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Abstract
In this study, we develop a nonlinear ordinary differential equation to study the
dynamics of syphilis transmission incorporating controls, namely prevention and
treatment of the infected males and females. We obtain syphilis-free equilibrium (SFE)
and syphilis-present equilibrium (SPE). We obtain the basic reproduction number,
which can be used to control the transmission of the disease, and thus establish the
conditions for local and global stability of the syphilis-free equilibrium. The stability
results show that the model is locally asymptotically stable if the Routh–Hurwitz
criteria are satisfied and globally asymptotically stable. The bifurcation analysis result
reveals that the model exhibits backward bifurcation. We adopted Pontryagin’s
maximum principle to determine the optimality system for the syphilis model, which
was solved numerically to show that syphilis transmission can be optimally best
control using a combination of condoms usage and treatment in the primary stage of
infection in both infected male and female populations.
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1 Introduction
Syphilis is one of the infectious diseases, most commonly caused by sexual contact. Spiro-
chete Treponema pallidum is a spiral-shaped bacteria that causes syphilis [23]. When a
person contracts syphilis, he or she develops sores, blisters, or ulcers on his genitals anus
(bottom), or mouth [2]. The disease is largely transmitted from one person to another
when a susceptible person has sex without condoms or shares sex toys with an infected
person [33]. Even though the disease is spread from sores, most of those sores disappeared
without being recognized [33]. There are three different stages in syphilis disease: primary
stage, secondary stage, and latent stage. At the primary stage the sign may appear as a
solitary, painless chancre at the site of inoculation. However, the primary chancre may
disappear without being noticed by infected persons. If the disease is left untreated at the
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primary stage, then it would advance to the secondary stage. The symptoms at this stage
are more visible. It includes mucocutaneous lesions affecting both skins, mucous mem-
branes, and lymph nodes [44]. Mostly, at the secondary stage, there are usually rashes on
the palms and sole of an infected person, and it can imitate other infectious and nonin-
fectious conditions. It is important to state that the rashes on the palm and foot of an
infected person at secondary syphilis stage may also disappear even without treatment. If
the disease is left untreated, then the infected person progresses to the latent stage [44].
The latent syphilis is asymptotic, described by positive syphilis serology without any clin-
ical manifestations [44]. At this stage, syphilis is often categorized in to two parts, early
latent syphilis and late latent syphilis. The early latent syphilis is characterized by an infec-
tion, which is less than two years, whereas the late latent syphilis, on the other hand, is an
infection of the disease for two years or beyond [44]. Transmission of syphilis occurs dur-
ing primary, secondary, or early latent syphilis; moreover, mother-to-child transmission
has been observed after several years of infection with syphilis, especially in an untreated
cases [44]. According to World Health Organization (WHO), an estimates of 36.4 million
syphilis infection cases were recorded worldwide [43]. About 90% of new syphilis cases
are found in resource-limited countries out of an estimated population of over 12 mil-
lion new syphilis infections recorded every year in the world [13, 14]. WHO reported that
there are 3.4 million annual new cases of syphilis in the African region among people aged
15–49 years [43]. The global incidence rate of syphilis was 1.5 cases per 1000 females and
1.5 per 1000 males in 2012. It is estimated that the global prevalence of syphilis is at 0.5%

among females and 0.5% among males aged 15–49 years, with the highest prevalence in
the WHO African Region [44]. In Nigeria the prevalence of syphilis is estimated to be be-
tween 1.3 million and 2.8 million (0.7–1.5%) [17, 39]. There were 6498 deaths as a result of
syphilis infection, 4149 males and 2349 females in the United States of America from 1968
to 2015. Adults now rarely die due to syphilis [31]. About 492,000 infants die each year
due to syphilis infection from congenital syphilis in sub-Saharan Africa [30]. In Nigeria,
neonatal death rate per 1000 is estimated at 34.1 [21]. Despite the introduction of penicillin
for almost over a decade, syphilis continues to be a disease of concern, and therefore the
optimal management of syphilis continues to be a controversial topic [12, 40]. Presently,
clinical guidelines suggest similar treatment regimens for various stages of syphilis. Peni-
cillin continues to be the drug of choice to treat all stages of syphilis in all populations with
tetracycline and cephalosporin acceptable alternate agents for some stages in nonpregnant
person [12, 40]. Penicillin G remains the most suitable drug for treating infected persons
with syphilis in all the stages. The stage and clinical manifestations of syphilis dictate the
preparation used (i.e., benzathine, aqueous procaine, or aqueous crystalline), dosage, and
length of treatment [11]. Persons with latent syphilis of unknown duration require longer
treatment duration to ensure that those who did not acquire syphilis within the preceding
period are adequately treated [11]. Novel and effective prevention strategies are keenly
required to combat syphilis infection because currently there is no vaccine to prevent in-
fection with syphilis [40]. Syphilis is a preventable and potentially eradicable disease [18].
Transmission is prevented, and subsequent new infections are also blocked when syphilis
is treated, and hence it reduces the prevalence of syphilis in a population to a minimal
level. Mathematical models play a very vital role in the study of the dynamic of infectious
diseases; for example, [15] developed and analyzed a mathematical model that includes
the basic stages of the disease and assumed that infected individuals acquire temporary
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immunity only after recovery from the latent and tertiary infections. [23] considered a
SIR mathematical model to study the effect of presence of partial immunity and vaccine
against syphilis infection in a population. The results reveal that health education leading
to enhanced biological and behavioral protection against infection and the development
of effective vaccine is the most effective way to control syphilis transmission in a high-
risk population. [17] presented a new multistage deterministic model for the transmission
dynamics of syphilis to qualitatively assess the role of loss of transitory immunity in the
transmission process. They show that loss of transitory (natural) immunity can induce
the phenomenon of backward bifurcation. [37] proposed a model for the transmission of
syphilis in an MSM population that includes infection stages and treatment. [29] used a
nonlinear mathematical model to study the dynamics of the spread of syphilis in hetero-
geneous settings with complications, and two stages of (primary and secondary stages)
infection only were considered. [2] formulated a compartmental model to investigate the
dynamics of the spread of syphilis in a sexually active population with some measure of
disease control. The model undergoes the phenomenon of backward bifurcation and pro-
posed that effective treatment strategies of syphilis in its primary and secondary infected
individuals will help reduce the cases. In [26] an investigation was carried out to deter-
mine the synergistic interaction between HIV and syphilis using a mathematical model.
The paper assessed the impact of syphilis treatment on the dynamics of syphilis and HIV
coinfection in a human population where HIV treatment is not readily available or acces-
sible to HIV infected individuals, and they proposed that if a concerted effort is exerted
in the treatment of primary and secondary syphilis (in both singly and dually infected in-
dividuals), especially with high treatment rates for primary syphilis, then it will result in a
reduction in the incidence of HIV (and its coinfection with syphilis) in the population.

However, until now, very few studies were conducted to investigate the optimal con-
trol strategies with the view to come up with best way of curtailing the spread of syphilis
within a population. [38] incorporated in an epidemiological model for the transmission
dynamics of syphilis a control variable to assess the effects of resistance strategies against
the disease. He emphasizes the need to reevaluate the current control programs; the de-
velopment of an effective vaccine associated with health education could be the best way
to control syphilis in high-risk populations. [1] formulated and analyzed the dynamics
of a syphilis model with the introduction of two controls, and the two time-independent
controls represent strategies for improvement of the treatment and cure of the syphilis
disease.

[34] used an epidemiological SEIR (Susceptible, Exposed, Infectious, Removed) type
model for rubella epidemic via classical and fractional-order Caputo differential operators
assuming the periodic transmission rate β(t). [35] investigated the dynamics of measles
infection with the help of mathematical operators called conformable derivatives of order
α (the local derivative index) in the sense of Liouville–Caputo operator of order β (the
iterated or fractionalizing index). An epidemiological model related with diarrhea trans-
mission dynamics that occurred in Ghana during 2008–2018 was investigated by [36].
The epidemiological model was designed for the very first time with newly devised frac-
tional Caputo-type operator having the fractional order α and the fractal dimension τ . [25]
proposed a fractional-order epidemic model with two different operators called the clas-
sical Caputo operator and the Atangana–Baleanu–Caputo operator for the transmission
of Covid-19 epidemic. The reproduction number R0 was obtained for the prediction and
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persistence of the disease in a population. [5] presented face masks simple but powerful
weapons to protect individuals against Covid-19 spread. The focus of their research was
to depict the transport of Covid-19 spread through wind with high speed. The stability
of nonmonotone critical waves by antiweighted method for a kind of nonmonotone time-
delayed reaction–diffusion equations, including Nicholson’s blowflies equation, which de-
scribes the population dynamics of a single species with age structure, was studied in [45].
In [6], homotopy transform methods, namely, homotopy analysis transform method and
homotopy perturbation Sumudu transform method, were implemented to examine the
fractional model for HIV infection of CD4+T lymphocyte cells. A mathematical model
for the spread of Covid-19 was analyzed in [3] using theory of stability and optimal con-
trol. The proposed model was extended to the concept of nonlocal operators, in which
the positiveness of the system solutions were established. [4] presented a detailed analysis
of an important class of differential equations called stochastic equations with the new
classes of differential operators with global derivatives of integer and noninteger orders.
In an attempt to show the applicability of the operators, three epidemiological problems,
namely, Zombie virus spread model, the Zika virus spread model, and Ebola model, were
studied, and their results showed that more complex real-world problems could be de-
picted using the classes of differential equations studied.

In this research, we complement and extend the work of [29] by taking into cognizance
the standard incidence rate and three stages of infection, namely, primary, secondary, and
latent stages of infection of the disease transmission against two stages (primary and sec-
ondary) considered by [29], and according to recent revelations of various studies con-
ducted by different authors, the early latent stage can also transmit the disease. However,
we have also incorporated an optimal control by using three control strategies consisting
of prevention and treatment to investigate the best control strategy that would assist in
curtailing the spread of syphilis in a population based on the following assumptions: The
latent stage of infection can also transmit the disease, individuals recovered from syphilis
infection can also contact the disease after the loss of immunity, the population of both
male and female are assumed to be sexually active in all stages of infection, individuals
with syphilis in the primary stage can also transmit the disease, and individuals in the sus-
ceptible population can be infected with syphilis after having contact with either those in
the primary, secondary, or individual at the latent stages of infection.

The paper is presented sectionwise as follows: The syphilis model is formulated in
Sect. 2. Mathematical analysis of the syphilis model is presented in Sect. 3. The optimal
control problem and analysis of the control problem are presented in Sect. 4. Numerical
results and discussion are provided in Sect. 5. Finally, we conclude in Sect. 6.

2 Formulation of syphilis model
The total population at time t represented as N(t) is subdivided into smaller classes: sus-
ceptible males Sm(t), susceptible females Sf (t), males with primary stage syphilis infec-
tion Imp(t), females with primary stage syphilis infection Ifp(t), males with secondary stage
syphilis infection Ims(t), females with secondary stage syphilis infection Ifs(t), males with
latent stage syphilis infection Lm(t), females with latent stage syphilis infection Lf (t), re-
covered males Rm(t), and recovered females Rf (t). So

N(t) = Sm(t) + Sf (t) + Imp(t) + Ifp(t) + Ims(t) + Ifs(t) + Lm(t) + Lf (t) + Rm(t) + Rf (t). (1)
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Recruitment into the susceptible males at time t, Sm(t) is done by the increase in the num-
ber of sexually active individuals, who do not previously contact syphilis at rate πm. The
population is also increased by rate ϕm of males who recovered from syphilis infection
after the loss of immunity. The population of susceptible males reduces due to the de-
velopment of newly infected males with syphilis who progress to the males with primary
stage syphilis by a function αf ψ( Ifp+Ifs+Lf

N )Sm, where αf represents the transmission prob-
ability of syphilis females, and ψ is the average number of sexual partners per unit time.
The susceptible males reduce as a result of natural driven death at rate μ. So the equation
becomes

dSm

dt
= πm + ϕmRm – αf ψ

(
Ifp + Ifs + Lf

N

)
Sm – μSm.

Recruitment into the susceptible females at time t, Sf (t), is due to an increase in the num-
ber of sexually active females who did not previously contact syphilis at rate πf . Recovery
from syphilis infection and later loss of immunity also contribute to increasing in sus-
ceptible females at rate ϕm. This population is reduced by acquiring syphilis infection
at the quantity αmψ( Imp+Ims+Lm

N )Sf and the migration of such a population to the females
with syphilis at the primary stage of infection, where αm is the transmission probability of
syphilis infected male. The population is also reduced by death due to the natural factor
at rate μ. Thus

dSf

dt
= πf + ϕf Rf – αmψ

(
Imp + Ims + Lm

N

)
Sf – μSf .

The population of males with primary stage syphilis at time t, Imp(t), increases due to
progression of newly infected syphilis individuals from the susceptible male at the quantity
αf ψ( Ifp+Ifs+Lf

N )Sm and is reduced due to movement to males with secondary stage syphilis
Ims at rate γm. This population is further decreased due to natural death at rate μ and
presence of treatment using antibiotics at rate σm1 , so that

dImp

dt
= αf ψ

(
Ifp + Ifs + Lf

N

)
Sm – γmImp – μImp – σm1 Imp.

The population of females with primary stage syphilis at time t, Ifp(t), increases as a result
of progression of newly infected females with syphilis infection from susceptible female
at the quantity αmψ( Imp+Ims+Lm

N )Sf and is reduced due to progression to infected females
with secondary stage syphilis (Ifs) at rate γf . There is a decrease in the population due to
natural death at rate μ and treatment using antibiotics at rate ρf1 . Thus

dIfp

dt
= αmψ

(
Imp + Ims + Lm

N

)
Sf – γf If p – μIf p – ρf1 Ifp.

The infected males with secondary stage syphilis infection at time t, Ims(t), increase due
to progression of males with primary stage syphilis (Imp) to males with secondary stage
syphilis (Ims) at rate γm. The population is reduced by the progression of males with sec-
ondary stage syphilis (Ims) at rate βm to males with latent stage syphilis (Lm). The popula-
tion is further reduced by death from natural factor at rate μ and due to the presence of
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treatment (antibiotics) at rate σm2 , so that the equation is given by

dIms

dt
= γmImp – βmIms – σm2 Ims – μIms.

Females with secondary stage syphilis population of at time t, Ifs(t), increase due to pro-
gression of females with primary stage syphilis (Ifp) to females with secondary stage
syphilis (Ifs) at rate γf . The population is reduced by the progression of females with sec-
ondary stage syphilis (Ifs) at rate βf to the latent stage syphilis (Lf ) and is further reduced by
a natural death at rate μ and due to treatment (antibiotics) at rate ρf 2, so that the equation
is given by

dIfs

dt
= γf If p – βf Ifs – ρf2 Ifs – μIfs.

The population of males with latent syphilis at time t, Lm(t), is increased by the progression
of infected males with secondary stage syphilis (Ims) at rate βm to the population of males
with latent stage syphilis (Lm) and is reduced by a natural death at rate μ. This population
is further reduced due to the presence of treatment (antibiotics) at rate σm3 , so that the
equation is given by

dLm

dt
= βmIms – μLm – σm3 Lm.

The population of females with latent stage syphilis at time t, Lf (t), is increased by the
progression of infected females with secondary stage syphilis (Ifs) at rate βf to the popu-
lation of females with latent stage syphilis (Lf ) and is reduced by natural death at rate μ.
This population is further reduced due to the presence of treatment (antibiotics) at rate
ρf3 , so that

dLf

dt
= βf Ifs – μLf – ρf3 Lf .

The population of recovered males at time t, Rm(t), is increased due to progression of
treated males from primary, secondary, and latent stages of syphilis (Imp, Ims, Lm), respec-
tively, at rates σm1 , σm2 , and σm3 , which are the treatment rates of syphilis infection in
male population. This population is reduced due to natural death at rate μ and is further
decreased due to loss of immunity acquired as a result of treatment and transfer of such
individuals to susceptible male population at rate ϕm, so that

dRm

dt
= σm1 Imp + σm2 Ims + σm3 Lm – μRm – ϕmRm.

The population of recovered females at time t, Rf (t), is increased due to progression of
treated females from primary, secondary, and latent stages of syphilis infections (Ifp, Ifs, Lf ),
respectively, at rates ρf1 , ρf2 , and ρf3 . This population is reduced due to natural death at
rate μ and is further decreased due to loss of immunity acquired as a result of treatment
and transfer of such an individual to the susceptible male population at rate ϕf :

dRf

dt
= ρf1 Ifp + ρf2 Ifs + ρf3 Lf – μRf – ϕf Rf .

The model diagram is presented in Figure 1.
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Figure 1 Model with three stages of infection and three control interventions

Therefore we present the syphilis model with three stages of infection:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSm
dt = πm + ϕmRm – αf ψ( Ifp+Ifs+Lf

N )Sm – μSm,
dImp

dt = αf ψ( Ifp+Ifs+Lf
N )Sm – γmImp – μImp – σm1 Imp,

dIms
dt = γmImp – βmIms – σm2 Ims – μIms,

dLm
dt = βmIms – μLm – σm3 Lm,

dRm
dt = σm1 Imp + σm2 Ims + σm3 Lm – μRm – ϕmRm,

dSf
dt = πf + ϕf Rf – αmψ( Imp+Ims+Lm

N )Sf – μSf ,
dIfp
dt = αmψ( Imp+Ims+Lm

N )Sf – γf If p – μIf p – ρf1 Ifp,
dIfs
dt = γf If p – βf Ifs – ρf2 Ifs – μIfs,

dLf
dt = βf Ifs – μLf – ρf3 Lf ,

dRf
dt = ρf1 Ifp + ρf2 Ifs + ρf3 Lf – μRf – ϕf Rf ,

(2)

with the initial conditions
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Sm(0) = Sm0(0) ≥ 0, Imp(0) = Imp0 ≥ 0,

Ims(0) = Ims0(0) ≥ 0, Lm(0) = Lm0(0) ≥ 0,

Sf (0) = Sf 0(0) ≥ 0, Ifp(0) = Ifp0 ≥ 0,

Ifs(0) = Ifs0(0) ≥ 0, Lf (0) = Lf 0(0) ≥ 0.

(3)

The associated subclasses are added to get the dynamics of the total population of system
(2), which yields

dN
dt

= πm + πf – μN . (4)
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Table 1 Syphilis model variables

Variable Description

Sm(t) Susceptible males at time t
Imp(t) Males with primary stage syphilis at time t
Ims(t) Males with secondary stage syphilis at time t
Lm(t) Males with latent stage syphilis at time t
Rm(t) Recovered males from syphilis at time t
Sf (t) Susceptible females at time t
Ifp(t) Females with primary stage syphilis at time t
Ifs(t) Females with secondary stage syphilis at time t
Lf (t) Females with latent stage syphilis at time t
Rf (t) Recovered females from syphilis at time t

Table 2 Syphilis model parameters notation and values

Parameters Description Values Source

πm Recruitment rate into susceptible male population 0.3 [29]
πf Recruitment rate into susceptible female population 0.45 [29]
αf Transmission probability of female with syphilis infection 0.2 [15]
αm Transmission probability of male with syphilis infection 0.5 [15]
γm Progression rate from male with primary syphilis to male

with secondary syphilis infection
0.01 [15]

γf Progression rate from female with primary syphilis 0.627 [15]
ψ Average number of sexual partner per unit time to

female with secondary syphilis infection
2 [19]

βm Progression rate from male with secondary syphilis to
male with latent syphilis infection

0.618 [15]

βf Progression rate from female with secondary syphilis to
female individual with latent syphilis infection

0.618 [15]

ϕm Rate of recovery from syphilis in infectious male 0.1 [29]
ϕf Rate of recovery from syphilis in infectious female 0.1 [29]
σm1 Treatment rate of male with primary stage syphilis 0.05 [29]
σm2 Treatment rate of male with secondary stage syphilis 0.1 [29]
σm3 Treatment rate of male with latent stage syphilis 0.2 [29]
ρf1 Treatment rate of female with primary stage syphilis 0.05 [29]
ρf2 Treatment rate of female with secondary stage syphilis 0.1 [29]
ρf3 Treatment rate of female with latent stage syphilis 0.2 [29]
μ Rate of natural death 5.48× 10–5day–1 [42]
A1 Weight coefficients for both infectious male and female

syphilis
31 [38]

B1 Relative cost for prevention and treatment in male and
female individuals

0.5 [38]

B2 Relative cost for prevention and treatment in male and
female individuals

0.4 Assumed

B3 Relative cost for prevention and treatment in male and
female individuals

0.3 Assumed

2.1 Basic properties
Theorem 1 Let Sm(0), Imp(0), Ims(0), Lm(0), Rm(0), Sf (0), Ifp(0), Ifs(0), Lf (0), Rf (0) > 0 be non-
negative initial conditions. Then system (2) has a nonnegative solution Sm(t), Imp(t), Ims(t),
Lm(t), Rm(t), Sf (t), Ifp(t), Ifs(t), Lf (t), Rf (t) > 0 for all t > 0. Moreover, lim supt→∞ N(t) ≤
πm+πf

μ
. In addition, if N(0) ≤ πm+πf

μ
, then N(t) ≤ πm+πf

μ
is the feasible region for system (2)

� =
{

(Sm, Imp, Ims, Lm, Rm, Sm, Ifp, Ifs, Lf , Rf ) ∈R
10
+ : NP ≤ πm + πf

μ

}
(5)

is positively invariant and attracting with respect to system (2).
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Proof From the first equation of system (2) we have

dSm

dt
+

αf ψ(Ifp(t) + Ifs(t)) + Lf (t))
N(t)

Sm(t) + μSm(t) ≥ 0. (6)

From time t = 0 to t = t, integrating (6), we get

d
dt

[
Sm(t) exp

{∫ t

0

αf ψ(Ifp(t) + Ifs(t) + Lf (t))
N(t)

(ω) dω + μt
}]

≥ 0.

This means that

Sm(t) ≥ Sm(0) exp

{
–
(∫ t

0

αf ψ(Ifp(t) + Ifs(t) + Lf (t))
N(t)

(ω) dω + μt
)}

> 0, ∀t > 0.

We applied a similar method to establish that Imp(t), Ims(t), Lm(t), Rm(t), Sf (t), Ifp(t), Ifs(t),
Lf (t), Rf (t) > 0 remain nonnegative for all t > 0. Equation (4) is used to prove the sec-
ond part of the theorem, which says that model system (2) is positively invariant, so that
N(t) ≤ (πm+πf )(1–exp–μt )

μ
+ μN(0) exp–μt

μ
. It follows that as t −→ ∞ N(t) ≤ πm+πf

μ
. Furthermore,

if N(0) ≤ πm+πf
μ

, then N(t) ≤ πm+πf
μ

. This establishes that � is the manifold on which the
population has nonzero size.

This proves the boundedness of the solutions inside �. Hence the solutions to system
(2) are positively invariant and attracting in a region �. Note that system (2) is feasible
biologically and mathematically well posed in � from Theorem 1. �

3 Analysis of the syphilis model
This section establishes the syphilis-free equilibrium state, syphilis-present equilibrium
state, derived the basic reproduction number, and carryout stability analysis.

3.1 Equilibrium points
The equilibrium points of system (2) are established by setting it to zero:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSm
dt = πm + ϕmRm – αf ψ( Ifp+Ifs+Lf

N )Sm – μSm = 0,
dImp

dt = αf ψ( Ifp+Ifs+Lf
N )Sm – γmImp – μImp – σm1 Imp = 0,

dIms
dt = γmImp – βmIms – σm2 Ims – μIms = 0,

dLm
dt = βmIms – μLm – σm3 Lm = 0,

dRm
dt = σm1 Imp + σm2 Ims + σm3 Lm – μRm – ϕmRm = 0,

dSf
dt = πf + ϕf Rf – αmψ( Imp+Ims+Lm

N )Sf – μSf = 0,
dIfp
dt = αmψ( Imp+Ims+Lm

N )Sf – γf If p – μIf p – ρf1 Ifp = 0,
dIfs
dt = γf If p – βf Ifs – ρf2 Ifs – μIfs = 0,

dLf
dt = βf Ifs – μLf – ρm3 Lf ,

dRf
dt = ρf1 Ifp + ρf2 Ifs + ρf3 Lf – μRf – ϕf Rf = 0.

(7)

When there is no syphilis infection, system (2) has a steady state, which is termed a
syphilis-free equilibrium. To obtain the nature of stability of the syphilis-free equilibrium,
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we computed and evaluated the Jacobian of system (2) at syphilis-free equilibrium. The lo-
cal stability of the syphilis-free equilibrium is determined using the signs of the eigenvalues
of the Jacobian. The syphilis-free equilibrium for system (2) is

(
S0

m, I0
mp, I0

ms, L0
m, R0

m, S0
f , I0

fp, I0
fs, L0

f , R0
f
)

=
(

πm

μ
, 0, 0, 0, 0,

πf

μ
, 0, 0, 0, 0

)
. (8)

This simply means that in the absence of syphilis infection the susceptible males and fe-
males proportionally change with their recruitment rate to their death rate.

For the second equilibrium point, let E∗∗ = (S∗∗
m , I∗∗

mp, I∗∗
ms, L∗∗

m , R∗∗
m , S∗∗

f , I∗∗
fp , I∗∗

fs , L∗∗
f , R∗∗

f )
be the syphilis-present equilibrium of model (2). At equilibrium state, let λ∗∗

m =
αmψ(I∗∗

mp+I∗∗
ms+L∗∗

m )
N∗∗ , λ∗∗

f =
αf ψ(I∗∗

fp +I∗∗
fs +L∗∗

f )
N∗∗ be the forces of infection, and let N∗∗ = S∗∗

m + I∗∗
mp +

I∗∗
ms + L∗∗

m + R∗∗
m + S∗∗

f + I∗∗
fp + I∗∗

fs + L∗∗
f + R∗∗

f . Then solving system (2) at steady state
yields

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S∗∗
m = k1k2I∗ms

γm(λ∗∗
f +μ) ,

I∗∗
mp = k2I∗ms

γm
,

I∗∗
ms = πmγmk3k4

k1k2k3k4–(σm3 βmγmϕm+k3σm2 γmψm+ϕmσm1 k2k3) ,

L∗∗
m = βmI∗ms

k3
,

R∗∗
m = k1k2I∗∗

ms–γmπm
γmϕm

,

S∗∗
f =

h1h2I∗∗
fs

γf (λ∗
m+μ) ,

I∗∗
fp =

h2I∗fs
γf

,

I∗∗
fs = πf γf h3h4

h1h2h3h4–(ρf3 βf γf ϕf +h3ρf2 γf ψf +ϕf ρf1 h2h3) ,

L∗∗
f =

βf I∗∗
fs

h3
,

R∗∗
f =

(γf +μ+ρf1 )(βf +ρf2 +μ)I∗∗
fs –γf πf

γf ϕ2
,

(9)

where k1 = γm + μ + σm1 , k2 = βm + σm2 + μ, k3 = μ + σm3 , k4 = μ + ϕm, and h1 = γf + μ + ρf1 ,
h2 = βf + ρf2 + μ, h3 = μ + ρf3 , h4 = μ + ϕf .

3.2 Basic reproduction number
The average number of secondary infections caused by one infectious person when the
entire population is susceptible is termed the basic reproduction number R0. The epi-
demiological threshold of syphilis is denoted by R0 = ρ(FV –1), where ρ is the dominant
eigenvalue. To find the basic reproduction number of system (2), we adopted the tech-
niques in [41] to get

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

αf ψ( Ifp+Ifs+Lf
N )Sm

0
0

αmψ( Imp+Ims+Lm
N )Sf

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

(γm + μ + σm1 )Imp

–γmImp + (βm + μ + σm2 )Ims

–βmIms + (μ + σm3 )Lm

(γf + μ + ρf1 )Ifp

–γf Ifp + (βf + μ + ρf2 )Ifs

–βf Ifs + (μ + ρf3 )Lf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The matrices F and V contain new infection terms and transition terms, respectively,
in system (2). Evaluating the Jacobian matrices of F and V at syphilis-free equilibrium
yields

F =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 αf ψπm
πm+πf

αf ψπm
πm+πf

αf ψπm
πm+πf

0 0 0 0 0 0
0 0 0 0 0 0

αmψπf
πm+πf

αmψπf
πm+πf

αmψπf
πm+πf

0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

γm + μ + σm1 0 0 0 0 0
–γm βm + μ + σm2 0 0 0 0

0 –βm μ + σm3 0 0 0
0 0 0 γf + μ + ρf1 0 0
0 0 0 –γf βf + μ + ρf2 0
0 0 0 0 –βf μ + ρf3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore system (2) has the basic reproduction number

R0 =

√
ψ2αf αmπmπf (βmγm + γmq2 + q2q3)(βf γf + γf q6 + q5q6)

(πm + πf )2q1q2q3q4q5q6
, (10)

where q1 = (γm + μ + σm1 ), q2 = (βm + μ + σm2 ) q3 = (μ + σm3 ), q4 = (γf + μ + ρf1 ),
q5 = (βf + μ + ρf2 ), and q6 = (μ + ρf3 ).

3.3 Local stability of the syphilis-free equilibrium
Theorem 2 The syphilis-free equilibrium of system (2) is locally asymptotically stable if
R0 < 1 and unstable otherwise.

Proof The Jacobian matrix of system (2) at syphilis-free equilibrium is

J
(
E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–r1 0 0 0 ϕ1 0 – αf ψπm
πm+πf

– αf ψπm
πm+πf

– αf ψπm
πm+πf

0

0 –r2 0 0 0 0 αf ψπm
πm+πf

αf ψπm
πm+πf

αf ψπm
πm+πf

0
0 γm –r3 0 0 0 0 0 0 0
0 0 βm –r4 0 0 0 0 0 0
0 σm1 σm2 σm3 –r5 0 0 0 0 0
0 – αf ψπf

πm+πf
– αf ψπf

πm+πf
– αf ψπf

πm+πf
0 –r6 0 0 0 ϕf

0 αmψπf
πm+πf

αmψπf
πm+πf

αmψπf
πm+πf

0 0 –r7 0 0 0
0 0 0 0 0 0 γf –r8 0 0
0 0 0 0 0 0 0 βf –r9 0
0 0 0 0 0 0 ρf1 ρf2 ρf3 –r10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where r1 = μ, r2 = (γm + μ + σm1 ), r3 = (βm + μ + σm2 ), r4 = (μ + σm3 ), r5 = (μ + ϕm), r6 = μ,
r7 = (γf + μ + ρf1 ), r8 = (γf + μ + ρf2 ), r9 = (μ + ρf3 ), and r10 = (μ + ϕf ).
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From the matrix J(E0) we have λ1 = –μ < 0, λ2 = –(μ + ϕm) < 0, λ3 = –μ < 0, and λ4 =
–(μ + ϕf ) < 0, so that the matrix J(E0) reduces to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–r2 0 0 αf ψπm
πm+πf

αf ψπm
πm+πf

αf ψπm
πm+πf

γm –r3 0 0 0 0
0 βm –r4 0 0 0

αmψπf
πm+πf

αmψπf
πm+πf

αmψπf
πm+πf

–r7 0 0

0 0 0 γf –r8 0
0 0 0 0 βf –r9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The characteristic equation for (11) is hereby defined as follows:

λ6 + D1λ
5 + D2λ

4 + D3λ
3 + D4λ

2 + D5λ + D6 = 0, (12)

where the coefficients of (12) are given as D1 = (r2 +r3 +r4 +r7 +r8 +r9), D2 = r9(r2 +r3 +r4 +
r7 +r8)+r3(r2 +r3)+r2r3 +r7(r2 +r3 +r4)+r8(r2 +r3 +r4 +r7)–b1c1, D3 = (r9(r4(r2 +r3)+r2r3 +
r7(r2 +r3 +r4)+r8(r2 +r3 +r4 +r7))+r7(r4(r2 +r3)+r2r3)+r8(r4(r2 +r3)+r2r3 +r7(r2 +r3 +r4))+
b1c1r2 + r2r3r4 – b1c1(2 + γf + γm) + (r2 + r3 + r4)), D4 = (c1(γmb1r2 + γmb1r3) + r8(r7(r4(r2 +
r3) + r2r3) – γmb1c1 + b1c1r2 + r2r3r4 – b1c1(r2 + r3 + r4)) – (γmb1c1 – b1c1r – 2)(r2 + r3 + r4) +
γf (b1c1r2 –γmb1c1 + b1c1r7) + r9(r7(r4(r2 + r3) + r2r3) + r8(r4(r2 + r3) – b1c1 + r2r3 + r7(r2 + r3 +
r4)) – γf b1c1 – γmb1c1 + b1c1r2 + r2r3r4 – b1c1(r2 + r3 + r4)) – b1c1r2

2 – b1c1(r4(r2 + r3) + r2r3) +
r2r3r4r7 – γf b1c1(r2 + r3 + r4 + r7) – βf γf b1c1 – βmγmb1c1), D5 = (βf (γf (b1c1r2 – γmb1c1 +
b1c1r7) +γf b1c1r8) –γf (r7(b1c1r2 –γmb1c1 + b1c1r7) – c1(γmb1r2 +γmb1r3) + c1(c1b2

1 + b1r2
2) +

βmγmb1c – 1) – r9((γmb1c1 – b1c1r2)(r2 + r3 + r4) – r8(r7(r4(r2 + r3) + r2r3) – γmb1c1 + b1c1r2 +
r2r3r4 – b1c1(r2 + r3 + r4)) – c1(γmb1r2 + γmb1r3) – γf (b1c1r2 – γmb1c1 + b1c1r7) + b1c1r2

2 +
b1c1(r4(r2 + r3) + r2r – 3) – r2r3r4r7 + γf b1c – 1(r2 + r3 + r4 + r7) + βmγmb1c – 1) – r8((γmb1c1 –
b1c1r2)(r2 + r3 + r4) – c1(γmb1r2 + γmb1r3) + b1c1r2

2 + b1c1(r4(r2 + r3) + r2r3) – r2r – 3r – 4r7 +
βmγmb1c1) + γf (b1c1r2 – γmb1c1 + b1c1r7)(r2 + r3 + r4 + r7) – γf b1c1(r4(r2 + r3) – b1c1 + r2r3 +
r7(r2 + r3 + r4)) – βf γf b1c1(r2 + r3 + r4 + r7 + r8)), D6 = (βf (γf (b1c1r2 – γmb1c1 + b1c1r7) +
γf b1c1r8)(r2 + r3 + r4 + r7 + r8) – r9(γf (r7(b1c1r2 – γmb1c1 + b1c1r7) – c1(γmb1r2 + γmb1r3) +
c1(c1b2

1 +b1r2
2)+βmγmb1c1)+r8((γmb1c1 –b1c1r2)(r2 +r3 +r4)–c1(γmb1r2 +γmb1r3)+b1c1r2

2 +
b1c1(r4(r2 + r3) + r2r3) – r2r3r4r7 + βmγmb1c1) – γf (b1c1r2 – γmb1c1 + b1c1r7)(r2 + r3 + r4 +
r7) + γf b1c1(r4(r2 + r3) – b1c1 + r2r3 + r4(r2 + r3 + r4))) – βf (γf (r7(b1c1r2 – γmb1c1 + b1c1r7) –
c1(γmb1r2 + γmb1r1) + c1(c1b2

1 + b1r2
2) + βmγmb1c – 1) + r8(γf (b1c1r2 – γmb1c1 + b1c1r7) +

γf b1c1r8)) – βf γf b1c1(r4(r2 + r3) – b1c1 + r2r3 + r7(r2 + r3 + r4) + r8(r2 + r3 + r4 + r7))).
By applying the Routh–Hurwitz criterion (which states that all roots of the polynomial

equation (12) have a negative real part if and only if the coefficients are positive and the
determinant of the matrices Hi > 1 for i = 1, . . . , 6) it is clear that D1 > 0. Therefore, if Dj > 0
for j = 2, . . . , 6 and the necessary condition for the Routh–Hurwitz criterion for the sixth-
order characteristic polynomial in (12) is satisfied, then we conclude that the syphilis-free
equilibrium is locally asymptotically stable (LAS). �

3.4 Syphilis global asymptotic stability
The approach in [8] is adopted to investigate the global asymptotic stability (GAS) of the
syphilis-free equilibrium for the model (2).
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Lemma 1 Let system (2) be of the form

⎧⎨
⎩

dQ
dt = F(Q, Z),
dZ
dt = G(Q, Z), (Q, 0) = 0,

(13)

where Q = (Sm, Rm, Sf , Rf ) and Z = (Imp, Ims, Lm, Ifp, Ifs, Lm), and the components of Q ∈ R
4

represent the population that is not infected, and the components of Z ∈ R
6 represent the

infected population [8]. Consider the syphilis-free equilibrium E0 = (Q0, 0), where

Q0 =
(

πm

μ
, 0, 0, 0, 0,

πf

μ
, 0, 0, 0, 0

)
. (14)

The conditions that must be met to guarantee the global asymptotic stability are: H1 : dQ
dt =

F(Q0, 0), where Q0 is (GAS). H2 : G(Q, Z) = PZ – Ĝ(Q, Z), Ĝ(Q, Z) ≥ 0 for (Q, Z) ∈ �, where
P = DzG(Q0, 0) is an M-matrix, and � is the biological feasible region. Hence E0 is (GAS)
if R0 < 1.

Theorem 3 The syphilis-free equilibrium of system (2) is (GAS) if R0 < 1 and unstable
otherwise.

Proof We have to establish that conditions (H1) and (H2) hold when R0 < 1. For the un-
infected population, we have

F(Q, 0) =

⎛
⎜⎜⎜⎝

πm – μSm

0
πf – μSf

0

⎞
⎟⎟⎟⎠ . (15)

Denoting by Q ∈ R
6 the infected compartments in model (2), we have G(Q, Z) = PZ –

Ĝ(Q, Z), where

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

–(γm + μ + σm1 ) 0 0 αf Sm
N

αf Sm
N

αf Sm
N

γm –(βm + μ + σm2 ) 0 0 0 0
0 β1 –(μ + σm3 ) 0 0 0

αmSf
N

αmSf
N

αmSf
N –(γf + μ + ρf1 ) 0 0

0 0 0 γf –(βf + μ + ρf2 ) 0
0 0 0 0 βf –(μ + ρf3 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Thus

Ĝ(Q, Z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ĝ1(Q, Z)
Ĝ2(Q, Z)
Ĝ3(Q, Z)
Ĝ4(Q, Z)
Ĝ5(Q, Z)
Ĝ6(Q, Z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1(Ifp + Ifs + Lf )(1 – Sm
N )

0
0

α2(Imp + Ims + Lm)(1 – Sf
N )

0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Imp

Ims

Lm

Ifp

Ifs

Lf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

Since Sm < N and Sf < N , we have Ĝ1(Q, Z), Ĝ2(Q, Z), Ĝ3(Q, Z), Ĝ4(Q, Z), Ĝ5(Q, Z),
Ĝ6(Q, Z) ≥ 0. The global stability of Q0 = ( πm

μ
, 0, 0, 0, 0, πf

μ
, 0, 0, 0, 0) of the system dQ

dt =
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F(Q0, 0) is easy to verify. Therefore Q0 is globally asymptotically stable if R0 < 1. This
completes the proof. �

3.5 Bifurcation analysis of the syphilis model
In this section, we adopt the techniques established in [7, 9, 16] to study the bifurcation
analysis for the syphilis system (2). We apply center manifold theory [24] to the syphilis
system (2) by taking R0 = 1 if and only if

αf = α∗
f =

(q1q2q3q4q5q6(πm + πf ))
ψ2αmπmπf (βmγm + γmq2 + q2q3)(βf γ2 + γ2q6 + q5q6)

.

We introduce a new set of variables for the syphilis model (2) for convenience sake by
letting x1 = Sm, x2 = Imp, x3 = Ims, x4 = Lm, x5 = Rm, x6 = Sf , x7 = Ifp, x8 = Ifs, x9 = Lf , x10 = Rf ,
x = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10)T , and f = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10)T . Thus we write
model (2) in the form of the differential equation

dx
dt

= f (x,αf ),

that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 = πm + ϕmx5 – αf ψ( x7+x8+x9
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

)x1 – μx1,

f2 = αf ψ( x7+x8+x9
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

)x1 – γmx2 – μx2 – σm1 x2,

f3 = γmx2 – βmx3 – σm2 x3 – μx3,

f4 = βmx3 – μx4 – σm3 x4,

f5 = σm1 x2 + σm2 x3 + σm3 x4 – μx5 – ϕmx5,

f6 = πf + ϕf x6 – αmψ( x2+x3+x4
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

)x6 – μx6,

f7 = αmψ( x2+x3+x4
x1+x2+x3+x4+x5+x6+x7+x8+x9+x10

)x6 – γf x7 – μx7 – ρf1 x7,

f8 = γf x7 – βf x8 – ρf2 x8 – μx8,

f9 = βf x8 – μx9 – ρm3 x9,

f10 = ρf1 x7 + ρf2 x8 + ρf3 x9 – μx10 – ϕf x10.

(17)

Computing the Jacobian matrix J(E0,αf ) associated with (17) at syphilis-free equilibrium
E0 yields

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–r1 0 0 0 ϕ1 0 – αf ψπm
πm+πf

– αf ψπm
πm+πf

– αf ψπm
πm+πf

0

0 –r2 0 0 0 0 αf ψπm
πm+πf

αf ψπm
πm+πf

αf ψπm
πm+πf

0
0 γm –r3 0 0 0 0 0 0 0
0 0 βm –r4 0 0 0 0 0 0
0 σm1 σm2 σm3 –r5 0 0 0 0 0
0 – αf ψπf

πm+πf
– αf ψπf

πm+πf
– αf ψπf

πm+πf
0 –r6 0 0 0 ϕf

0 αmψπf
πm+πf

αmψπf
πm+πf

αmψπf
πm+πf

0 0 –r7 0 0 0
0 0 0 0 0 0 γf –r8 0 0
0 0 0 0 0 0 0 βf –r9 0
0 0 0 0 0 0 ρf1 ρf2 ρf3 –r10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Considering the matrix J(E0,αf ), there exists a simple eigenvalue, and the remaining eigen-
values have negative real parts. As a result, it is possible to apply center and manifold the-
ory to the syphilis model (17). We further compute the right and left eigenvectors of the
matrix to get w1 = ψmw5

r1
– αf ψπm

(πm+πf )r1
w7 – αf ψπm

(πm+πf )r1
w8 – αf ψπm

(πm+πf )r1
w9, w3 = r1

r3
w2, w4 = βmγ 2

m
r4r2

3
w2,

w5 = ( σm1
r5

+ σm2 γm
r3r5

+ σm3 βmγm
r3r4r5

)w2, w6 = –( αmψπm
(πm+πf )r6

+ αmψπmγm
(πm+πf )r3r6

+ αmψπmβmγm
(πm+πf )r3r4r6

)w2 + ϕm
r6

w10,

w7 = ( αmψπm
(πm+πf )r7

+ αmψπmγm
(πm+πf )r3r7

+ αmψπmβmγm
(πm+πf )r3r4r7

)w2, w8 = ( αmψπm
(πm+πf )r7

+ αmψπmγm
(πm+πf )r3r7

+ αmψπmβmγm
(πm+πf )r3r4r7

) γ2
r8

w2,

w9 = ( αmψπm
(πm+πf )r7

+ αmψπmγm
(πm+πf )r3r7

+ αmψπmβmγm
(πm+πf )r3r4r7

) γ2β2
r8r9

w2, w10 = ρf1
r10

w7 + ρf2
r10

w8 + ρf3
r10

w7, w2 = w2 >

0, and v1 = 0, v3 = ( βmαmαf ψ
2πmπf

(πm+πf )2r2r4r7
+ βmβf αmαf ψ

2γf πmπf
(πm+πf )2r3r4r7r8r9

+ βmαmαf ψ
2γf πmπf

(πm+πf )2r3r4r7r8
+ αmαf ψ

2πmπf
(πm+πf )2r3r7

+
αmαf ψ

2πmπf
(πm+πf )2r3r7r8

+ βf αmαf ψ
2γf πmπf

(πm+πf )2r3r7r8r9
)v2, v4 = ( αmαf ψ

2πmπf
(πm+πf )2r4r7

+ βf αmαf ψ
2γf πmπf

(πm+πf )2r4r7r8r9
+ αmαf ψ

2γf πmπf
(πm+πf )2r4r7r8

)v2, v5 = 0,

v6 = 0, v7 = ( αf ψπm
(πm+πf )r7

+ βf αf ψγf πm
(πm+πf )r7r8r9

+ αf ψγf πm
(πm+πf )r7r8

)v2, v8 = ( αf ψβf πm
(πm+πf )r8r9

+ αf ψπm
(πm+πf )r8

)v2, v9 =
αf ψπm

(πm+πf )r9
v2, v10 = 0, v2 = v2 > 0, where r1 = μ, r2 = (γm + μ + σm1 ), r3 = (βm + μ + σm2 ),

r4 = (μ + σm3 ), r5 = (μ + ϕm), r6 = μ, r7 = (γf + μ + ρf1 ), r8 = (γf + μ + ρf2 ), r9 = (μ + ρf3 ), and
r10 = (μ + ϕf ).

Computing the bifurcation coefficients a and b after rigorous simplification yields a =
v2w2αf μ
πm+πf

+ v7w2μαmw7
πm+πf

> 0, b = v7w2
πm+πf

> 0.
Thus system (2) exhibits backward bifurcation.

3.6 Sensitivity analysis of the syphilis model
In this section, we test the effect of system (2) parameters on the basic reproduction num-
ber R0 to ascertain the impact of these parameters on syphilis transmission. To get the
sensitivity index, we partially differentiated R0 with respect to model (2) parameters. The
formula used for the sensitivity analysis in this work, for example, in the case of πm is
∂R0
∂πm

× ∂πm
∂R0

, is the same as used for all parameters of model (2). The result is presented in
the Table 3.

We observe that the parameters πm, πf , αm, αf , ψ , γm, and γf have positive sensitivity in-
dices, which means that R0 increases with the parameter. The remaining parameters, βm,
βf , σm1 , σm2 , ρm1 , and ρm2 have negative values, which implies that R0 decreases for higher
values of the parameters. For instance, the implication of the sensitivity index implies an

Table 3 Sensitivity indices of syphilis modelR0

Parameter Description Sensitivity Index

πm Recruitment rate into susceptible male population 1
πf Recruitment rate into susceptible female population 1
αf Transmission probability of females with syphilis infection 0.5
αm Transmission probability of males with syphilis infection 0.5
γm Progression rate from male with primary syphilis to male with secondary

syphilis infection
0.042548

γf Progression rate from female with primary syphilis 0.37906
ψ Average number of sexual partner per unit time to female with

secondary syphilis infection
1

βm Progression rate from male with secondary syphilis to male with latent
syphilis infection

–0.39089

βf Progression rate from female with secondary syphilis to female
individual with latent syphilis infection

–0.0000013015

σm1 Treatment rate of males with primary stage syphilis –0.45322
σm2 Treatment rate of males secondary stage syphilis –0.0027407
ρf1 Treatment rate females with primary stage syphilis –0.25536
ρf2 Treatment rate of females with secondary stage syphilis –0.044735
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increase (or decrease) of πm by a certain percentage, say, y% will result in an increase (or
decrease) effect on the reproduction number by y%.

4 Optimal control of the syphilis model
In this section, we present optimal control interventions for effective management of the
syphilis infection. In an attempt to arrest the transmission of syphilis, we incorporated
control interventions into system (2) to get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSm
dt = πm + ϕmRm – αf ψ(1 – u1)( Ifp+Ifs+Lf

N )Sm – μSm,
dImp

dt = αf ψ(1 – u1)( Ifp+Ifs+Lf
N )Sm – γmImp – μImp – σm1 u2Imp,

dIms
dt = γmImp – βmIms – σm2 u2Ims – μIms,

dLm
dt = βmIms – μLm – σm3 u2Lm,

dRm
dt = σm1 u2Imp + σm2 u2Ims + σm3 u2Lm – μRm – ϕmRm,

dSf
dt = πf + ϕf Rf – αmψ(1 – u1)( Imp+Ims+Lm

N )Sf – μSf ,
dIfp
dt = αf ψ(1 – u1)( Imp+Ims+Lm

N )Sf – γf If p – μIf p – ρf1 u3Ifp,
dIfs
dt = γf If p – βf Ifs – ρf2 u3Ifs – μIfs,

dLf
dt = βf Ifs – μLf – ρf3 u3Lf ,

dRf
dt = ρf1 u3Ifp + ρf2 u3Ifs + ρf3 u3Lf – μRf – ϕf Rf .

(18)

Basically, we present the objective functional J to investigate the optimal level of effort
required to control the syphilis infection. We follow the techniques of [22] to formulate
the objective functional, which is given by

J(u) =
∫ tf

0

[
(A1(Ip + Is + L) +

1
2
(
B1u2

1 + B2u2
2 + B3u2

3
)]

dt, (19)

where Ip = (Imp + Ifp), Is = (Ims + Ifs), and L = (Lm + Lf ).
The factor u1 is a control function representing prevention from syphilis infection

through the use of condom and safe sex activity in both the male and female populations,
u2 is a control function representing treatment using antibiotic in male population, and
u3 is a control function representing treatment using antibiotic in female population. The
use of condom and safe sex is aimed at reducing the transmission of syphilis from in-
fected to susceptible individuals. tf is the final time, and the coefficients A1, B1, B2, B3 are
positive weights to balance the factors. The aim is minimizing the number of males and
females with primary stage syphilis Ip, the number of males and females with secondary
stage syphilis Is, and the number of males and females with latent stage syphilis L while we
keep the cost of controls u1(t), u2(t), u3(t) at minimal level. Thus we seek optimal controls
u∗

1, u∗
2, u∗

3 such that J(u∗
1, u∗

2, u∗
3) = minu1,u2,u3{J(u1, u2, u3) 	 u1, u2, u3 ∈ U}, where U is the

set of measurable functions from [0, tf ] onto [0, 1]. The necessary conditions that an opti-
mal control must satisfy were derived from Pontryagin’s maximum principle [32], and the
existence of optimal control was derived from the adjoint variable of the state variables
satisfying the following set of differential equations. This principle converts system (18)
into a problem of minimizing pointwise a Hamiltonian H with respect to (u1, u2, u3). The
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Hamiltonian is

H = A1(Ip + Is + L) +
1
2
(
B1u2

1 + B2u2
2 + B3u2

3
)

+ λSm

[
πm + ϕmRm – (1 – u1)αf ψ

(
Ifp + Ifs + Lf

N

)
Sm – μSm

]

+ λImp

[
(1 – u1)αf ψ

(
Ifp + Ifs + Lf

N

)
Sm – (γm + μ + σm1 u2)Imp

]

+ λIms

[
γmImp – (βm + σm2 u2 + μ)Ims

]
+ λLm

[
βmIms – (μ + σm3 u2)Lm

]
+ λRm

[
σm1 u2Imp + σm2 u2Ims + σm3 u2Lm – (μ + ϕm)Rm

]

+ λSf

[
πf + ϕf Rf – (1 – u1)αmψ

(
Imp + Ims + Lm

N

)
Sf – μSf

]

+ λIfp

[
(1 – u1)αmψ

(
Imp + Ims + Lm

N

)
Sf – (γf + μ + ρf1 u3)Ifp

]

+ λIfs

[
γf Ifp – (βf + ρf2 u3 + μ)Ifs

]
+ λLf

[
βf Ifs – (μ + ρf3 u3)Lf

]
+ λRf

[
ρf1 u3Ifp + ρf2 u3Ifs + ρf3 u3Lf – (μ + ϕf )Rf

]
,

(20)

where λSm , λImp , λIms , λLm , λRm , λSf , λIfp , λIfs , λLf , and λRf are the adjoint variables.

Theorem 4 Let u∗
1, u∗

2, u∗
3 be optimal controls, and let Sm, Imp, Ims, Lm, Rm, Sf , Ifp, Ifs, Lf ,

and Rf be the solutions of the optimal control problem (18)–(19) that minimize J(u1, u2, u3)
over U . Then there exist adjoint variables λSm , λImp , λIms , λLm , λRm , λSm , λImp , λIms , λLm , λRm

satisfying

–
dλi

dt
=

∂H
∂i

, (21)

where Sm, Imp, Ims, Lm, Rm, Sf , Ifp, Ifs, Lf , and Rf are the adjoint variables, and the controls
u∗

1, u∗
2, u∗

3 obey the optimality conditions

u∗
1 = max

{
0, min

(
1,

αf ψS∗
m

N∗ (I∗
fp + I∗

fs + L∗
f )(λImp – λSm ) +

αf ψS∗
f

N∗ (I∗
mp + I∗

ms + L∗
m)(λIfp – λSf )

B1

)}
,

u∗
2 = max

{
0, min

(
1,

σm1 I∗
mp(λRm – λImp ) + σm2 I∗

ms(λRm – λIms ) + σm3 L∗
m(λRm – λLm )

B2

)}
,

u∗
3 = max

{
0, min

(
1,

ρf1 I∗
fp(λRf – λIfp ) + ρf2 I∗

fs(λRf – λIfs ) + ρf3 L∗
f (λRf – λLf )

B3

)}
.

(22)
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Proof To prove the theorem, we assessed the differentiated Hamiltonian functional at the
optimal control to get the differentiable equations governing the adjoint variables. Hence

dλSm

dt
= (1 – u1)

αf ψ(I∗
fp + I∗

fs + L∗
f )

N∗ (λSm – λImp ) + μλSm ,

dλImp

dt
= (λImp – λIms )γm + μλImp + σm1 u2(λImp – λRm )

+
αmψ(1 – u1)S∗

f

N∗ (λSf – λIfp ) – A1,

dλIms

dt
= (λIms – λLm )βm + σm2 u2(λIms – λRm ) + μλIms

+
αmψ(1 – u1)S∗

f

N∗ (λSf – λIfp ) – A1,

dλLm

dt
= σm3 u2(λLm – λRm ) + μλLm +

αmψ(1 – u1)S∗
f

N∗ (λSf – λIfp ) – A1,

dλRm

dt
= (λRm – λSm )ϕm + μλRm ,

dλSf

dt
= (1 – u1)

αmψ(I∗
mp + I∗

ms + L∗
m)

N∗ (λSf – λIfp ) + μλSf ,

dλIfp

dt
=

αf ψ(1 – u1)S∗
m

N∗ (λSm – λImp ) + (λIfp – λIfs )γf + ρf1 u3(λIfp – λRf ) + μλIfp – A1,

dλIfs

dt
=

αf ψ(1 – u1)S∗
m

N∗ (λSm – λImp ) + (λIfs – λLf )βf + ρf2 u3(λIfs – λRf ) + μλIfs – A1,

dλLf

dt
=

αf ψ(1 – u1)S∗
m

N∗ (λSm – λImp ) + ρf3 u3(λLf – λRf ) + μλLf – A1,

dλRf

dt
= (λRf – λSf )ϕf + μλRf

(23)

with transversality conditions:

⎧⎨
⎩

λSm (tf ) = λImp (tf ) = λIms (tf ) = λLm (tf ) = λRm (tf ) = λSf (tf )

= λIfp (tf ) = λIfs (tf ) = λLf (tf ) = λRf = 0.
(24)

Also, the optimal functions u∗
1, u∗

2, and u∗
3 satisfy

∂H
∂u∗

i
= 0, i = 1, 2, 3,

Therefore

u∗
1 =

αf ψS∗
m

N∗ (I∗
fp + I∗

fs + L∗
f )(λImp – λSm ) + αmψSf

N∗ (I∗
mp + I∗

ms + L∗
m)(λIfp – λSf )

B1
,

u∗
2 =

σm1 I∗
mp(λRm – λImp ) + σm2 I∗

ms(λRm – λIms ) + σm3 L∗
m(λRm – λLm )

B2
,

u∗
3 =

ρf1 I∗
fp(λRf – λIfp ) + ρf2 I∗

fs(λRf – λIfs ) + ρf3 L∗
f (λRf – λLf )

B3
.
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Table 4 Initial values for the variables

Parameters Value Source

Sm(0) 10,230 Assumed
Imp(0) 7048 [10]
Ims(0) 6067 [10]
Lm(0) 2600 Assumed
Rm(0) 0 [28]
Sf (0) 10,960 Assumed
Ifp(0) 7998 [10]
Ifs(0) 4113 [10]
Lf (0) 2416 Assumed
Rf (0) 0 [28]

In accordance with [22], based on typical control arguments involving the bound on the
controls, we conclude that as a result of a priori boundedness of the state system and the
adjoint system, we obtained the uniqueness of the optimality system (23)–(24). There is a
restriction on the length of time interval [0, tf ] so that we can guarantee the uniqueness of
the optimality system [27]. �

5 Numerical simulations
In this section, we investigate the impact of interventions on the transmission of syphilis in
a population. The optimal control problem (18)–(19) is solved numerically following the
techniques in [20], which uses the forward and backward Range–Kutta scheme. We use
the variables and parameter values in Tables 2 and 4 to minimize the number of syphilis
infections in both males and females. We implement the time level to be five years. The
results are presented in Figs. 2–5 using the following strategies:

I. Strategy A: use of condom + treatment of male with syphilis infection.
II. Strategy B: use of condom + treatment of female with syphilis infection.

III. Strategy C: treatment of male with syphilis infection + treatment of female with
syphilis infection.

IV. Strategy D: use of condom + treatment of male with syphilis infection + treatment
of female with syphilis infection.

5.1 Strategy A: use of condom + treatment of male with syphilis infection
In strategy A, we present the simulation of optimal control system (18) with condom use
(u1) as personal protection against infection and treatment of males with syphilis infec-
tion (u2) are implemented, whereas treatment of female with syphilis infection (u3) is set
to zero. Figures 2(b–d) show the results of the implementation of strategy A. There is a
significant difference in the population of males with primary syphilis infection Imp, males
with secondary syphilis infection Ims, and males with latent syphilis infection Lm when
optimal use of condom (u1 
= 0) and treatment of males with syphilis infection (u2 
= 0)
were compared to the population without optimal control strategy. Figures 2(g–i) show
the results for females with primary syphilis infection Imp, females with secondary syphilis
infection Ims, and females with latent syphilis infection Lm when strategy A is applied. The
population of females with primary syphilis infection Ifp, females with secondary syphilis
infection Ifs, and females with latent syphilis infection Lf drop when optimal use of con-
dom (u1 
= 0) and treatment of males with syphilis infection (u2 
= 0) against the population
without optimal control strategy. Figure 2(k) depicts the control profile for strategy A. We
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Figure 2 Use of condom + treatment of male with syphilis infection

observed that the control curve for the use of condoms remains at the upper bound for
almost the entire duration of the study period, that is, 24 months, whereas the curve for
the treatment of males with syphilis infection remains at a lower bound for the duration
of the study.

5.2 Strategy B: use of condom + treatment of female with syphilis infection
This strategy shows the simulation of optimal control system (18) for condom use (u1) as
personal protection against infection and treatment of females with syphilis infection (u3)
while treatment of male with syphilis infection (u2) is fixed at zero. Figures 3(b–d) show
that there is a clear change in the population of males with primary syphilis infection Imp,
males with secondary syphilis infection Ims, and males with latent syphilis infection Lm

when strategy B is effected compared to the population without optimal control strategy B.
Figures 3(g–i) show the results for females with primary syphilis infection Ifp, females with
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Figure 3 Use of condom + treatment of female with syphilis infection

secondary syphilis infection Ifs, and females with latent syphilis infection Lf when strategy
B is applied. We observed that the population of females with primary syphilis infection Ifp,
females with secondary syphilis infection Ifs and females with latent syphilis infection Lf

reduce when optimal use of condom (u1 
= 0) and treatment of males with syphilis infection
(u3 
= 0) are implemented when compared to the case without control strategy. Figure 3(k)
shows the control profile for strategy B. From the control curve we observed that the use
of condoms remains at the upper bound for almost the entire duration of the study period,
that is, 24 months, whereas the curve for the treatment of females with syphilis infection
is unstable for the entire period of implementation of the strategy.

5.3 Strategy C: treatment of male and female with syphilis infection
In strategy C, we use treatment of males with syphilis infection (u2) and treatment of fe-
male with syphilis infection (u3) to optimize the objective functional (19) while the use of
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Figure 4 Treatment of male with syphilis infection + treatment of female with syphilis infection

condom (u1) is set at zero. Figures 4(b–d) show that there is a drastic change in the popu-
lation of males with primary syphilis infection Imp, males with secondary syphilis infection
Ims, and males with latent syphilis infection Lm when strategy C is effected compared to
the population without optimal control strategy C. Figures 4(g–i) depict the results for fe-
males with primary syphilis infection Ifp, females with secondary syphilis infection Ifs, and
females with latent syphilis infection Lf when strategy B is applied. We observed that the
population of females with primary syphilis infection Ifp, females with secondary syphilis
infection Ifs, and females with latent syphilis infection Lf diminishes when optimal treat-
ment of males with syphilis infection (u2 
= 0) and treatment of females with syphilis in-
fection (u3 
= 0) are implemented when compared to the case without control. Figure 4(k)
shows the control profile for strategy C. We observed that the treatment of males with
syphilis stays at a lower bound throughout the duration of the study period, whereas the
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Figure 5 Use of condom + treatment of male with syphilis infection + treatment of female with syphilis
infection

curve for the treatment of females with syphilis infection oscillates throughout the period
of implementation of the strategy.

5.4 Strategy D: use of condom + treatment of male with syphilis infection +
treatment of female with syphilis infection

Strategy D presents use of condom (u1), treatment of males with syphilis infection (u2),
and treatment of female with syphilis infection (u3) to optimize the objective functional
(19). Figures 5(b–d) depict a more significant decrease in the population of males with
primary syphilis infection Imp, males with secondary syphilis infection Ims, and males with
latent syphilis infection Lm when strategy C is effected compared to the population with-
out optimal control strategy C. We also compared strategy D to other strategies and found
out that the strategy shows a significant decline in the number of the infected population
compared to other strategies. Figures 5(g–i) depict the results for females with primary
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syphilis infection Ifp, females with secondary syphilis infection Ifs, and females with latent
syphilis infection Lf when strategy C is implemented. We observed that the population
of females with primary syphilis infection Ifp, females with secondary syphilis infection
Ifs, and females with latent syphilis infection Lf diminishes when optimal use of condom
(u1 
= 0), treatment of males with syphilis infection (u2 
= 0), and treatment of females with
syphilis infection (u3 
= 0) are implemented when compared to the case without control.
Figure 5(k) depicts the control profile for strategy D. We observed that the curve for use of
condom is at the upper bound for almost the entire period of the study (24 months), treat-
ment of males with syphilis stays at lower bound throughout the duration of the study
period, whereas the curve for the treatment of females with syphilis infection oscillates
throughout the period of implementation of the strategy.

However, we realized that each of the four strategies explored in this study has positively
demonstrated that the spread of syphilis can be halted once the desired group is targeted
with given proper treatment. We equally noted that treating males can have an effect on
females with syphilis infection and vice versa. Of the four strategies, strategy D, condom
plus treatment in both the male and the female population, yielded the best result when
compared to the use of treatment only strategy or condom plus treatment in male alone
or condom plus treatment in female only strategies. This is supported by [21, 30, 37],
respectively; treating the syphilis disease in its primary level and directing resources to the
use of condoms plus treatment in a population would widely and immensely contribute
in controlling the spread of syphilis.

6 Conclusion
In this research, we proposed and studied a mathematical sex-structured syphilis model
with three stages of infection and three control strategies, and loss of immunity. We as-
sumed a constant control for the control parameters in the analytical solution. The pos-
itivity of the solution was proved, and the system of nonlinear differential equations is
found to be biologically and mathematically well-posed. We obtained the basic repro-
duction number using the next-generation method. The syphilis-free and syphilis-present
equilibria were established. The syphilis-free equilibrium is locally asymptotically stable
when R0 < 1 and unstable when R0 > 1. The global stability of syphilis-free equilibrium
is proved to be globally asymptotically stable when the associated reproduction num-
ber R0 < 1. This implies that the disease will completely die out in a stable equilibrium,
whereas it will persist and become endemic in an unstable equilibrium. We used Pon-
tryagin’s maximum principle to investigate the optimal level required to curtail the spread
of syphilis in a population. Numerical results show that the best strategy for control of
syphilis transmission is strategy D, the combination of condom usage for the prevention
and treatment of infected male and female population.

Acknowledgements
The authors acknowledge the facilities provided by Modibbo Adama University of Technology, Yola, Nigeria, and Tertiary
Education Trust Fund.

Funding
The research received no external funding.

Availability of data and materials
Not applicable.



Momoh et al. Advances in Difference Equations        (2021) 2021:285 Page 25 of 26

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The development and simulation of the model was done by AAM. Model analysis, discussion of results,and typesetting
were implemented by YB, DJW, and DD. All authors approved the final manuscript.

Author details
1Department of Mathematics, Modibbo Adama University of Technology, Yola, Nigeria. 2Cheikh Anta Diop University,
Dakar, Senegal.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 November 2020 Accepted: 24 May 2021

References
1. Abdullahi, A.A.: On optimal strategy for the control of syphilis disease. NAMP 3, 119–122 (2017)
2. Andrawus, J., Eguda, F.Y.: Mathematical analysis of a model for syphilis endemicity. Int. J. Sci. Eng. Appl. Sci. 3(8), 48–72

(2017)
3. Araz, S.I.: Analysis of a Covid-19 model: optimal control, stability and simulations. Alex. Eng. J. 60, 647–658 (2021)
4. Atangana, A., Araz, S.I.: Nonlinear equations with global differential and integral operators: existence, uniqueness with

application to epidemiology. Results Phys. 20, 103593 (2021)
5. Atangana, E., Atangana, A.: Face masks simple but powerful weapons to protect against COVID-19 spread: can they

have side effects? Results Phys. 19, 103425 (2020)
6. Bulut, H., Kumar, D., Singh, R., Swoop, R., Baskonus, H.M.: Analytic study for fractional model of HIV infection of CD4+T

lymphocyte cells. Math. Nat. Sci. 2, 33–43 (2018)
7. Buonomo, B., Lactignola, D.: Analysis of a tuberculosis model with a case study in Uganda. J. Biol. Dyn. 4(6), 571–593

(2010)
8. Castillo-Chavez, C., Feng, Z., Huang, W.: On the computation of R0 and its role on global stability. IMA Vol. Math. Appl.

125, 229 (2002)
9. Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361–404

(2004)
10. Centre for Disease Control and Prevention: sexually transmitted disease surveillance. Retrieved on 5th October, 2019

from www.cdc.gov/std/stats17/syphilis.htm (2017)
11. Centre for Disease Control and Prevention: Sexually transmitted diseases treatment guidelines. US department of

health and human services. Morb. Mort. Wkly. Rep. 64(3), 34–36 (2015)
12. Clement, M.E., Okeke, N.L., Hicks, C.B.: Treatment of syphilis: a systematic review. JAMA 312(18), 1905–1917 (2014)
13. Fenton, K.A., Breban, R., Vardavas, R., et al.: Infectious syphilis in high-income settings in the 21st century. Lancet

Infect. Dis. 8(4), 244–253 (2008). https://doi.org/10.1016/s1473-3099(08)70065.3
14. French, P.: Syphilis. BMJ, Br. Med. J. 334(7585), 143–147 (2007). https://doi.org/10.1136/bmj.39085.518148
15. Garnett, G.P., Aral, S.O., Hoyle, D.V., Cates, W., Anderson, R.M.: The natural history of syphilis. Implications for the

transmission dynamics and control of infection. J. Sex. Transm. Dis. 24(4), 185–200 (1997). Accessed 15th January,
2016, retrieved on 12th February, 2019 from https://www.researchgate.net/publication/14115022

16. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. J. Appl.
Mech. 51(4), 947 (1984)

17. Iboi, E., Okuonghae, D.: Population dynamics of a mathematical model for syphilis. Appl. Math. Model. 40, 3573–3590
(2016)

18. Kilmarx, P.H., St Louis, M.E.: Epidemiology research branch division of STD/HIV prevention: center for disease control
and prevention. Am. J. Publ. Health 85(8), 1053–1054 (1995)

19. Kimbir, A.R., Oduwole, H.K.: A mathematical model of HIV/AIDS transmission dynamics considering counseling and
antiretroviral therapy. J. Mod. Math. Stat. 2(5), 166–169 (2008)

20. Lenhart, S.M., Workman, J.T.: Optimal Control Applied to Biological Model, vol. 15. CRC Press, New York (2007)
21. Melrose, P.: Nigeria prevalence of syphilis (percentage of women attending antenatal care). Retrieved on 12th July

2019 from https://tradingeconomics.com (2019)
22. Michael, M., Libin, M., Weimin, H.: Convergence of the forward-backward sweep method in optimal control. Comput.

Optim. Appl. 53(1), 207–226 (2012)
23. Milner, F., Zhao, R.: A new mathematical model of syphilis. Math. Model. Nat. Phenom. 5(6), 96–108 (2010).

https://doi.org/10.1051/mmnp/20105605
24. Muthuri, G.G., Malonza, D.M.: Mathematical modeling of TB-HIV C0 infection, case study of tigania West sub country,

Kenya. J. Adv. Math. Comput. Sci. 27(5), 1–18 (2018)
25. Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in

fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135, 795 (2020)
26. Nwanko, A., Okuonghae, D.: Mathematical analysis of the transmission dynamics of HIV syphilis co-infection in the

presence of treatment for syphilis. Bull. Math. Biol. 80(3), 437–492 (2018). https://doi.org/10.1007/s11538-017-0384-0
27. Okosun, K.O., Ouifki, R., Marcus, N.: Optimal control analysis of a malaria disease transmission model that includes

treatment and vaccination with waning immunity. Biosystems 106(2–3), 136–145 (2011)
28. Okuonghae, D., Gumel, A.B., Ikhimwin, B.O., Iboi, E.: Mathematical assessment of the role of early latent infections and

targeted control strategies on syphilis transmission dynamic. Acta Biotheor. 67(1) 47–84 (2019).
https://doi.org/10.1007/s10441-018-9336-9

http://www.cdc.gov/std/stats17/syphilis.htm
https://doi.org/10.1016/s1473-3099(08)70065.3
https://doi.org/10.1136/bmj.39085.518148
https://www.researchgate.net/publication/14115022
https://tradingeconomics.com
https://doi.org/10.1051/mmnp/20105605
https://doi.org/10.1007/s11538-017-0384-0
https://doi.org/10.1007/s10441-018-9336-9


Momoh et al. Advances in Difference Equations        (2021) 2021:285 Page 26 of 26

29. Oyeniyi, R.B., Are, E.B., Ibraheem, M.O.: Mathematical modeling of syphilis in a heterogeneous setting with
complications. J. Niger. Math. Soc. 36(3), 479–490 (2017)

30. Peeling, R., Mabey, D., Fitzgerald, D., Watson-Jones, D.: Avoiding HIV and dying of syphilis. Lancet 364, 1561–1563
(2004)

31. Peter, T.A., Kidd, S.: Trends in death due to syphilis; United States 1968-2015. Sex. Transm. Dis. 46(1), 37–40 (2019).
https://doi.org/10.1097/OLQ.0000000000000898

32. Pontryaggin, L.S., Boltryanskii, V.G., Gamkrelidze, R.V., Mishchenco, E.F.: Mathematical Theory of Optimal Process, vol. 4.
Gordon & Breach, New York (1986)

33. Prabhakararao, G.: Mathematical modelling of syphilis disease; a case study with reference to Anantapur
district-Andhra Pradesh-India. Int. J. Eng. Res. Appl. 4(10), 29–39 (2014)

34. Qureshi, S.: Periodic dynamics of rubella epidemic under standard and fractional Caputo operator with real data from
Pakistan. Math. Comput. Simul. (2020). https://doi.org/10.1016/j.matcom.2020.06.002

35. Qureshi, S.: Effects of vaccination on measles dynamics under fractional conformable derivative with
Liouville–Caputo operator. Eur. Phys. J. Plus 135, 63 (2020)

36. Qureshi, S., Atangana, A.: Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear
diarrhea transmission dynamics under the use of real data. Chaos Solitons Fractals 136, 109812 (2020)

37. Saad-Roy, C.M., Shuai, Z., Driessche, P.V.: A mathematical model of syphilis transmission in an MSM population. Math.
Biosci. 277, 59–70 (2016)

38. Selmane, S.: Optimal control applied to resistance strategies for the transmission dynamics of syphilis. University of
Science and Technology Houari Boumediene, Algeria (2014)

39. This day Newspaper: Borno with highest cases of syphilis, 24 March 2016 (2016)
40. Tuddenham, S., Ghanem, K.G.: Emerging trends and persistent challenges in the management of adult syphilis. BMC

Infect. Dis. 15(351), 1–8 (2015)
41. Van den Driessche, P., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibra for

compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)
42. World Bank: Life expectancy at birthdata.worldbank.org. Accessed 5th October, 2019 (2016)
43. World Health Organization: Global incidence and prevalence of selected curable sexually transmitted infections

(2012)
44. World Health Organization: Guideline for treatment of treponema pallidum (syphilis). Accessed 11th April, 2019.

Retrieved 12th April, 2019 from http://www.who.int/reproductivehealth/publications/rtis/syphilis (2016)
45. Zhou, Y.H., Yang, Y.R., Zhang, H.J.: Stability of non-monotone critical waves in a population dynamics model with

spatio-temporal delay. Math. Nat. Sci. 2, 8–23 (2018)

https://doi.org/10.1097/OLQ.0000000000000898
https://doi.org/10.1016/j.matcom.2020.06.002
http://birthdata.worldbank.org
http://www.who.int/reproductivehealth/publications/rtis/syphilis

	Mathematical analysis and optimal control interventions for sex structured syphilis model with three stages of infection and loss of immunity
	Abstract
	MSC
	Keywords

	Introduction
	Formulation of syphilis model
	Basic properties

	Analysis of the syphilis model
	Equilibrium points
	Basic reproduction number
	Local stability of the syphilis-free equilibrium
	Syphilis global asymptotic stability
	Bifurcation analysis of the syphilis model
	Sensitivity analysis of the syphilis model

	Optimal control of the syphilis model
	Numerical simulations
	Strategy A: use of condom + treatment of male with syphilis infection
	Strategy B: use of condom + treatment of female with syphilis infection
	Strategy C: treatment of male and female with syphilis infection
	Strategy D: use of condom + treatment of male with syphilis infection + treatment of female with syphilis infection

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


