > 0, n = –[–α], f ∈ L[a, b], and aIα
g f ∈ ACn

g [a, b]. Then

aIα
gaDα

g f (t) = f (t) –
n∑

k=1

ck
(
g(t) – g(a)

)α–k .

We are considering the following boundary value problem:

aDα
g y(t) + f

(
t, y(t)

)
= 0, y(a) = y(b) = 0, 1 < α ≤ 2. (7.3)

Lemma 7.2 Let α > 0, n = –[–α], f ∈ L[a, b], and aIα
g f ∈ ACn

g [a, b]. Then, y is a solution of
the boundary value problem (7.3) if and only if

y(t) =
∫ b

a
G(s, t)f

(
s, y(s)

)
g ′(s) ds,
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where the Green’s function

G(s, t) =
1


(α)

⎧
⎨

⎩

( (g(b)–g(s))(g(t)–g(a))
(g(b)–g(a)) )α–1 – (g(t) – g(s))α–1, a < s ≤ t,

( (g(b)–g(s))(g(t)–g(a))
(g(b)–g(a)) )α–1, t ≤ s < b,

satisfies the following:
• G(s, t) ≥ 0;
• maxa≤s,t≤b G(s, t) = 1


(α) ( g(b)–g(a)
4 )α–1.

Proof Applying the integral in (7.1) to (7.3), we get

aIα
gaDα

g y(t) = –aIα
g f
(
t, y(t)

)
= –

1

(α)

∫ t

a

(
g(t) – g(s)

)α–1f (s)g ′(s) ds.

Now using Theorem 7.1, we obtain

y(t) = c1
(
g(t) – g(a)

)α–1 + c2
(
g(t) – g(a)

)α–2 –
1


(α)

∫ t

a

(
g(t) – g(s)

)α–1f (s)g ′(s) ds.

Then y(a) = 0 gives c2 = 0, while y(b) = 0 gives

c1 =
(g(b) – g(a))1–α


(α)

∫ b

a

(
g(b) – g(s)

)α–1f
(
s, y(s)

)
g ′(s) ds.

Therefore

y(t) =
1


(α)

∫ b

a

(g(b) – g(s))(g(t) – g(a))α–1

(g(b) – g(a))
f
(
s, y(s)

)
g ′(s) ds

–
1


(α)

∫ t

a

(
g(t) – g(s)

)α–1f
(
s, y(s)

)
g ′(s) ds.

Hence

y(t) =
∫ b

a
G(s, t)f

(
s, y(s)

)
g ′(s) ds,

where G(s, t) =
1


(α)

⎧
⎨

⎩

( (g(b)–g(s))(g(t)–g(a))
(g(b)–g(a)) )α–1 – (g(t) – g(s))α–1, a < s ≤ t,

( (g(b)–g(s))(g(t)–g(a))
(g(b)–g(a)) )α–1, t ≤ s < b.

It is clear that G(s, t) ≥ 0, when s ≥ t.
For a ≤ s < t, one can prove that

G(s, t) =
(

(g(t) – g(a))
(g(b) – g(a))

)α–1

·
[(

g(b) – g(a)
)α–1 –

(
g(b) –

(
g(a) +

(g(s) – g(a))(g(b) – g(a))
(g(t) – g(a))

)α–1)]
.

Since g(a) + (g(s)–g(a))(g(b)–g(a))
(g(t)–g(a)) ≥ g(s), one can deduce that G(s, t) ≥ 0, for s ≤ t.
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For t ≤ s, we have

∂G
∂t

=
1


(α)

(
g(b) – g(s)

(g(b) – g(a))

)α–1

· (α – 1)
(
g(t) – g(a)

)α–2g ′(t) ≥ 0,

thus G(s, t) is increasing as a function of t.
For s ≤ t,

∂G
∂t

=
g ′(t)(α – 1)


(α)
·
[

–
(
g(t) – g(s)

)α–2 +
(

g(b) – g(s)
g(b) – g(a)

)α–1(
g(t) – g(a)

)α–2
]

=
g ′(t)


(α – 1)
·
(

g(t) – g(a)
g(b) – g(a)

)α–2

·
[(

g(b) – g(s)
g(b) – g(a)

)α–1

–
(

(g(b) – g(a))(g(t) – g(s))
g(b) – g(a)

)α–2]

≤ g ′(t)

(α – 1)

·
(

g(t) – g(a)
g(b) – g(a)

)α–2

·
[
(
g(b) – g(a)

)α–2 –
(

g(b) –
(

g(a) +
g(b) – g(a)
g(t) – g(a)

(
g(s) – g(a)

)
)α–2)]

< 0.

Thus G(s, t) is decreasing when s ≤ t. Hence G(s, t) attains its maximum when s = t, and

G(s, s) =
1


(α)
(g(b) – g(s))α–1(g(s) – g(a))α–1

(g(b) – g(a))α–1 = Ĝ(s),

Ĝ′(s) = –
1


(α)
(α – 1)

(g(b) – g(s))α–2

(g(b) – g(a))α–1 g ′(s) · (g(s) – g(a)
)α–1

+
1


(α)
(g(b) – g(s))α–1(α – 1)(g(s) – g(a))α–2g ′(s)

(g(b) – g(a))α–1

= 0

yield g(s) = g(a)+g(b)
2 , or that the critical point is

s∗ = g–1
(

g(a) + g(b)
2

)
.

Thus, the maximum of G(s, t) is

Ĝ
(
s∗) =

1

(α)

(
g(b) – g(a)

4

)α–1

,

∣
∣G(s, t)

∣
∣≤ 1


(α)

(
g(b) – g(a)

4

)α–1

. �

Here we denote the Riemann–Stieltjes integrable function w with respect to s and f :
[0, 1] × R → R is a continuous function. Let C(I) be the linear space of all continuous
functions defined on I = [0, 1], and let D(w,υ) = ‖w – υ‖2∞ = maxt∈I |w(t) – υ(t)|2 for all
w,υ ∈ C(I). Then (C(I), D) is an F -complete metric space.
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We consider the following conditions:
(a) there exist r ∈ [0, 1) and ζ : R2 → R, a function such that for each a, b ∈ R with

ζ (a, b) ≥ ξ (a, b) satisfies

∣
∣f
(
s, w(s)

)
– f
(
s,υ(s)

)∣∣

≤ ∣∣w(s) – υ(s)
∣∣2 · ∣∣w(s) – Tw(s)

∣∣
2β

(β–ŵ)(β–γ ) · ∣∣υ(s) – Tυ(s)
∣∣

2β
(β–ŵ)(β–γ )

· [∣∣w(s) – Tw(s)
∣
∣ +
∣
∣υ(s) – Tυ(s)

∣
∣]

ŵ
(ŵ–β)(ŵ–γ )

· [∣∣w(s) – Tυ(s)
∣
∣ +
∣
∣υ(s) – Tw(s)

∣
∣]

γ

(γ –β)(γ –ŵ) ,

where β , ŵ,γ ∈ (0, 1);
(b) there exists w1 ∈ C(I) such that

ζ

(
w1(t),

∫ b

a
G(t, s)f

(
s, w1(s)

)
g ′(s) ds

)
≥ ξ

(
w1(t),

∫ b

a
G(t, s)f

(
s, w1(s)

)
g ′(s) ds

)
,

for all t ∈ I ;
(c) for each w,υ ∈ C(I), there exist w1, v1 ∈ C(I) such that ζ (w(t),υ(t)) ≥ ξ (w(t),υ(t))

implies

ζ

(∫ b

a
G(t, s)f

(
s, w1(s)

)
g ′(s) ds,

∫ b

a
G(t, s)f

(
s,υ1(s)

)
g ′(s) ds

)

≥ ξ

(∫ b

a
G(t, s)f

(
s, w1(s)

)
g ′(s) ds,

∫ b

a
G(t, s)f

(
s,υ1(s)

)
g ′(s) ds

)
,

for all t ∈ I ;
(d) for any cluster point w of a sequence {wn} of points in C(I) with

ζ (wn, wn+1) ≥ ξ (wn, wn+1), lim
n→∞ inf ζ (wn, w) ≥ lim

n→∞ inf ξ (wn, w).

Theorem 7.3 Suppose that conditions (a)–(d) are satisfied. Then (7.3) has at least one
solution w∗ ∈ C(I).

Proof We know that w ∈ C(I) is a solution of (7.3) if and only if w ∈ C(I) is a solution of
the fractional-order integral equation

w(t) = λ

∫ b

a
G(t, s)f

(
s, w(s)

)
g ′(s) ds for all t ∈ I,

where λ,∈ [0, 1). We define a map T : C(I) → C(I) by

Tw(t) = λ

∫ b

a
G(t, s)f

(
s, w(s)

)
g ′(s) ds for all t ∈ I.
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Then problem (7.3) is equivalent to finding w∗ ∈ C(I) that is a fixed point of T . Let w,υ ∈
C(I) be such that ζ (w(t),υ(t)) ≥ 0 for all t ∈ I . For using condition (a), we get

∣
∣Tw(t) – Tυ(t)

∣
∣ =
∣∣
∣∣λ
∫ b

a
G(t, s)

[
f
(
s, w(s)

)
– f
(
s,υ(s)

)]
g ′(s) ds

∣∣
∣∣

≤ |λ|
∫ b

a

∣∣G(t, s)
∣∣∣∣f
(
s, w(s)

)
– f
(
s,υ(s)

)
g ′(s) ds

∣∣

≤ |λ|
∫ b

a

∣
∣G(t, s)

∣
∣g ′(s)r ds

∣
∣w(s) – υ(s)

∣
∣2

· ∣∣w(s) – Tw(s)
∣∣

2β
(β–ŵ)(β–γ ) · ∣∣υ(s) – Tυ(s)

∣∣
2β

(β–ŵ)(β–γ )

· [∣∣w(s) – Tw(s)
∣
∣ +
∣
∣υ(s) – Tυ(s)

∣
∣]

ŵ
(ŵ–β)(ŵ–γ )

· [∣∣w(s) – Tυ(s)
∣
∣ +
∣
∣υ(s) – Tw(s)

∣
∣]

γ

(γ –β)(γ –ŵ) ]

≤ 1

(α)

(
g(b) – g(a)

4

)α–1(
g(b) – g(a)

)∥∥w(s) – υ(s)
∥∥2

∞

· ∥∥w(s) – Tw(s)
∥
∥

2β
(β–ŵ)(β–γ )∞ · ∥∥υ(s) – Tυ(s)

∥
∥

2β
(β–ŵ)(β–γ )∞

· [∥∥w(s) – Tw(s)
∥∥2

∞ +
∥∥υ(s) – Tυ(s)

∥∥2
∞
] ŵ

(ŵ–β)(ŵ–γ )

· [∥∥w(s) – Tυ(s)
∥∥2

∞ +
∥∥υ(s) – Tw(s)

∥∥2
∞
] γ

(γ –β)(γ –ŵ)

≤ r
∥
∥w(s) – υ(s)

∥
∥2

∞ · ∥∥w(s) – Tw(s)
∥
∥

2β
(β–ŵ)(β–γ )∞

· ∥∥υ(s) – Tυ(s)
∥∥

2β
(β–ŵ)(β–γ )∞ · ∥∥w(s) – Tυ(s)

∥∥2(pγ –qγ )
∞

· [∥∥w(s) – Tw(s)
∥
∥2

∞ +
∥
∥υ(s) – Tυ(s)

∥
∥2

∞
] ŵ

(ŵ–β)(ŵ–γ )

· [∥∥w(s) – Tυ(s)
∥
∥2

∞ +
∥
∥υ(s) – Tw(s)

∥
∥2

∞
] γ

(γ –β)(γ –ŵ) .

Thus

D(Tw, Tυ) <
∣∣w(s) – υ(s)

∣∣2 · ∣∣w(s) – Tw(s)
∣∣

2β
(β–ŵ)(β–γ )

· ∣∣υ(s) – Tυ(s)
∣
∣

2β
(β–ŵ)(β–γ ) · [∣∣w(s) – Tw(s)

∣
∣

+
∣∣υ(s) – Tυ(s)

∣∣]
ŵ

(ŵ–β)(ŵ–γ ) · [∣∣w(s) – Tυ(s)
∣∣ +
∣∣υ(s) – Tw(s)

∣∣]
γ

(γ –β)(γ –ŵ)

for all w,υ ∈ C(I) such that ζ (w(t),υ(t)) ≥ ξ (w(t),υ(t)) for all t ∈ I . We define α : C(I) ×
C(I) → [0,∞) by

α(w,υ) =

⎧
⎨

⎩
1 if ζ (w(t),υ(t)) ≥ 0, t ∈ I,

0 otherwise,
and

η(w,υ) =

⎧
⎨

⎩

1
2 if ξ (w(t),υ(t)) ≥ 0, t ∈ I,

0 otherwise.
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Then, for all w,υ ∈ C(I), α(w,υ) ≥ η(w,υ), we have

D(Tw, Tυ) ≤ r

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|w(s) – υ(s)|2 · |w(s) – Tw(s)| 2β
(β–ŵ)(β–γ ) · |υ(s) – Tυ(s)| 2β

(β–ŵ)(β–γ )

· [|w(s) – Tw(s)| + |υ(s) – Tυ(s)|] ŵ
(ŵ–β)(ŵ–γ )

· [|w(s) – Tυ(s)| + |υ(s) – Tw(s)|] γ

(γ –β)(γ –ŵ) .

Obviously, α(w,υ) ≥ η(w,υ) for all w,υ ∈ C(I). If α(w,υ) ≥ η(w,υ) for each w,υ ∈
C(I) then ζ (w(t),υ(t)) ≥ ξ (w(t),υ(t)). From condition (c), we have ζ (Tw(t), Tυ(t)) ≥
ξ (Tw(t), Tυ(t)), and so α(Tw, Tυ) ≥ η(Tw, Tυ). Thus, T is an α-admissible map with re-
spect to η. From condition (b), there exists w1 ∈ C(I) such that α(w1, Tw1) = η(w1, Tw1).
By condition (d), we have that for any cluster point w of a sequence {wn} of points in
C(I) with α(wn, wn+1) = η(wn, wn+1), limn→∞ infα(wn, w) = limn→∞ infη(wn, w). By applying
Theorem 2.3, T has a fixed point in C(I), i.e., there exists w∗ ∈ C(I) such that Tw∗ = w∗,
and w∗ is a solution of (7.3). �

Applications The fractional-order differential equations emerge in various areas of engi-
neering and scientific disciplines as the mathematical modeling of systems and processes
in the fields of physics, chemistry, control theory, biology, economics, blood flow phe-
nomena, signal and image processing, biophysics, aerodynamics, fitting of experimental
data.

8 Conclusions
The aim of this paper was to introduce four classes of symmetric fractional contraction.
This research focuses on a new idea of symmetric fractional α–η-contraction of type I, II,
III, and IV in the setting of an F -metric space, which is different and more general than
an ordinary metric space. This paper will open a new domain of fixed-point theory. We
develop here Suzuki-type fixed point results in orbitally complete F -metric spaces. These
new investigations and applications will enhance the impact of the new setup.
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