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Abstract
In this paper, we discuss the basic reproduction number of stochastic epidemic
models with random perturbations. We define the basic reproduction number in
epidemic models by using the integral of a function or survival function. We study the
systems of stochastic differential equations for SIR, SIS, and SEIR models and their
stability analysis. Some results on deterministic epidemic models are also obtained.
We give the numerical conditions for which the disease-free equilibrium point is
asymptotically stable.
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1 Introduction
Pandemics can cause sudden and drastic increases in mortality and morbidity rates as well
as social, political, and economic disruptions. Humanity can defend itself against these
types of problems with advances in science and with professionals in medicine, immunol-
ogy, genetics, epidemiology, and statisticians. Finding the necessary measures to guaran-
tee people’s access to medical centers is a topic of great interest; controlling the sources and
vectors of contagion is the most efficient way to slow down a pandemic. Reducing infec-
tion rates guarantees not only well-being but also a reduction in mortality rates. Knowing
the mechanisms of spread, infection, and death, modeling them mathematically, and mak-
ing predictions of populations at risk are the most advantageous state tools to guarantee
the right to life. Epidemic models are widely used to analyze the dynamics of populations
under infectious diseases. They are crucial for studying the epidemic development and
transmission dynamics of a disease. Mathematical models play an important role in pre-
dicting, assessing, and controlling potential outbreaks. One of the first epidemic models
developed was the SIR model proposed in 1927 by Kermack and McKendrick (see [14])
based on the ordinary differential system given by equation (1.1). The SIR model is a com-
partmental model where the population is divided into different types of individuals: the
susceptible (S(t)), the infected (I(t)), and the recovered (R(t)) individuals, respectively, at
time t. The transmission-dynamic epidemic models help us understand that the risk of
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infection among susceptible individuals depends on the prevalence of infectious individ-
uals. An infected individual becomes recovered after receiving treatment. We now give
the system of differential equations:

dS(t)
dt

= –βI(t)S(t),

dI(t)
dt

= βI(t)S(t) – γ I(t),

dR(t)
dt

= γ I(t),

(1.1)

where β represents the rate of infection, the infection recovery rate is γ , and N is the total
population size such that S(t) + I(t) + R(t) = N for all t. However, these previous models
do not assume the possibility of immigrants and emigrants. We consider a model with
demography, for which μ is considered as the emigration rate and η is the immigration
rate. Sometimes the rate μ is considered as the mortality rate and η is the birth rate in
standard branching processes.

dS(t)
dt

= ηN – βI(t)S(t) – μS(t),

dI(t)
dt

= βI(t)S(t) – γ I(t) – μI(t),

dR(t)
dt

= γ I(t) – μR(t).

(1.2)

We note that if η = μ then the population will be constant. In the above model, we as-
sume that the disease for which infection does not confer immunity is called the pop-
ulation of type SIS (susceptible(S)–infection(I)–susceptible(S)) model since individuals
return to the susceptible class when they recover from the infections. Such infections
do not have a recovered state and individuals become susceptible again after recovery
from infection. Now we describe the population of type SEIR (susceptible(S)–exposed(E)–
infection(I)–recovered(R)), and the system of differential equations for the SEIR model
(with demography) is given as follows:

dS(t)
dt

= ηN – βI(t)S(t) – μS(t),

dE(t)
dt

= βI(t)S(t) – υE(t) – μE(t),

dI(t)
dt

= υE(t) – γ I(t) – μI(t),

dR(t)
dt

= γ I(t) – μR(t),

(1.3)

where the average incubation time 1/υ is the time for which the infectious agent takes a
time to convert an exposed individual into an infected individual. Note that during incuba-
tion time the exposed individual cannot transmit the disease. The above models are deter-
ministic. However, the epidemics tend to occur in cycles of outbreaks due to variations in
the infection rate mainly related to certain external factors such as people’s social activities
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and climatic fluctuations (see [24]). In fact, the climatic variations can affect the infection
rate (β). The epidemic models with random perturbation have been widely studied to ac-
commodate randomness in the model, see for example [3, 7, 13, 20, 27]. More recently the
evidence of the mechanism by which climate change could have played a direct role in the
emergence of COVID-19 has been reported [2].

In this paper, we study the basic reproduction number in epidemic models with random
perturbations. We define the basic reproduction number in epidemic models by using the
survival function and demonstrate the numerical conditions under which the disease-free
equilibrium point is asymptotically stable. The paper is organized as follows: In Sect. 2, we
introduce the framework and basic concepts of the stochastic models with random per-
turbation and establish the stability conditions of the SIS, SIR, and SEIR epidemic models.
Section 3 is devoted to the main results illustrated with simulation results for the basic
reproduction number for the SIR, SIS, and SEIR models. Section 4 discusses the basic re-
production variable with double perturbation terms for the transmission rate; and finally,
Sect. 5 concludes the paper with the future work.

2 Stochastic model
In this section, we introduce the stochastic modeling of epidemics with random pertur-
bations. In our model, we consider environmental variations and social behaviors in the
infection rate [9]. In this paper, we assume (�,�, , {�t}t≥0P, ) to be a complete probability
space with a filtration {�t}t≥0 satisfying the usual conditions. We define

˜β := β + σB(t), (2.1)

where β and σ are positive constants, and {B(t)}t≥0 is the standard Brownian motion with
B(T) – B(t) ∼ N(0, T – t). We note that the constant β is the deterministic mean infection
rate, and σ is the perturbation parameter which describes changes in the infection rate
changes over time with respect to β . We now introduce the stochastic perturbations (1.1)
in the system of stochastic differential equations(SDE) for the SIR model. The resulting
SDE is given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

dS(t) = (ηN – βI(t)S(t) – μS(t)) dt – σ I(t)S(t) dB(t),

dI(t) = (βI(t)S(t) – γ I(t) – μI(t)) dt + σ I(t)S(t) dB(t),

dR(t) = γ I(t) – μR(t).

(2.2)

Reasoning analogously as in (2.2), we now propose the following system of stochastic dif-
ferential equations for the SEIR model with random perturbations:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dS(t) = (ηN – βI(t)S(t) – μS(t)) dt – σ I(t)S(t) dB(t),

dE(t) = (βI(t)S(t) – υE(t) – μE(t)) dt + σ I(t)S(t) dB(t),

dI(t) = (υE(t) – γ I(t) – μI(t)) dt,

dR(t) = (γ I(t) – μR(t)) dt.

(2.3)

The basic reproduction number R0 is defined as the expected number of secondary cases
produced by a single infection in a completely susceptible population [4, 6, 10]. In many
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definitions of basic reproduction number that have been proposed, the basic conceptual
framework is similar. This is also called the basic reproduction ratio, which is an epidemi-
ological metric used to describe the transmission of an infectious disease. Mathematically,
the basic reproduction number is defined as follows [11].

The basic reproduction number of an epidemic model R0 is given by

R0 :=
∫ +∞

0
b(a)F(a) da, (2.4)

where b(a) is the average number of new infected individuals (in a completely susceptible
population) by an infected individual if it is infectious during all the time between 0 and
a. F(a) is the probability of a new infected individual continuous infecting during the time
interval between 0 and a. This is also called the underlying survival probability (or func-
tion). Note that in the case of the SEIR model b(a) = η

μ
υβN and F(a) = e–(μ+γ )(μ+υ)a. For

SIR model, b(a) = η

μ
βN and F(a) = e–(μ+γ )a. In this way, the basic reproduction numbers

for SIR and SEIR models are, respectively,

RSIR
0 = RSIS

0 =
η

μ

βN
(μ + γ )

and RSEIR
0 =

η

μ

υβN
(μ + υ)(μ + γ )

. (2.5)

See the example in Appendix A.1. The basic reproduction number is built for the SEIR
model with demography. We now give some basic definitions and preliminary results for
the benefit of the readers in the following subsection.

2.1 Preliminaries and basic definitions
In this section, we introduce the basic notions and the theoretical framework that we need
in this paper. The following definition of equilibrium point is given [12].

Definition 2.1 Let an ordinary differential system be given by

Ẋ(t) = f
(

X(t)
)

for all t ≥ t0,

with the matrix notation

⎛

⎜

⎜

⎝

dX1(t)/dt
...

dXn(t)/dt

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

f1(X1(t), . . . , Xn(t))
...

fn(X1(t), . . . , Xn(t))

⎞

⎟

⎟

⎠

, (2.6)

where fi : Rn −→ R is a locally Lipschitz function for all i = 1, . . . , n. ◦x ∈ R
n is called an

equilibrium point f ( ◦x) = 0n, where 0n is a matrix with size n × 1.

Let be an equilibrium point ◦x ∈R
n of the ordinary differential system Ẋ(t) = f (X(t)). If ◦x

is different to ◦x 	= X(t0), it is possible to consider the substitution ξ (t) = X(t) – ◦x obtaining
ξ̇ (t) = f (ξ (t) + ◦x) = f (X(t)). In this case, the stability with respect to the point ξ (t0) [12] and
the reason why the stability and the asymptotic stability are defined for the point X(t0)
have been studied.
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Definition 2.2 The point X(t0) of system (2.6) is called
(i) Stable if and only if, for all ε > 0, there exists δ > 0 such that

∥

∥X(t0)
∥

∥ < δ implies
∥

∥X(t)
∥

∥ < ε for all t > t0;

(ii) Asymptotically stable if and only if it is stable and can be chosen δ > 0 such that

∥

∥X(t0)
∥

∥ < δ implies lim
t→+∞

∥

∥X(t0)
∥

∥ = 0.

Intuitively, X(t0) is stable if the solutions which start near enough to the path which starts
in X(t0) (‖X(t0)‖ < δ) remain near enough to the path for every t ≥ t0 (‖X(t)‖ < ε), that is,
if a solution starts near to X(t0), then it will never move away enough from the path X(t).
The point is asymptotically stable if the solutions which start near to the path with origin
in X(t0) converge to that path (see [12]).

The disease-free equilibrium point results to be locally asymptotically stable if the repro-
duction number is less than unity, while the endemic equilibrium point is locally asymp-
totically stable if such a number exceeds unity. In the deterministic epidemic models, the
disease-free equilibrium points are locally asymptotically stable if the reproduction num-
ber is less than unity. In contrast, the endemic equilibrium point is locally asymptotically
stable if the reproduction number exceeds unity (see [23]). For the SEIR model, assume
E(t) = 0 and I(t) = 0 for any t, and for the models SIS and SIR, I(t) = 0. For the determinis-
tic case, the disease-free equilibrium points of the SIR and SEIR models with demography
are ( η

μ
N , 0, 0) and ( η

μ
N , 0, 0, 0), respectively. Under the SIR model we have that if RSIR

0 < 1,
then ( η

μ
N , 0, 0) is asymptotically stable. Note that a numerical condition on the basic re-

production number holds for the stability of the SIR model. Hence, we establish numerical
conditions for which some deterministic epidemic models are asymptotically stable on the
disease-free equilibrium points (for more details, see Appendix B). We now briefly discuss
the stability analysis for stochastic differential equations on epidemic models with random
perturbations. For more details, we recommend readers to refer to [15] and [18].

Definition 2.3 Let the system of stochastic differential equations be as follows:

dX(t) = f
(

t, X(t)
)

dt + g
(

t, X(t)
)

dB(t), t ≥ 0,

X(0) = x0,
(2.7)

where f , g are locally Lipschitz functions from R
n to R. We say that ◦x =X(t1) ∈ R

n for some
t1 ≥ 0 is an equilibrium point of the system if it holds f (t1, ◦x) = 0.

If ◦x 	=X(0) is an equilibrium point, and substituting ξ (t) = X(t) – ◦x, we have the system

dξ (t) = f
(

t, ξ (t) + ◦x
)

dt + g
(

t, ξ (t) + ◦x
)

dB(t),

ξ (0) is an equilibrium point. Using this, the stability and the asymptotic stability are de-
fined as follows.

Definition 2.4 Let be a system defined by (2.7), for which X(0) is an equilibrium point.
We say that X(0) is
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(i) Stable (in probability) if and only if, for all ε > 0, there exists δ > 0 such that if ‖X(0)‖ <
δ, then

P
(

sup
t≥0

∥

∥X(t)
∥

∥≥ ε
)

= 0;

(ii) Asymptotically stable if it is stable in probability, and there exists δ > 0 such that if
‖X(0)‖ < δ then

P
(

lim
t→+∞ X(t) = 0

)

= 1.

Definition 2.5 Let {X(t)}t≥0 be an Itô process and h(t, x) ∈ C2([0, +∞) × R). We define
the differential operator for h as follows:

L
(

h
(

X(t)
))

:=
∂h
∂t

(

t, X(t)
)

+ u(t)
∂h
∂x

(

t, X(t)
)

+
1
2

v2(t)
∂2h
∂x2

(

t, X(t)
)

. (2.8)

For observing the stability in SIS and SEIR models with random perturbations, using
adequate Lyapunov functions, we state now the following theorem given in [22] without
proof.

Theorem 2.1 Let V (X(t)) defined on V : Rn −→R be a Lyapunov function.
(i) If L(V (X(t))) ≤ 0 for all t ≥ 0, then X(0) is stable in probability.
(ii) If V satisfies (i) and L(V (X(t))) < 0, then X(t) is asymptotically stable.

We prove the following theorem by constructing a Lyapunov function and give the suffi-
cient conditions at which the point ( η

μ
N , 0, 0, 0) is asymptotically stable in the SEIR model

with random perturbations. In [17] the author used a similar approach for constructing a
Lyapunov function to prove that the endemic equilibrium state is globally asymptotically
stable.

Theorem 2.2 If the parameters of the SEIR model with random perturbations satisfy the
following:

0 < υβ
ηN
μ

< (γ + μ)(υ + μ) –
σ 2υ2η2N2

2μ2 (2.9)

and υ + μ > 1, then the point ( η

μ
N , 0, 0, 0) is asymptotically stable.

Proof Let the function be given by

W (S, E, I, R) := λ1

(

η

μ
N – S

)2

+ λ2

(

υEI + υ2 1
2

E2 + (μ + υ)
1
2

I2
)

+
1
2
λ3R2,

where λ1,λ2,λ3 > 0 are adequately chosen. As V (S, E, I, R) > 0 for all t > 0 and
V ( η

μ
N , 0, 0, 0) = 0. In addition, the partial derivatives of V are continuous, therefore V

is a Lyapunov function.
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We rewrite in the matrix form dx(t) = f (t, x(t)) dt + g(t, x(t)) dB(t), with x(t) := (S(t), E(t),
I(t), R(t)), and f , g given by

f T =
[

f
(

t, x(t)
)]T :=

(

ηN – βSI – μS,βSI – (υ + μ)E,υE – (μ + γ )I,γ I – μR
)

and

gT =
[

g
(

t, x(t)
)]T :=

(

–σS(t)I(t), σS(t)I(t), 0, 0
)

.

For calculating L(V (t)), we have

f T ∂W
∂x

=
(

ηN – βSI – μS, βSI – (υ + μ)E, υE – (μ + γ )I, γ I – μR
)

A

= –2λ1

(

η

μ
N – S

)

(ηN – βIS – μS) + λ2
([

υ2βS – υ(γ + μ)
]

EI

+
(

υ2 – υ2(υ + μ)
)

E2 +
[

υβS – (γ + μ)(μ + υ)
]

I2) + λ3
(

γ RI – μR2),

where

A =
(

–2λ1( η

μ
N – S), λ2(υ2E + υI), λ2(υE + (μ + υ)I), λ3R

)T
.

On the other hand, when η ≥ μ we have

1
2

gT ∂V
∂x

g =
1
2
σ 2S2I2

(

–1, 1, 0, 0
)

⎛

⎜

⎜

⎜

⎝

2λ1 0 0 0
0 λ2υ

2 λ2υ 0
0 λ2υ λ2(μ + υ) 0
0 0 0 2λ4

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

–1
1
0
0

⎞

⎟

⎟

⎟

⎠

=
1
2
σ 2S2I2

(

–2λ1, λ2υ
2, λ2υ, 0

)(

–1, 1, 0, 0
)T

= λ1σ
2S2I2 +

1
2
λ2υ

2σ 2S2I2 ≤ λ1σ
2S2I2 + λ2

1
2
υ2σ 2 η2N2

μ2 I2,

therefore

L
(

W (t)
)

= f T ∂V
∂x

+
1
2

gT ∂V
∂x

g ≤ λ1a(t) + λ2b(t) + λ3c(t),

such that

a(t) = 2
(

η

μ
N – S

)

(–ηN + βIS + μS) + σ 2S2I2,

b(t) =
((

υ2β
η

μ
N – υ(υ + μ)

)

+
(

υ2 – υ2(υ + μ)
)

+
(

υβ
η

μ
N – (μ + γ )(μ + υ) +

1
2
υ2σ 2 η2

μ2 N2
))

inf
t≥0

{

EI, E2, I2},

c(t) = γ IR – μR2.

See (i) of the proof for Theorem B.2, it is clear that υ2β η

μ
N –υ(υ +μ)+υ2 –υ2(υ +μ) < 0.
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On the other hand, as υβ
η

μ
N + 1

2υ2σ 2 η2

μ2 N2 < (μ + γ )(μ + υ), then

υβ
η

μ
N – (μ + γ )(μ + υ) +

1
2
υ2σ 2 η2

μ2 N2 < 0,

therefore b(t) < 0. If η < μ, the proof is analogous to Theorem B.2, having t0 > 0 for which
b(t) < 0 for any t > t0.

Choosing adequately λ1, λ2, and λ3, for any case, it has that

L
(

W (t)
)

=≤ λ1a(t) + λ2b(t) + λ3c(t) < 0

for all t > t0, showing that the point ( η

μ
N , 0, 0, 0) is asymptotically stable. �

Theorem 2.3 If the parameters of the SIS model with random perturbation satisfy that

0 < β
ηN
μ

< γ + μ –
σ 2η2N2

2μ2 , (2.10)

then the point ( η

μ
N , 0) is asymptotically stable.

Proof The proof is similar to the previous theorem. Take V defined by

V
(

S(t), I(t)
)

:= λ1

(

η

μ
N – S(t)

)2

+
1
2
λ2I2(t),

where λ1,λ1 > 0 are positive constants adequately chosen. �

Theoretically, by inequality (2.10) it is shown that (Theorem 2.3) if

β
ηN

μ(γ + μ)
+

σ 2η2N2

2μ2(γ + μ)
< 1, (2.11)

then the point ( η

μ
N , 0) is asymptotically stable.

According to Theorem 2.2, that ( η

μ
N , 0, 0, 0) in the SEIR model with random perturba-

tions is asymptotically stable, and it is necessary that μ + υ > 1 and inequality (2.9) hold
and can be written as

υβ
ηN

μ(γ + μ)(υ + μ)
+

σ 2η2υ2N2

2μ2(γ + μ)(υ + μ)
< 1. (2.12)

3 Simulation results for the stability of the stochastic models
In this section, we discuss simulation results of the reproduction numbers RSIR

0,E , RSIS
0,E , and

RSEIR
0,E respectively for SIR, SIS, and SEIR models with random perturbations. Our objec-

tive is to find the smallest value of RSIS
0,E such that RSIS

0,E < 1 and for which the SIS model with
random perturbation is asymptotically stable on ( η

μ
N , 0) (according to Theorem 2.3). Sim-

ilarly, we search for the smallest value of RSEIR
0,E such that RSEIR

0,E < 1 and ( η

μ
N , 0) is asymptot-

ically stable on the SEIR model with random perturbations (according to Theorem 2.2).
We now observe through simulations the smallest values of RSIS

0,E and RSEIR
0,E for which the

asymptotic stability holds.
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Figure 1 Stability modeled using the parameters N = 1, β = 0.5, σ = 0.3, μ = 0.0007, η = 0.0008, and (a)

γ = 0.6 (upper right), (b) γ = 0.7 (upper left), (c) γ = βN η
μ – σ2

2
η2

μ2 N
2 –μ (lower left) and (d) γ = 0.2 (lower

right). The initial condition is (N, 0) = (1, 0) for all of them

We now apply the Euler–Maruyama method for simulating the SIS and SEIR models
with random perturbations [21]. The approximation equations of the models are given by

⎧

⎪

⎪

⎨

⎪

⎪

⎩

S(tj+1) = S(tj) + [ηN – βS(tj)I(tj) – μS(tj) + γ I(tj)](tj+1 – tj)

– σS(tj)I(tj)(B(tj+1) – B(tj)),

I(tj+1) = I(tj) + [υE(tj) – (μ + γ )I(tj)](tj+1 – tj),

(3.1)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S(tj+1) = S(tj) + [ηN – βS(tj)I(tj) – μS(tj)](tj+1 – tj)

– σS(tj)I(tj)(B(tj+1) – B(tj)),

E(tj+1) = E(tj) + [βS(tj)I(tj) – (υ + μ)E(tj)](tj+1 – tj)

+ σS(tj)I(tj)(B(tj+1) – B(tj)),

I(tj+1) = I(tj) + [υE(tj) – (μ + γ )I(tj)](tj+1 – tj),

R(tj+1) = R(tj) + [γ I(tj) – μR(tj)](tj+1 – tj).

(3.2)

The numeric conditions for which the disease-free equilibrium ( η

μ
N , 0) for the simula-

tions presented at the point ( 0.0008
0.0007 1, 0)) on the SIS model with random perturbation is

asymptotically stable. Note that when RSIS
0,e = βN η

μ(γ +μ) + σ 2

2
η2N2

μ2(γ +μ) < 1 (see Fig. 1, upper
left) the asymptotic stability is clear since the functions remain “near” to the constant
functions y = η

μ
N and y = 0, varying these functions +0.0005 and –0.0005. Similarly, the

asymptotic stability is observed when RSIS
0,e > 1 and βN η

μ(γ +μ) – σ 2

2
η2N2

μ2(γ +μ) < 1 (Fig. 1, up-

per right). When βN η

μ(γ +μ) – σ 2

2
η2N2

μ2(γ +μ) = 1 (Fig. 1, lower left), the stability is not so clear,

while it is clear when βN η

μ(γ +μ) – σ 2

2
η2N2

μ2(γ +μ) > 1 (Fig. 1, lower right). We observe that as

βN η

μ(γ +μ) – σ 2

2
η2N2

μ2(γ +μ) < 1 guarantees the asymptotic stability for the disease-free equilib-
rium, based on the simulation results, we propose the following conjecture.
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Figure 2 Stability modeled using the parameters N = 1, β = 0.8, σ = 0.3, μ = 0.4, η = 0.9, and (a) γ = 0.85

and υ = 0.7 (upper right), (b) γ = 0.75 and υ = 0.7 (upper left), (c) γ = βυN η
μ(μ+υ) –

σ2
2

υ2η2

μ2(μ+υ)
N2 –μ and

υ = 0.85 (lower left) and (d) γ = 0.55 and υ = 0.85 (lower right). The initial condition is (N, 0, 0, 0) = (1, 0, 0, 0) for
all of them

Conjecture 3.1 If

RSIS
0,E := β

ηN
μ(γ + μ)

–
σ 2η2N2

2μ2(γ + μ)
< 1, (3.3)

then ( η

μ
N , 0) is asymptotically stable on the SIS model with random perturbation.

Now, we focus our attention on the simulations of the stability for the SEIR model
with random perturbations which are shown for determining the numeric conditions
under which the point ( η

μ
N , 0, 0, 0) is asymptotically stable on the SEIR model with

random perturbations, for example, the values of ( 0.9
0.4 1, 0, 0, 0)) are verified numeri-

cally.
In all of the previous simulations, we assume that υ + μ > 1. Note that when RSEIR

0,e =
υβηN

μ(γ +μ)(υ+μ) + υ2σ 2

2
η2N2

μ2(γ +μ)(υ+μ) < 1 (see Fig. 2, upper left) the asymptotic stability is clear
since the functions remain “near” to the constant functions y = η

μ
N and y = 0, varying

these functions +0.0005 and –0.0005. Similarly, the asymptotic stability is observed when
RSEIR

0,e > 1 and υβηN
μ(γ +μ)(υ+μ) – υ2σ 2

2
η2N2

μ2(γ +μ)(υ+μ) < 1 (Fig. 2, upper right). When υβηN
μ(γ +μ)(υ+μ) –

υ2σ 2

2
η2N2

μ2(γ +μ)(υ+μ) = 1 (Fig. 2, lower left), the instability is not so clear, while the instability

is clear when υβηN
μ(γ +μ)(υ+μ) – υ2σ 2

2
η2N2

μ2(γ +μ)(υ+μ) > 1 (Fig. 2, lower right) since it is observed
that the varied solutions move away from the disease-free equilibrium. As υβηN

μ(γ +μ)(υ+μ) –
υ2σ 2

2
η2N2

μ2(γ +μ)(υ+μ) < 1 and υ + μ > 1 guarantee the asymptotic stability for the disease-free
equilibrium (according to the simulations), we now propose the conjecture.
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Figure 3 Stability modeled using the parameters N = 1, β = 0.8, σ = 0.3, μ = 0.08, η = 0.09, and (a) γ = 0.85
and υ = 0.7 (right), (b) γ = 0.75 and υ = 0.7 (left). The initial condition is (N, 0, 0, 0) = (1, 0, 0, 0) for all of them

Conjecture 3.2 If υ + μ > 1 and

RSEIR
0,E :=

υβηN
μ(γ + μ)(υ + μ)

–
σ 2η2υ2N2

2μ2(γ + μ)(υ + μ)
< 1, (3.4)

then ( η

μ
N , 0, 0, 0) is asymptotically stable on the SEIR model with random perturbations.

As the basic reproduction number of the SEIR model with random perturbations RSEIR
0,E

(with RSEIR
0,E < 1, υ + μ > 1) is the lower number for which ( η

μ
N , 0, 0, 0) is asymptotically

stable. In the Fig. 3, we show that the condition υ + μ > 1 is not satisfied.
It is clear that despite of being RSEIR

0,e < 1, if μ+υ < 1, the stability is not so clear. Similarly,
if RSEIR

0,E < 1 and μ + υ < 1, according to the simulation, the point ( η

μ
N , 0, 0, 0) (in this case

η

μ
N = 0.09

0.08 N ) is unstable. But it is important to have the condition μ + υ > 1 for retaining
the asymptotic stability on the SEIR model with random perturbations.

We wish to note that, for the SIR model with random perturbation, the following in-
equality holds for having the asymptotic stability in ( η

μ
N , 0, 0) for the model proposed in

[25] and [28]

RSIR
0,E := β

ηN
μ(γ + μ)

–
σ 2η2N2

2μ2(γ + μ)
< 1. (3.5)

3.1 Basic reproduction variable and their statistical tests
We now study the basic reproduction number as a normally distributed random variable.
For the deterministic model, R0 is defined in integral (2.4). Consider the SIR model with
random perturbation, the survival integral is given by

RSIR
0,v :=

∫ +∞

0

(

β + σB(a)
)

Ne–(μ+γ )a da, (3.6)

where RSIR
0,v is a normally distributed random variable. We refer the reader to consult (A.1)

for the SEIR deterministic model. Set F(a) = e–(μ+γ )a, from the above equation, RSIR
0,v is given

by

RSIR
0,v =

∫ +∞

0

(

β + σB(a)
)

Ne–(μ+γ )a da =
∫ +∞

0
βNe–(μ+γ )a da + σ

∫ +∞

0
B(a)Ne–(μ+γ )a da
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=
βN

(μ + γ )
+ σN

∫ +∞

0
B(a)e–(μ+γ )a da,

using the integration-by-parts rule [19], we have an expression which involves
∫ +∞

0 B(a)e–(μ+γ )a da given by

lim
l→+∞

B(l)e–(μ+γ )l = B(0) – (μ + γ )
∫ +∞

0
B(a)e–(μ+γ )a da +

∫ +∞

0
e–(μ+γ )a dB(a),

where {B(t)}t≥0 is a Brownian motion, thus

∫ +∞

0

e–(μ+γ )a

μ + γ
dB(a) –

1
μ + γ

lim
l→+∞

B(l)e–(μ+γ )l =
∫ +∞

0
B(a)e–(μ+γ )a da.

The above integral
∫ l

0 B(a)e–(μ+γ )a da is well defined, we get (see [16, p. 393])

∫ +∞

0
B(a)e–(μ+γ )a da ∼ N

(

–
1

μ + γ
lim

l→+∞
B(l)e–(μ+γ )l,

∫ +∞

0

e–2(μ+γ )a

(μ + γ )2 da
)

. (3.7)

By the law of the iterated logarithm [1, p. 66], we get

lim sup
l→+∞

B(l)
√

2l log log l
= 1 a.s.,

we have

0 ≤ lim
l→+∞

B(l)e–(μ+γ )l ≤ lim sup
l→+∞

B(l)
√

2l log log te–(μ+γ )l
√

2l log log l

= lim sup
l→+∞

√

2l log log te–(μ+γ )l a.s. (3.8)

On the other hand, we have

0 ≤ lim
l→+∞

√

2l log log te–(μ+γ )l ≤ lim
l→+∞

√

2l log le–(μ+γ )l ≤ lim
l→+∞

√
2le–(μ+γ )l,

and by applying the L’Hôpital’s rule

lim
l→+∞

√
2le–(μ+γ )l =

√
2 lim

l→+∞
l
1

e–(μ+γ )l

=
√

2 lim
l→+∞

1
(μ + γ ) e–(μ+γ )l

e–2(μ+γ )l

= 0,

thus,

lim
l→+∞

√

2l log log te–(μ+γ )l = 0,

then inequality (3.8) can be written as

0 ≤ lim
l→+∞

B(l)e–(μ+γ )l ≤ lim sup
l→+∞

√

2l log log te–(μ+γ )l

= lim
l→+∞

√

2l log log te–(μ+γ )l = 0 a.s.,
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which means that – 1
μ+γ

liml→+∞ B(l)e–(μ+γ )l = 0 a.s. We see that

∫ +∞

0

e–2(μ+γ )a

(μ + γ )2 da = lim
l→+∞

–
e–2(μ+γ )a

2(μ + γ )3

∣

∣

∣

∣

l

0
=

1
2(μ + γ )3 .

Then RSIR
0,v is the random basic reproduction variable on the SIR model with random

perturbation and is given by

RSIR
0,v ∼ N

(

βN
(μ + γ )

,
σ 2N2

2(μ + γ )3

)

. (3.9)

Similarly, we assume that random basic reproduction variables on the SIS and SEIR mod-
els with random perturbations are normally distributed and are given as follows.

Definition 1

RSIS
0,v ∼ N

(

RSIS
0 ,

σ 2η2N2

2μ2(μ + γ )3

)

, (3.10)

RSEIR
0,v ∼ N

(

RSEIR
0 ,

η2υ2σ 2N2

2μ2((μ + υ)(μ + γ ))3

)

. (3.11)

From definition (1) and inequalities (2.10) and (2.9), the following inequalities hold:

RSIS
0,E ≤ E

[

RSIS
0,v
]≤ βηN

μ(γ + μ)
+

σ 2η2N2

2μ2(γ + μ)
, (3.12)

RSEIR
0,E ≤ E

[

RSEIR
0,v

]≤ υβηN
μ(γ + μ)(υ + μ)

+
σ 2η2υ2N2

2μ2(γ + μ)(υ + μ)
. (3.13)

Note that

p = P
(

RSEIR
0,E ≤ RSEIR

0,v ≤ υβ
ηN

μ(γ + μ)(υ + μ)
+

σ 2η2υ2N2

2μ2(γ + μ)(υ + μ)

)

= P
(RSEIR

0,E – E[RSEIR
0,v ]

√

V[RSEIR
0,v ]

≤ RSEIR
0,v – E[RSEIR

0,v ]
√

V[RSEIR
0,v ]

≤
υβηN

μ(γ +μ)(υ+μ) + σ 2η2υ2N2

2μ2(γ +μ)(υ+μ) – E[RSEIR
0,v ]

√

V[RSEIR
0,v ]

)

= P
(

–
σηN

√

(μ + γ )(μ + υ)√
2μ

≤ Z ≤ σηN
√

(μ + γ )(μ + υ)√
2μ

)

= 2


(

σηN
√

(μ + γ )(μ + υ)√
2μ

)

– 1,

where 
(·) is the distribution function of Z such that Z ∼ N(0, 1). The probability p satisfies

0 ≤ 2


(

σηN
√

(μ + γ )(μ + υ)√
2μ

)

– 1 ≤ 1,

that is,

1
2

≤ 


(

σηN
√

(μ + γ )(μ + υ)√
2μ

)

≤ 1,

this inequality holds if and only if σηN 1
μ

√

(μ+γ )(μ+υ)
2 ≥ 0.
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On the other hand, if μ tends to 0, then1 σηN 1
μ

√

(μ+γ )(μ+υ)
2 → +∞, therefore,




(

σηN
1
μ

√

(μ + γ )(μ + υ)
2

)

→ 1,

which means p → 1. This means that when the emigration rate is lower, the random vari-
able RSEIR

0,v is closer to the number RSEIR
0,E . If μ → +∞, then2




(

σηN
1
μ

√

(μ + γ )(μ + υ)
2

)

→ 


(

σηN√
2

)

,

thus, if η → 0 (except for μ → 0), then p → 0 since




(

σηN
1
μ

√

(μ + γ )(μ + υ)
2

)

→ 
(0) = 1/2.

Analogously, for the SIS model with random perturbation the following holds:

P
(

RSIS
0,E ≤ RSIS

0,v ≤ β
ηN

μ(γ + μ)
+

σ 2η2N2

2μ2(γ + μ)

)

→ 1 if μ → 0

and

P
(

RSIS
0,E ≤ RSIS

0,v ≤ β
ηN

μ(γ + μ)
+

σ 2η2N2

2μ2(γ + μ)

)

→ 0 if η → 0 and μ does not tend to 0.

We now discuss the confidence intervals and hypothesis tests from the basic repro-
duction. Let R1, . . . , Rn be the average number of cases of infected people for 1, . . . , n, re-
spectively. According to the previously mentioned, we assume that R1, . . . , Rn ∼ N(RSIR

0 ,
(η2υ2σ 2N2)/(2μ2(μ + υ)3(μ + γ )3)), all independent. Note that

R̄ =
R1 + · · · + Rn

n
∼ N

(

RSIR
0 ,

η2υ2σ 2N2

2nμ2(μ + υ)3(μ + γ )3

)

,

to determinate a confidence set under a confidence level 1 – α, knowing μ, β , γ , υ , and σ ,
observe that

Zα/2 < Z =
R̄ – RSIR

0
RSIRσ√

2nβ
√

(μ+υ)(μ+γ )

< Z1–α/2, (3.14)

therefore,

Zα/2
RSIR

0 σ√
2nβ

√

(μ + υ)(μ + γ )
<

R̄ – RSIR
0

RSIR
0

< Z1–α/2
RSIR

0 σ√
2nβ

√

(μ + υ)(μ + γ )
.

1by the L’Hôpital’s rule.
2by the L’Hôpital’s rule.
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Thus,

Zα/2
σ√

2nβ
√

(μ + υ)(μ + γ )
+ 1 <

R̄
RSIR

0
< Z1–α/2

σ√
2nβ

√

(μ + υ)(μ + γ )
+ 1.

Then

σZα/2 + R̄
√

2nβ
√

(μ + υ)(μ + γ )
R̄
√

2nβ
√

(μ + υ)(μ + γ )
<

1
RSIR

0
<

σZ1–α/2 + R̄
√

2nβ
√

(μ + υ)(μ + γ )
R̄
√

2nβ
√

(μ + υ)(μ + γ )
.

Similarly, the confidence set is given by (R̄ β
√

2na
σZ1–α/2+R̄

√
2naβ

, R̄ β
√

2na
σZα/2+R̄

√
2naβ

), where a = (μ +
υ)(μ + γ ). For calculating the size of sample with an error e, see that

e = 2Z1–α/2
σ√

2nβ
√

a
,

therefore,

n =
2σ 2(Z1–α/2)2

eβ2(μ + υ)(μ + γ )
.

The statistic test Z is given by (3.14) and the critical sets are (Z1–α , +∞), (–∞, Z1–α),
and (–∞, –Z1–α/2) ∪ (Z1–α/2, +∞) for the alternative test H0 : RSIR

0 < r, H0 : RSIR
0 > r, and

H0 : RSIR
0 	= r.

4 Basic reproduction variable with double stochastic component
In this section, we determine the basic reproduction variable for the model based on the
stochastic differential equations with two kinds of perturbation terms. We consider the
SEIRS epidemic model with stochastic transmission proposed by Witbooi [26] to include
two stochastic perturbation terms in the disease model. It is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dS(t) = (ηN – βI(t)S(t) + αR(t) – μS(t)) dt – σ (pS(t)E(t) + qS(t)I(t)) dB(t),

dE(t) = (βI(t)S(t) – υE(t) – μ1E(t)) dt + σpS(t)E(t) dB(t),

dI(t) = (υE(t) – γ I(t) – μ2I(t)) dt + σqS(t)I(t) dB(t),

dR(t) = (γ I(t) – αR(t) – μ3R(t)) dt.

(4.1)

Analogously, the deterministic version of the SEIR model with demography is given by

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

dS(t) = (ηN – δS(t)E(t) – βS(t)I(t) – ξS(t)I(t) + αR(t) – μS(t)) dt,

dE(t) = (βI(t)S(t) + δS(t)E(t) – υE(t) – μ1E(t)) dt,

dI(t) = (υE(t) – ξS(t)I(t) – γ I(t) – μ2I(t)) dt,

dR(t) = (γ I(t) – αR(t) – μ3R(t)) dt.

(4.2)

Using the approach of the next generation matrix method(see [5]) for the deterministic
model, the matrix T (transmissions) and the matrix � (transitions), respectively, are given
by

T =

(

η

μ
δN η

μ
βN

0 η

μ
ξN

)

and � =

(

–(υ + μ) 0
υ –(γ + μ)

)

,
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and

–T�–1 =

(

η

μ
δN η

μ
βN

0 η

μ
ξN

)(

1
(υ+μ) 0

υ
(υ+μ)(γ +μ)

1
(γ +μ)

)

=

(

η

μ
δN

(υ+μ) + η

μ

υβN
(υ+μ)(γ +μ)

η

μ

βN
(γ +μ)

η

μ

υξN
(υ+μ)(γ +μ)

η

μ

ξN
(γ +μ)

)

.

The eigenvalues of –T�–1 correspond to

λ1,2 =
η

μ
N(βυ + δ(γ + μ) + ξ (μ + υ)) ∓ η

μ
N�1/2

2(γ + μ)(μ + υ)

with � = (δ(γ + μ) + βυ + ξ (μ + υ))2 – 4ξδ(γ + μ)(μ + υ). It is clear that the greatest
eigenvalue is λ2, which is the basic reproduction number for system (4.2).

For system (4.2), we assume that F(a) = e–(μ+υ)(μ+γ )a, and as in example (A.1) with func-
tion

b(a) =
η

2μ
N
[

βυ + δ(γ + μ) + ξ (μ + υ) + �1/2].

For system (4.1), take dδ = σpdB(t) and dξ = σqdB(t) ([8] and [9]). Based on the con-
struction of integral (3.6), we define the basic reproduction variable for the system:

RSEIRS
0,v =

η

2μ
N
∫ +∞

0

[(

βυ + σ
(

p(γ + μ) + q(μ + υ)
)

B(a) +
√�b

)

e–(μ+υ)(μ+γ )a]da, (4.3)

where �b = (σ [p(γ + μ) + q(μ + υ)]B(a) + βυ)2 – 4pqσ 2(γ + μ)(μ + υ)B2(a). Observe that
(i)

∫ +∞
0

ηυβN
2μ

e–(μ+υ)(μ+γ )a da = ηυβN
2μ(μ+υ)(μ+γ )

(ii)
∫ +∞

0 sB(a)e–(μ+υ)(μ+γ )a da ∼ N(0, s2

2(μ+υ)3(μ+γ )3 ), with s = ηN
2μ

σ [p(γ + μ) + q(μ + υ)]
(iii) Note that �b(x) = (cx – b)2 – ex2 = (c2 – e)x2 + 2bcx + b2; where b = βυ ,

c = σ [p(γ + μ) + q(μ + υ)] and e = 4pqσ 2(γ + μ)(μ + υ). The roots of �b(x) are
given by

x =
–2bc ∓√

4b2c2 – 4(c2 – e)b2

2(c2 – e)
=

–2bc ∓ √
4b2e

2(c2 – e)
=

–bc ± b
√

e
c2 – e

=
–b

c ∓ √
e

,

therefore

∫ +∞

0

√

�b
(

B(a)
)

e–(μ+υ)(μ+γ )a da

=
∫ +∞

0

((

B(a) +
b

c –
√

e

)(

B(a) +
b

c +
√

e

))1/2

e–(μ+υ)(μ+γ )a da.

It is easy to observe that, for all ω ∈ �,

∫ +∞

0

(

B(a) +
b

c +
√

e

)

e–φa da

≤
∫ +∞

0

√

�b
(

B(a)
)

e–(μ+υ)(μ+γ )a da ≤
∫ +∞

0

(

B(a) +
b

c –
√

e

)

e–φa da
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with φ = –(μ + υ)(μ + γ ). Note by equation (3.7) that

∫ +∞

0
B(a)e–(μ+υ)(μ+γ )a da

∼ N
(

–
liml→+∞ B(l)e–(μ+υ)(μ+γ )l

(μ + υ)(μ + γ )
,
∫ +∞

0

e–2(μ+υ)(μ+γ )a

(μ + υ)2(μ + γ )2 da
)

,

due to liml→+∞ B(l)e–(μ+υ)(μ+γ )l = 0 (reasoning similarly to inequality (3.8)), note
that

∫ +∞
0 (B(a) + b

c–
√

e )e–(μ+υ)(μ+γ )a da ∼ N(0, 1/(2(μ + υ)3(μ + γ )3)).
On the other hand,

∫ +∞
0

b
c–

√
e e–(μ+υ)(μ+γ )a da = b

(c–
√

e)(μ+υ)(μ+γ ) , therefore
∫ +∞

0 (B(a) + b
c–

√
e )e–(μ+υ)(μ+γ )a da ∼ N( b

(c–
√

e)(μ+υ)(μ+γ ) , 1
2(μ+υ)3(μ+γ )3 ).

Taking the random variables

RA =
∫ +∞

0

(

B(a) +
b

c +
√

e

)

e–(μ+υ)(μ+γ )a da and

RB =
∫ +∞

0

(

B(a) +
b

c –
√

e

)

e–(μ+υ)(μ+γ )a da,

we have RA and RB are normally distributed with variance 1/(2(μ + υ)3(μ + γ )3)
and means b/((c +

√
e)(μ + υ)(μ + γ )) and b/((c –

√
e)(μ + υ)(μ + γ )), respectively.

In addition, for all ω ∈ �, it is clear that

RA ≤
∫ +∞

0

[(

B(a) +
b

c –
√

e

)(

B(a) +
b

c +
√

e

)]1/2

e–(μ+υ)(μ+γ )a da ≤ RB.

Writing R =
∫ +∞

0 [(B(a) + b
c–

√
e )(B(a) + b

c+
√

e )]1/2e–(μ+υ)(μ+γ )a da, we have that
E(RA) ≤ E(R) ≤ E(RB). The distance between E(RA) and E(RB) corresponds to

d(RA, RB) =
2b

√
e

(c2 – e)(μ + υ)(μ + γ )
.

Observe that

c2 – e = σ 2[p(γ + μ) + q(μ + υ)
]2 – 4pqσ 2(γ + μ)(μ + υ)

= σ 2p2(γ + μ)2 + σ 22pq(γ + μ)(μ + υ) + σ 2q2(μ + υ)2

– 4pqσ 2(γ + μ)(μ + υ)

= σ 2(p(γ + μ) – q(μ + υ)
)2 ≥ 0,

that is, c2 – e ≥ 0. The Fig. 4 shows that the function d(RA, RB) is decreasing for all
c, e with c2 – e ≥ 0. Therefore, when e, c → +∞, then d(RA, RB) → 0, then
E(R) → E(RA) = E(RB). This happens when σ , p, q, γ , μ, or υ tends to ∞.

On the other hand, note that if e → 0, then d(RA, RB) → 0, which lets us conclude
that E(R) → E(RA) = E(RB). This happens when σ → 0, p → 0 or q → 0. However,
if σ → 0 then c → 0, thus E(RA) → +∞. If p → 0 and q → 0 (at the same time),
then c → 0, thus E(RA) → +∞. In case that E(RA) → +∞, then E(R) → +∞,
therefore the mean of RSEIRS

0,v does not have sense.
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Figure 4 Graphic of the function d(RA ,RB) = k ×
√
e

c2–e
with

k = 1 restricted to {e, c : c2 – e≥ 0}. Our case considers k
= 2b

(μ+υ)(μ+γ ) , a function which has similar behavior to

k ×
√
e

c2–e

By the procedures done in items (i), (ii), and (iii) of this section, it is possible to see
that the basic reproduction number of system (4.1), RSEIRS

0,v , is a random variable whose
expectation holds

υβ

(μ + υ)(μ + γ )

(

ηN
2μ

+
1
σ g

)

≤ E
(

RSEIRS
0,v

)≤ υβ

(μ + υ)(μ + γ )

(

ηN
2μ

+
1
σ l

)

(4.4)

with g = [
√

p(γ + μ) +
√

q(μ + υ)]2 and l = [
√

p(γ + μ) –
√

q(μ + υ)]2. If q → 0, then
E(RSEIRS

0,v ) = υβ

(μ+υ)(μ+γ ) ( ηN
2μ

+ 1
σ g ).

5 Conclusions
In this paper, we have studied the basic reproduction number in stochastic epidemic mod-
els to include random perturbations in the infection rate as the contributing factor for the
spread of the epidemics. We have established stability conditions for the SIS, SIR, and SEIR
epidemic models. As in the case of the deterministic SEIR model, the condition RSEIR

0 < 1 is
not enough for the disease-free equilibrium point to be asymptotically stable. We showed
that it is also necessary that μ+υ < 1. Also, in some deterministic models, the basic repro-
duction number is defined as the survival probability, which coincides with the value R0. If
R0 < 1, then the disease-free equilibrium point is asymptotically stable. However, epidemic
models with random perturbations need not be the same. In this paper, we considered the
basic reproduction number as a random variable. Under stability conditions (Theorems
2.3 and 2.2), we proved that the basic reproduction number depends on the perturbation
parameter σ , which means that the variations can affect the epidemic spread. We also pre-
sented simulation results that the value of R0 for which the disease-free equilibrium point
is asymptotically stable is less than the value found in the proofs of Theorems 2.3 and 2.2.
Finally, we presented conjectures (3.1) and (3.2) to conclude that the transmission veloc-
ity of an epidemic is lower than the variation fluctuations, and for the values of R0 proved
in Theorems 2.3 and 2.2. The limitation of the proposed model is that populations that
make transitions to the compartment are assumed to interact homogeneously and death
rates are equal. The future work in this direction comprises considering a more realistic
scenario using data from the recent COVID-19 outbreak in the city of Bogotá to include
the lockdown restrictions and social mobility in the spread of infections that would allow
us to address the issue of dependence control measures and epidemics mitigation.
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Appendix A: Construction of the basic reproduction number on deterministic
epidemic models

Example A.1 (Basic reproduction number in a deterministic SEIR model with demogra-
phy) Let be P(a) =“number of exposed population which become infected individuals and
remain infected from the time 0 to a”. Note that the number of individuals per unit of time
which avoid being exposed people during the period [0, a] are those that died or who be-
came infected individuals, that is, (μ + υ)P(a) individuals per unit of time. The individuals
who recovered from the disease or died are those who do not remain infected during the
period [0, a], namely (μ + υ)(μ + γ )P(a) individuals per unit of time. The others continue
being exposed people or they are infected individuals which remain infected during [0, a].

dP(a)
da

= –(μ + υ)(μ + γ )P(a),

solving the differential equation, we get

P(a) = P(0)e–(μ+υ)(μ+γ )a.

Initially it needs to have at least an infected individual or an exposed individual which
becomes infected, for when the epidemic occurs, then P(0) is the number of initial infected
people. P(a) is the number of infected individuals which remain infected during the period
[0, a]. Note that P(a) corresponds to P(0) multiplied by the probability that an infected
individual continues to be infected during all the interval [0, a]. Therefore, e–(μ+υ)(μ+γ )a

the probability previously described. In this way,

F(a) = e–(μ+υ)(μ+γ )a

is the survival function.
On the other hand, if an infected individual, I(0) = 1, arrives at a place where the popula-

tion is completely susceptible, S(0) = N , then it is expected to have βN exposed individuals
in total. From the βN expected exposed individuals, υβN corresponds to the total infected
population, therefore

b(a) = υβN

as long as the mortality rate is the same as the birth rate. In another case, note that

dN(t)
dt

= ηN – μ
(

S(t) + E(t) + I(t) + R(t)
)

= ηN – μ
(

N(t)
)

,

and the solution of the above equation is given by

N(t) = S(t) + E(t) + I(t) + R(t) =
[

N(0) +
∫ t

0
eμvηN dv

]

e–μt

= N(0)e–μt +
η

μ
N –

η

μ
Ne–μt ,

when t → ∞, then N(t) tends to η

μ
N . Therefore, if an infected individual arrives in a com-

pletely susceptible population, then it will have η

μ
N new infected on an enough big period
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of time. Thus, the function b(a) is given by

b(a) =
η

μ
υβN ,

then the basic reproduction number for the model SEIR with demography is

RSEIR
0 :=

∫ +∞

0

η

μ
υβNe–(μ+υ)(μ+γ )a da =

η

μ

υβN
(μ + υ)(μ + γ )

. (A.1)

Appendix B: Stability on deterministic epidemic models
We give the following theorem which gives sufficient conditions for a point to be asymp-
totically stable using the appropriate Lyapunov functions ([12] and [25]).

Theorem B.1 Let X(0) be an equilibrium point of system (2.6) (in the other case, it is pos-
sible to do the substitution ξ (t) = X(t) – ◦x, where ◦x is an equilibrium point) defined for all
t ≥ 0, and V : Rn → R is a Lyapunov function. Then, for some t0,

(i) If V satisfies that

V̇
(

X(t)
)≤ 0 for all t ≥ t0, (B.1)

then X(0) is stable.
(ii) If V satisfies (i) and furthermore

V̇
(

X(t)
)

< 0 for all t ≥ t0, (B.2)

then X(0) is asymptotically stable.

To prove the stability of an ordinary equation system, we use construction of the Lya-
punov functions. The definition is given in the following definition given in [12].

Definition B.1 Let Ẋ(t) = f (X(t)) be an ordinary differential equation system defined for
all t ≥ 0, and let V : Rn →R be a continuous function with continuous derivatives.

(i) The rate of V with respect to X1(t), . . . , Xn(t) is defined as

V̇
(

X(t)
)

:=
dV (X(t))

dt
=

n
∑

i=1

∂V
∂Xi

dXi(t)
dt

. (B.3)

(ii) If V satisfies that V (X(0)) = 0 and V (X(t)) > 0 for all t > 0, then V is called a Lyapunov
function.

We give the theorems which relate with the basic reproduction number and disease-
free equilibrium point for the deterministic models. The proofs are based on [18] and
[27]. Now we give the following theorem for the SEIR model with the demography.

Theorem B.2 If RSEIR
0 < 1 and υ + μ < 1, then ( η

μ
N , 0, 0, 0) is asymptotically stable in the

SEIR model with demography.
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Proof Assume η ≥ μ. Define the function W given by

W
(

S(t), E(t), I(t), R(t)
)

= λ1

(

η

μ
N – S

)2

+ λ2

(

υEI + υ2 1
2

E2 + (μ + υ)
1
2

I2
)

+
1
2
λ3R2,

where λ1,λ2,λ3 > 0 are positive constants adequately chosen. Clearly W (S(t), E(t), I(t),
R(t)) > 0 for all t > 0 and W (N , 0, 0, 0) = 0. Given S(t), E(t), I(t), and R(t) are continuous
functions and

∂W
∂S(t)

= –2λ1

(

η

μ
N – S

)

,
∂W
∂E(t)

= λ2
(

υ2E + υI
)

,

∂W
∂I(t)

= λ2
(

υE + (μ + υ)I
)

,
∂W
∂R(t)

= λ4R

are continuous too, then V is a Lyapunov function. Notice that

Ẇ
(

X(t)
)

=
(

∂W
∂S(t) , ∂W

∂E(t) , ∂W
∂I(t) , ∂W

∂R(t)

) dX(t)
dt

=

⎛

⎜

⎜

⎜

⎝

–2λ1( η

μ
N – S)

λ2(υ2E + υI)
λ2(υE + (μ + υ)I)

λ4R

⎞

⎟

⎟

⎟

⎠

T ⎛

⎜

⎜

⎜

⎝

ηN – βIS – μS
βIS – υE – μE
υE – γ I – μI

γ I – μR

⎞

⎟

⎟

⎟

⎠

= –2λ1

(

η

μ
N – S

)

(ηN – βIS – μS) + λ2
(

υ2E + υI
)

(βIS – υE – μE)

+ λ2
(

υE + (μ + υ)I
)

(υE – γ I – μI) + λ3R(γ I – μR)

= –2λ1

(

η

μ
N – S

)

(ηN – βIS – μS) + λ2
(

υ2βSEI – υ2(υ + μ)E2

+ υβSI2 – υ(υ + μ)EI + υ2E2 – υ(γ + μ)EI + υ(μ + υ)EI

– (γ + μ)(μ + υ)I2) + λ3
(

γ RI – μR2)

≤ 2λ1a(t) + λ2b(t) + λ3c(t),

where3

a(t) =
(

η

μ
N – S

)

(–ηN + βIS + μS),

b(t) =
[(

υ2βS – υ(γ + μ)
)

+
(

υ2 – υ2(υ + μ)
)

+
(

υβS – (γ + μ)(μ + υ)
)]

× inf
t≥0

{

EI, E2, I2},

c(t) = γ RI – μR2.

Now, it is an objective to show that b(t) < 0 for all t ≥ t0 with t0 > 0. If η ≥ μ

3Later, it is shown that (υ2βS – υ(γ +μ)) + (υ2 – υ2(υ +μ)) + (υβS – (γ +μ)(μ + υ)) is negative.
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(i) As υβS < υβ
η

μ
N < (γ + μ)(μ + υ) for all t ≥ 0 (by RSEIR

0 < 1), then

υ[υβS] – υ(γ + μ) + υ2 – υ2(υ + μ)

≤ υ

[

υβ
η

μ
N
]

– υ(γ + μ) + υ2 – υ2(υ + μ)

< υ
[

(γ + μ)(μ + υ)
]

– υ(γ + μ) + υ2 – υ2(υ + μ)

=
[

υ(γ + μ) – υ2(υ + μ)
]

[υ + μ – 1]

<
[

υ(γ + μ)
]

[υ + μ – 1]

when υ + μ < 1 then υ2βN – υ(γ + μ) + υ2 – υ2(υ + μ) < 0.
(ii) Notice that υβS < υβ

η

μ
N for all t > 0 and as

η

μ

υβN
(μ + υ)(μ + γ )

= RSEIR
0 < 1,

then υβS – (μ + γ )(μ + υ) ≤ υβ
η

μ
N – (μ + γ )(μ + υ) < 0, therefore

(

υβS – (μ + γ )(μ + υ)
)

I2(t) < 0,

so by (i) and (ii) we have that λ2b(t) < 0. In this way it is possible to chose the values for
λ1,λ2,λ3 that hold on

Ẇ (t) ≤ 2λ1a(t) + λ2b(t) + λ4c(t) < 0.

Then by Theorem B.1 it is concluded that ( η

μ
N , 0, 0, 0) for the SEIR model with demog-

raphy is asymptotically stable.
If μ > η, and also for all t > 0 for which S(t) ≤ η

μ
N , it is clear that βS(t) ≤ β

η

μ
N . If there

exists t > 0 for which S(t) > η

μ
N , analogously like it was made for the proof of Theorem B.3

and following that

dS(t)
dt

= ηN – βI(t)S(t) – μS(t) < 0,

it is shown that υ[υβS] – υ(γ + μ) + υ2 – υ2(υ + μ) < 0 and υβS – (μ + γ )(μ + υ) < 0 for all
t > t0 for some t0 > 0.

For any case, we have that b(t) < 0, which is why it is possible to choose adequate values
for λ1, λ2, and λ3 such that

Ẇ (t) ≤ 2λ1a(t) + λ2b(t) + λ3c(t) < 0.

In consequence, the point ( η

μ
N , 0, 0, 0) is asymptotically stable in the SEIR model with

demography. �

Theorem B.3 If RSIR
0 < 1 and RSIS

0 < 1, then ( η

μ
N , 0, 0) and ( η

μ
N , 0) are asymptotically stable

in (i) SIR y (ii) SIS models with demography, respectively.
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Proof The proof is similar to the previous theorem, taking V defined by

V
(

S(t), I(t), R(t)
)

:= λ1

(

η

μ
N – S(t)

)2

+ λ2
1
2

I2(t) + λ3
1
2

R2(t),

where λ1,λ2,λ3 > 0 are appropriately chosen positive constants. �
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