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Abstract
We establish new eigenvalue inequalities in terms of the weighted Cheeger constant
for drifting p-Laplacian on smooth metric measure spaces with or without boundary.
The weighted Cheeger constant is bounded from below by a geometric constant
involving the divergence of suitable vector fields. On the other hand, we establish a
weighted form of Escobar–Lichnerowicz–Reilly lower bound estimates on the first
nonzero eigenvalue of the drifting bi-Laplacian on weighted manifolds. As an
application, we prove buckling eigenvalue lower bound estimates, first, on the
weighted geodesic balls and then on submanifolds having bounded weighted mean
curvature.
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1 Introduction
The first aim of this paper is to answer in the affirmative that there exists a weighted form
of Cheeger constant for domains in complete smooth metric measure spaces. The de-
termination of Cheeger constant on a domain aids the process of solving isoperimetric
problems (see [14, 27, 33, 37] for examples) and the classical Cheeger problems (see [31]
and the references therein). Here we show that the weighted Cheeger constant is bounded
from below by some other geometric constant involving the divergence of suitable vector
fields. Our main result (Theorem 2.3) is the generalized Cheeger inequality, which states
that the first nonzero eigenvalue of the drifting p-Laplacian (1 < p < ∞) on a bounded
domain is bounded from below by a multiple of Cheeger constant depending on p.

In the second part of the paper (Sect. 3), we establish a weighted form of Escobar–
Lichnerowicz–Reilly lower bound estimates on the first nonzero eigenvalue of the drifting
bi-Laplacian defining buckling problem on weighted manifolds with generalized Ricci cur-
vature bounded from below by a nonnegative constant. This result is a generalization of
[17, 38] in the case of bounded domains with smooth boundary in Riemannian manifolds.
See also similar results [26, 35, 36, 39] for the p-Laplacian or drifting Laplacian eigenvalue
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problems. For applications, following closely the idea of Hessian comparison estimates ap-
plied in [11, 19, 25] on different problems, we discuss lower bound estimates for the first
eigenvalues on the weighted geodesic ball whose radius does not exceed the injectivity ra-
dius and submanifolds having bounded weighted mean curvature. In fact, our estimates
extend the results of [11, 25, 38] when the supremum of the sectional curvature inside the
ball is nonnegative.

The rest of this section is devoted to giving basic information (that is relevant to our
study) about smooth metric measure spaces. We also make some remarks on previous
relevant results on eigenvalues in this class of spaces before this section is concluded.

Smooth metric measure spaces Let M be an n-dimensional complete manifold endowed
with Riemannian metric g and volume measure dv. Given a smooth function φ : M →R,
the triple (M , g,φ) is referred to as a complete smooth metric measure space, where the
weighted measure e–φ dv is conformally related to the Riemannian volume measure dv.

With (M , g,φ) we associate the generalized Ricci curvature known as the Bakry–Émery
curvature defined by

Ricm
φ := Ricg + ∇∇φ –

∇φ ⊗ ∇φ

m – n
, m ≥ n,

where Ricg and ∇ respectively denote the Ricci tensor and gradient operator with respect
to the Riemannian manifold (M , g), and ∇∇φ is the Hessian of φ. Note that the case m = n
is attainable only for a constant function φ, and then Ricm

φ ≡ Ricg. We obtain Ric∞
φ := Ricg +

∇∇φ as m approaches ∞. The generalized Ricci curvature carries significant information
for various m, for instance, Ricφ = αg, α ∈ R, defines gradient Ricci solitons as singularity
formations for the Ricci flow [22].

Also, we associate with (M , g,φ) a self-adjoint second-order differential operator, called
the drifting Laplacian (or Witten, or weighted Laplacian), which is defined for any smooth
function u on M by

Lφu := eφ div
(
e–φ∇φ

)
= �u – 〈∇φ,∇u〉,

where � and 〈·, ·〉 respectively stand for the Laplace–Beltrami operator and Riemannian
inner product on (M , g).

Clearly, a smooth metric measure space is a natural extension of a Riemannian manifold,
whereas the drifting Laplacian and Bakry–Émery tensor (generalized Ricci curvature) are
the natural counterparts for the Laplace–Beltrami operator and the Ricci curvature, re-
spectively. Smooth metric measure spaces play a central role throughout geometric analy-
sis, probability theory, quantum field theory, and statistical mechanics and have close links
with Markov diffusion operators, generalized curvature, and geometry [8, 9]. A striking
application of this class of spaces is already seen in Perelman’s approach to resolving the
Poincaré and geometrization conjectures [32]. See also [29, 30].

Estimating eigenvalues of a prescribed elliptic operator, such as the Laplacian, p-
Laplacian, drifting Laplacian, and the biharmonic operator, has been an intensive research
area because of its relevance in geometry and physics. Many classical results around this
research area are well captured in the monographs [14, 21, 33]. Recently, several authors
have engaged in finding lower and upper geometric estimates for the first eigenvalues of
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the above listed Laplace-type operators with several geometric quantities formulated and
analyzed. For example, Futaki, Li, and Li [20] obtained a lower bound on the first eigen-
value of drifting Laplacian on a compact Riemannian manifold without boundary under
the assumption that the generalized Ricci curvature is bounded from below. The lower
bound obtained depends on the diameter of the manifold and extends the previous re-
sult by Shi and Zhang [34] for the Laplacian. As an application, we derive a lower bound
estimate for the diameter of compact gradient shrinking Ricci soliton.

Inspired by this, Wang and Li [36] combined weighted p-Bochner and p-Reilly formulas
with gradient estimate technique to derive lower bound of Escobar–Lichnerowicz–Reilly
type on the first eigenvalue of drifting p-Laplacian on a compact smooth metric mea-
sure space M in terms of the sign of the Bakry–Émery Ricci curvature. Namely, for p ≥ 2,
Ricm

φ ≥ kg, k > 0, and the first eigenvalue λ∂M
1,p of –Lφ,p on M, we have

λ∂M
1,p ≥ 1

(1 – p)p–1

(
mk

m – 1

) p
2

,

where λ∂M
1,p = λ1,p if ∂M = ∅, λ∂M

1,p = λDir
1,p if ∂M �= ∅ but with Dirichlet boundary condi-

tion, and λ∂M
1,p = λNeu

1,p if ∂M �= ∅ but with Neumann boundary condition. Moreover, for
the Dirichlet eigenvalue, the weighted mean curvature must be nonnegative, whereas the
boundary is assumed to be convex for the Neumann eigenvalue.

Recall that the drifting Laplacian is an important self-adjoint elliptic operator associ-
ated with the Ricci soliton from the Ricci flow theory and self-shrinker from the mean
curvature flow theory. Therefore estimating eigenvalue inequalities for the drifting Lapla-
cian has natural consequences on both flows. Zeng [39] considered the eigenvalue prob-
lem for the bi-drifting Laplacian describing the buckling problem on a bounded do-
main of the complete smooth metric measure space and obtained a general inequality
of Ashbaugh–Cheng–Ichikawa–Mamestsuka type on a cigar metric measure space and
Gaussian shrinking Ricci soliton under some restrictive conditions. In [24] (see also [40])
the authors studied a clamped plate eigenvalue problem for the bi-drifting Laplacian on
a bounded domain of a cigar soliton and then derive corresponding universal inequali-
ties. The steady gradient Ricci soliton emanated from the Hamilton Ricci flow [22, 32] is a
cigar soliton in dimension two. A cigar soliton also appears as the Euclidean–Witten black
hole under first-order renormalization group flow of the world-sheet sigmal model [23]
in general relativity theory. Thus the research in [24, 39], and [40] is very important and
interesting in both geometry and physics. Related issues [3, 5, 7, 32] are discussed under
evolving geometry.

On the other hand, problems of finding the Cheeger constant are very interesting with
several geometric and physical applications; see [1, 4, 10, 31] and the references therein.
Especially, bounding the first eigenvalue from below by the Cheeger constant has yielded
several interesting results [27] since the pioneering work [15]. Note that the weighted
Cheeger constant introduced here (Definition 2.2) is new and clearly extends the clas-
sical one to the setting of weighted measure. This hopefully will help tackle isoperimetric
problems on weighted manifolds.
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2 Weighted Cheeger constant and drifting p-Laplacian
2.1 First eigenvalue of the drifting p-Laplacian
The drifting p-Laplace operator for p ∈ (1,∞) is defined by

Lφ,pf := eφ div
(
e–φ‖∇f ‖p–2∇f

)
= Lpf – ‖∇f ‖p–2〈∇φ,∇f 〉, (2.1)

whereLpf = div(‖∇f ‖p–2∇f ) is the usual p-Laplacian of f , which coincides with Lφ,p when
φ is a constant. The case where p = 2 implies that Lφ,p is the drifting Laplacian Lφ and
Lp is the usual Laplacian �. For a compact weighted Riemannian manifold M ⊂ (M , g,φ)
with smooth boundary, we consider the nonlinear eigenvalue problem (for finding λp and
nonzero f )

–Lφ,pf = λp|f |p–2f in M (2.2)

together with Dirichlet boundary condition

f = 0 on ∂M; (2.3)

or Neumann boundary condition

∂f
∂ν

= 0 on ∂M, (2.4)

if the boundary is nonempty, where ν is the outward unit normal vector field to ∂M. Prob-
lem (2.2) is understood in the weak sense, meaning that

∫

M
‖∇f ‖p–2〈∇f ,∇ψ〉e–φ dv = λp

∫

M
|f |p–2f ψe–φ dv.

for f ∈ W 1,p
0 (M) and every test function ψ ∈ C∞

0 (M), where W 1,p
0 (M) is the completion of

C∞
0 (M). The first eigenvalue λ1,p(M) of the drifting p-Laplacian on M can be characterized

by

λ1,p(M) = inf
f

{∫
M ‖∇f ‖pe–φ dv
∫

M |f |pe–φ dv
: f ∈ W 1,p

0 (M), f �= 0
}

(2.5)

with the constraint
∫

M |f |p–2fe–φ dv = 0.

2.2 Weighted Cheeger constant
Definition 2.1 ([6]) Let (M , g,φ) be a smooth metric measure space. For a domain 	 ⊂
M , we denote by X (	) the set of all smooth vector fields V on 	 satisfying the properties
‖V‖∞ = sup	 ‖V‖ < ∞ and inf	[eφ div(e–φV )] > 0. Then we define the Cheeger constant
as follows:

h(	) := sup
V

{
inf	[eφ div(e–φV )]

sup	 ‖V‖ : V ∈ X (	)
}

. (2.6)

Evidently, h is nonnegative, and the assignment 	 �→ h(	) satisfies the domain mono-
tonicity property: 	1 ⊂ 	2 �⇒ h(	1) ≥ h(	2). Moreover, if X (	) = ∅, then we set
h(	) = 0, and so clearly h(	) > 0 if and only if X (	) �= ∅ by (2.6).
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Definition 2.2 Let (M , g,φ) be a smooth metric measure space. The weighted Cheeger
constant hφ(	) of a domain 	 ⊂ M is defined as

hφ(	) := inf
	′

Perφ(∂	′)
Volφ(	′)

, (2.7)

where 	′ ranges over all sufficiently regular 	′ � 	 with smooth boundary ∂	′. Here
Volφ and Perφ stand for the weighted volume and perimeter with respect to the volume
and surface measures e–φ dv and e–φ dA on M , respectively.

Let us now briefly discuss some upper and lower bounds on h. Firstly, by taking any
sufficiently regular E � 	, we can write

inf
	

[
eφ div

(
e–φV

)]∫

E
e–φ dv ≤

∫

E

[
eφ div

(
e–φV

)]
e–φ dv =

∫

∂E
〈V ,ν〉e–φ dA

≤
∫

∂E

∣∣〈V ,ν〉∣∣e–φ dA ≤ sup
	

‖V‖
∫

∂E
e–φ dA, (2.8)

where ν is the outer unit normal vector field on ∂E, yielding

inf	[eφ div(e–φV )]
sup	 ‖V‖ ≤ Perφ(∂E)

Volφ(E)
. (2.9)

Now upon taking the supremum on the left over V ∈ X (	) and the infimum on the right
over E, we arrive at an upper bound on h(	) in terms of hφ(	), that is,

h(	) ≤ hφ(	). (2.10)

In some particular cases, it may be possible to show that the equality in the last bound is
achieved, for instance, in the Euclidean ball setting. The reason for introducing h(	) (see
[6]) is to obtain lower bounds for λ1,p(	) in terms of any lower bound for h(	). As for a
lower bound on h, we note that if ‖∇φ‖ ≤ c for some constant c ≥ 0, then for any vector
field V ∈ X (	), we have the bound

inf
	

[
eφ div

(
e–φV

)]
= inf

	

[
div(V ) – 〈∇φ, V 〉] ≥

[
inf
	

div(V ) – c sup
	

‖V‖
]

+
, (2.11)

where [α]+ := max{α, 0} for α ∈ R. Hence the lower bound

h(	) ≥ hc(	) (2.12)

can be deduced by quotienting over ‖V‖∞ and then taking the supremum over all V ∈
X (	), where

hc(	) := sup
V

{
[inf	 div(V ) – c sup	 ‖V‖]+

sup	 ‖V‖
}

.

The first result of this paper (as given further in Theorem 2.3) gives a weighted version
of the Cheeger inequality on a bounded domain in a smooth metric measure space.
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Theorem 2.3 Let 	 be a bounded domain with smooth boundary, ∂	 �= ∅, in a complete
smooth metric space (M , g,φ). Then, referring to (2.5) and (2.6), we have

λ1,p(	) ≥ 1
pp hφ(	)p. (2.13)

Moreover, if ‖∇φ‖ ≤ c, c ≥ 0, then we have

λ1,p(	) ≥ 1
pp hc(	)p. (2.14)

Note that when φ is a constant, we can take c = 0; then h = hc, and hφ is the usual Cheeger
constant on a Riemannian manifold.

Proof Suppose η ∈ C∞
0 (	) is a positive function and let A(t) := {x ∈ 	 : η(x) > t}. Using the

coarea formula, we have

∫

	

|∇η|e–φ dv =
∫ ∞

–∞

(∫

A(t)
dA(t)

)
dt =

∫ ∞

–∞
Perφ

(
A(t)

)
dt

=
∫ ∞

–∞
Perφ(A(t))
Volφ(A(t))

Volφ
(
A(t)

)
dt

≥ inf
	

Perφ(A(t))
Volφ(A(t))

∫ ∞

–∞
Volφ

(
A(t)

)
dt = hφ(	)

∫

	

η(x)e–φ dv. (2.15)

For any p > 1 and f ∈ W 1,p
0 (	), by the Hölder inequality we have that

∫

	

∣
∣∇f p∣∣e–φ dv = p

∫

	

|f |p–1|∇f |e–φ dv

≤ p
(∫

	

|f |pe–φ dv
) p–1

p
(∫

	

|∇f |pe–φ dv
) 1

p
. (2.16)

Setting η = f p, by combining (2.15) and (2.16) we obtain

hφ(	) ≤
∫
	

|∇η|e–φ dv
∫
	

ηe–φ dv
=

∫
	

|∇f p|e–φ dv
∫
	

|f p|e–φ dv
≤ p

(∫
	

|∇f |pe–φ dv
∫
	

|f |pe–φ dv

) 1
p

. (2.17)

Since f ∈ W 1,p
0 (	) is arbitrary, we arrive at

(
hφ(	)

)p ≤ ppλ1,p,

which concludes the proof of the first part.
Moreover, if ‖∇φ‖ ≤ c, c ≥ 0, then for any vector field V ∈ X (	) and p > 1, we have the

bound

λ1,p ≥ 1
pp hφ(	)p ≥ 1

pp h(	)p ≥ 1
pp hc(	)p. �
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3 Eigenvalue problem for the weighted bi-Laplacian
In this section, we consider the nonlinear eigenvalue problem involving drifting bi-
Laplacian on compact weighted manifold (M, g,φ), namely, the weighted buckling prob-
lem

⎧
⎨

⎩
L 2

φ f = –�Lφ f in M,

f = ∂f
∂ν

= 0 on ∂M,
(3.1)

where ν denotes the outer unit normal vector field to the boundary ∂M. By variational
characterization we denote the bottom of the spectrum of –L 2

φ for the eigenvalue problem
(3.1) by

�1(M) = inf
f

{∫
M(Lφ f )2e–φ dv

∫
M ‖∇f ‖2e–φ dv

: f ∈ W 1,2
0 (M), f �= 0

}
. (3.2)

The spectrum is real and purely discrete, whereas the eigenvalues together with their mul-
tiplicities can be arranged in a nondecreasing order

0 < �1(M) < �2(M) ≤ · · · ↗ +∞.

3.1 Escobar–Lichnerowicz–Reilly lower estimates
We would like to prove the following theorem.

Theorem 3.1 Let (M, g,φ) be an n-dimensional compact smooth metric measure space
with smooth boundary ∂M and Ricm

φ (M) ≥ mκ , κ ≥ 0. Denote by �1(M) the first eigenvalue
of

L 2
φ f = –�Lφ f

on (M, g,φ). If ∂M �= ∅, then the boundary conditions

f =
∂f
∂ν

= 0

hold on ∂M. Then

�1(M) ≥ 1
4

h(M)2 + mκ , (3.3)

where

h(M) := sup
V

{
infM[eφ div(e–φV )]

supM ‖V‖ : V ∈ 
(TM)
}

.

First, we state some tools (weighted Bochner and Reilly formulas) to prove this theorem.

Weighted Bochner formulas Let (M, g,φ) be an n-dimensional compact smooth metric
measure space. Then for a C3 function h on M, we have

1
2
Lφ

(|∇h|2) = |Hess h|2 + 〈∇h,∇Lφh〉 + Ricφ(∇h,∇h) (3.4)



Abolarinwa et al. Advances in Difference Equations        (2021) 2021:273 Page 8 of 15

and

1
2
Lφ

(|∇h|2) ≥ 1
m

(Lφh)2 + 〈∇h,∇Lφh〉 + Ricm
φ (∇h,∇h). (3.5)

The proof of (3.4) can be found in [26, 36]. Indeed, the realization of (3.5) from (3.4) is
based on the following observation:

By the elementary inequality (b + d)2 ≥ b2

1+s – d2

s , s > 0, and by the Cauchy inequality
|Hess h|2 ≥ 1

n (�h)2 we obtain

|Hess h|2 + Ricφ(∇h,∇h) ≥ 1
n

(
Lφh + 〈∇φ,∇h〉)2 + Ricφ(∇h,∇h)

≥ 1
n

(
n
m

(Lφh)2 –
n

m – n
〈∇φ,∇h〉2

)
+ Ricφ(∇h,∇h)

=
1
m

(Lφh)2 + Ricm
φ (∇h,∇h).

For the case of nonempty boundary, the second fundamental form of ∂M for any vector
fields X, Y ∈ 
(T∂M) is defined by

I(X, Y ) = g(∇Xν, Y ),

where the mean curvature and weighted mean curvature are respectively defined by

H(x) = tr I and Hφ(x) := H(x) –
〈∇φ,ν(x)

〉
. (3.6)

Now denote by fν the normal derivative of f on ∂M and by dσ the weighted (n – 1)-
dimensional Riemannian volume measure on ∂M.

Weighted Reilly formula Let (M, g,φ) be an n-dimensional compact smooth metric mea-
sure space with smooth boundary. Then

∫

M

(
(Lφh)2 –

[|Hess h|2 + Ricφ(∇h,∇h)
])

e–φ dv

=
∫

∂M

(
Hφhν + Lφ,∂h

)
hν dσ +

∫

∂M

(
I(∇∂h,∇∂h) – 〈∇∂h,∇∂hν〉

)
dσ , (3.7)

where Lφ,∂ · := �∂ ·–〈∇∂φ,∇∂ ·〉 and ∇∂ are the weighted Laplacian and covariant derivative
with respect to the induced metric on ∂M.

The proof of (3.7) can also be found in [26, 36]. As in the classical case, we can show
that both weighted Bochner and Reilly formulas can be used to recover the Escobar–
Lichnerowicz–Reilly lower bound estimates on �1(M) before we proceed to prove Theo-
rem 3.1, which is the main theorem of this section.

Lemma 3.2 Let (M, g,φ) be an n-dimensional compact smooth metric measure space with
smooth boundary ∂M and Ricm

φ (M) ≥ mκ , κ > 0. Let �1(M) be the first eigenvalue of L 2
φ f =

–�Lφ f on M.
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1. If ∂M = ∅, then

�1(M) ≥ m2

m – 1
κ .

2. Let ∂M �= ∅. For the Dirichlet boundary condition, assume that the weighted mean
curvature of ∂M is nonnegative. Then

�Dir
1 (M) ≥ m2

m – 1
κ .

3. Let ∂M �= ∅. For the Neumann boundary condition, assume that the fundamental
form of ∂M is nonnegative. Then

�Neu
1 (M) ≥ m2

m – 1
κ .

Here �Dir
1 (M) and �Neu

1 (M) stand for the first Dirichlet and Neumann eigenvalues, respec-
tively.

Proof (1). Integrating Bochner formula (3.5) with respect to the weighted measure e–φ dv
and using the condition Ricm

φ (M) ≥ mκ , κ > 0, we get

0 ≥ 1
m

∫

M
(Lφ f )2e–φ dv –

∫

M
(Lφ f )2e–φ dv + mκ

∫

M
‖∇f ‖2e–φ dv.

After rearranging, we have

m – 1
m

∫
M(Lφ f )2e–φ dv

∫
M ‖∇f ‖2e–φ dv

≥ mκ ,

which gives the desired result.
Next, we consider the case ∂M �= ∅. Combining the Dirichlet boundary condition and

Hφ(x) ≥ 0 (resp., the Neumann boundary condition and I(x) ≥ 0) with the weighted Reilly
formula (3.7) and the lower bound for the tensor Ricm

φ (M) ≥ mκ , κ > 0, yields the desired
estimate for (2) (resp., (3)). �

Proof of Theorem 3.1 Applying the Bochner formula (3.4) for the case ∂M = ∅ and
weighted Reilly formula (3.7) for the case ∂M �= ∅, combined with boundary conditions
f = fv = 0 on ∂M, we have

∫

M
(Lφ f )2e–φ dv ≥

∫

M

[|Hess f |2 + mκ‖∇f ‖2]e–φ dv,

which implies

∫
M(Lφ f )2e–φ dv

∫
M ‖∇f ‖2e–φ dv

≥
∫

M |Hess f |2e–φ dv
∫

M ‖∇f ‖2e–φ dv
+ mκ . (3.8)

Here we have used the boundary condition, nonnegativity condition on the fundamental
form, or weighted mean curvature of the boundary when it is nonempty.
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Now for any f ∈ C∞
0 (M), the vector field ‖∇f ‖2V has a compact support on M. Thus a

straightforward computation shows that

div
(‖∇f ‖2Ve–φ

)
= 2‖∇f ‖∇|∇f |Ve–φ + ‖∇f ‖2 div

(
Ve–φ

)

≥
(

–2‖∇f ‖∣∣∇|∇f |∣∣‖V‖ + inf
M

[
eφ div

(
Ve–φ

)]‖∇f ‖2
)

e–φ . (3.9)

By the Young inequality it follows for ε > 0 that

–2‖∇f ‖∣∣∇|∇f |∣∣‖V‖ ≥ –2
( |∇∇f ||2

2ε2 +
ε2‖∇f ‖2‖V‖2

2

)
. (3.10)

Note that the divergence theorem implies

∫

M
eφ div

(‖∇f ‖2Ve–φ
)
e–φ dv =

∫

∂M
‖∇f ‖2〈V ,ν〉dσ = 0 (3.11)

since f = fv = 0 on ∂M implies (∇f )|∂M = 0. In the case of empty boundary,
∫

M eφ div(|∇f |2Ve–φ)e–φ = 0 also holds. Now combining (3.9) and (3.10) with the diver-
gence theorem, we have

0 ≥
∫

M
inf
M

[
eφ div

(
Ve–φ

)]‖∇f ‖2e–φ dv –
1
ε2

∫

M

[∣∣∇|∇f |∣∣2 + ε4‖∇f ‖2‖V‖2]e–φ dv,

and thus

∫

M

∣∣∇|∇f |∣∣2e–φ dv ≥ ε2
(

inf
M

[
eφ div

(
Ve–φ

)]
– ε2 sup

M
‖V‖2

)∫

M
‖∇f ‖2e–φ dv. (3.12)

Following the idea of the maximization procedure (see [6]), we know that

max
ε>0

{
ε2

(
inf
M

[
eφ div

(
Ve–φ

)]
– ε2 sup

M
‖V‖2

)}
=

(
infM[eφ div(Ve–φ)]

2 supM ‖V‖
)2

. (3.13)

Substituting (3.13) into inequality (3.12), we have

∫
M |∇|∇f ||2e–φ dv
∫

M ‖∇f ‖2e–φ dv
≥

(
infM[eφ div(Ve–φ)]

2 supM ‖V‖
)2

and then taking the supremum on the right-hand side over all vector fields V ∈ 
(TM)
gives

∫
M |∇|∇f ||2e–φ dv
∫

M ‖∇f ‖2e–φ dv
≥

(
sup

V

infM[eφ div(Ve–φ)]
2 supM ‖V‖

)2

. (3.14)

Now we note that

∣
∣∇|∇f |∣∣2 ≤ |Hess f |2 (3.15)
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on M for any f ∈ W 1,2
0 by the classical form of Kato inequality [13]. Therefore, combining

(3.8), (3.14), and (3.15), it follows that
∫

M(Lφ f )2e–φ dv
∫

M ‖∇f ‖2e–φ dv
≥ 1

4
sup

V

(
infM[eφ div(Ve–φ)]

supM ‖V‖
)2

+ mκ .

This completes the proof of Theorem 3.1. �

Remarks The strategy adopted in the proof of Theorem 3.1 is coined from the idea intro-
duced by Cheung and Leung [18] for submanifolds with bounded mean curvature in the
hyperbolic space. (See also Bessa and Montenegro [11, 12]). Note that Cheung–Leung’s
result [18] can be regarded as an extended version of McKean lower bound [28]. McK-
ean’s lower bound for weighted p-fundamental tone has been recently studied by the first
author on a complete noncompact simply connected smooth metric measure space with
sectional curvature bounded from above by negative constant [2, 6].

Theorem 3.1 extends the result of Zhang and Zhao [38, Theorem 3.1], where they con-
sidered the first eigenvalue λ1(N) for buckling problem on an n-dimensional compact con-
nected Riemannian manifold N with smooth boundary and Ric(N) ≥ K > 0 and obtained

λ1(N) ≥
(

infN div(V )
2‖V‖∞

)2

+ K (3.16)

for any vector V satisfying infN div(V ) > 0. Clearly, (3.16) coincides with (3.3) if and only
if φ is constant.

3.2 Estimates on weighted geodesic balls
We apply Theorem 3.1 to give lower bounds for the first eigenvalue on the drifting bi-
Laplacian on a geodesic ball whose radius does not exceed the injectivity radius. First, we
state an important lemma on Hessian comparison (see [16] for details), which will help
realize the desired estimates. This idea has been applied previously by several authors
[6, 11, 19, 38] to different settings.

Lemma 3.3 (Hessian comparison theorem) Let (M , g) be a complete Riemannian man-
ifold. Consider points x0, x1 ∈ M and a minimizing geodesic γ : [0,ρ(x1)] → M joining x0

and x1 with ρ(x) being the distance function measured from the base point x0. Define the
function

μ(ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

k coth(kρ) if supγ KM = –k2,

1/ρ if supγ KM = 0,

k cot(kρ) if supγ KM = +k2 and ρ < π
2k ,

(3.17)

where KM denotes the sectional curvature of M. Then the Hessians of ρ and ρ2 at the point
x satisfy the following estimates:

∇2ρ(x)(Y , Y ) ≥ μ(ρ(Y ))‖Y‖2, ∇2ρ(x)(γ ′,γ ′) = 0,

∇2ρ2(x)(Y , Y ) ≥ 2ρ(x)μ(ρ(x))‖Y‖2, ∇2ρ2(x)(γ ′,γ ′) = 2,
(3.18)

where Y is any vector in TxM perpendicular to γ ′(ρ(x)).
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From (3.18) the following lower bounds with respect to Laplacian for the distance func-
tion ρ and squared distance function ρ2 can be deduced (see [6, 11, 38]):

�ρ(x) ≥ (m – 1)μ
(
ρ(x)

)
,

�ρ2(x) ≥ 2(m – 1)ρ(x)μ
(
ρ(x)

)
+ 2.

(3.19)

Let Br(x) be a geodesic ball centered at x with radius r in (M, g,φ). By the variational
characterization discussed above we have

�1
(
Br(x)

)
= inf

f ∈H2(Br),f �=0

∫
Br

(Lφ f )2e–φ dv
∫
Br

‖∇f ‖2e–φ dv
. (3.20)

Theorem 3.4 Let (M, g,φ) be a smooth metric measure space with potential function sat-
isfying ‖∇φ‖ ≤ c for some c ≥ 0. Let Br(q) denote the geodesic ball centered at q with radius
r < inj(q), and let kr(q) = sup{KM(x) : x ∈ Br(q)}, where KM(x) denotes the sectional cur-
vature of M at x, and Ricm

φ (Br) ≥ mκ , κ ≥ 0. Then

�1
(
Br(q)

) ≥
⎧
⎨

⎩
[m – cr]2

+/4r2 + mκ , kr(q) = 0,

[(m – 1)kr cot(kr) + 1 – cr]2
+/4r2 + mκ , kr(q) = +k2, r < π

2k ,

where k is a nonzero constant.

Proof Since ρ2 is a smooth function in Br , we can set V = ∇ρ2. Then supBr ‖V‖ = 2r, and

inf
Br

[
eφ div

(
e–φV

)]
= inf

Br
Lφρ2 = inf

Br

[
�ρ2 –

〈∇φ,∇ρ2〉]

≥ inf
Br

�ρ2 – c sup
Br

‖V‖ ≥ 2
[
inf
Br

[
(m – 1)ρμ(ρ) + 1

]
– cr

]
,

where we have used the second inequality in (3.19). Hence by Theorem 3.1 we have

�1(Br) ≥ 1
4

h(Br)2 + mκ

≥ 1
4

(
sup

V

{
infBr [eφ div(e–φV )]

supBr ‖V‖
})2

+ mκ

≥ 1
4

(
1
r

inf
Br

[
(m – 1)ρμ(ρ) + 1

]
– c

)2

+ mκ ,

where V ∈ X (Br). This leads to the desired conclusion since kr(q) ≥ 0. Specifically, for
kr(q) = 0, μ(ρ) = 1/ρ , and then

�1(Br) ≥ 1
4

(
(m – 1) + 1 – cr

r

)2

+ mκ =
1
4

(
m – cr

r

)2

+ mκ . �

3.3 Estimates on submanifolds with bounded mean curvaure
Theorem 3.5 Let M = (M, g,φ) be a smooth metric measure space with potential function
satisfying ‖∇φ‖ ≤ c, where c ≥ 0. Let ϑ : M ↪→ N be an isometric immersion with locally
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bounded weighted mean curvature, that is, the number �(q, r) := sup{|Hφ(x)| : x ∈ ϑ(M) ∩
BN

r (q), q ∈ N\ϑ(M), r > 0} is finite, where BN
r (q) denotes the geodesic ball centered at q

with radius r < inj(q) in N . Suppose 	φ is any connected component of ϑ–1(BN
r (q)). Let

kr(q) = sup{KM(x) : x ∈ BM
r (q)}, where KM(x) is the sectional curvature of M in BM

r (q),
and Ricm

φ (	φ) ≥ mκ , κ ≥ 0. Then:
1. If kinj(q)(q) = k2 < +∞, Ricm

φ (	φ) ≥ mκ , κ ≥ 0, and
r < min{inj(q), π

2k , 1
k cot–1( �(q,inj(q))

(m–1)k )}, then

�1(	φ) ≥ [
(m – 1)k cot(kr) – �(q, r) – c

]2
+/4 + mκ .

2. If kr(q) > 0,∀r > 0, limr→∞ kr(q) = ∞, inj(q) = ∞, Ricm
φ (	φ) ≥ mκ , κ ≥ 0, and

r(s) = min{π
2

√
ks(q), 1

ks(q) cot–1( �(q,s)
(m–1)ks(q) )}, then

�1(	φ) ≥ [
(m – 1)

√
kr(q) cot

(
r
√

kr(q)
)

– �(q, r) – c
]2

+/4 + mκ .

3. If kinj(q)(q) = 0, Ricm
φ (	φ) ≥ mκ , κ ≥ 0, and r < min{inj(q), m

�(q,inj(q)) }, where
m

�(q,inj(q)) = +∞ when �(q, inj(q)) = 0, then

�1(	φ) ≥ [
m – �(q, r)r – cr

]2
+/4r2 + mκ .

Note that the weighted mean curvature Hφ(x) appearing in Theorem 3.5 is defined in
a similar way to definition in (3.6), though not restricted only to the boundary. We thus
retain the same notation since it is clear from the context used here.

Proof Let ρ(x) be the distance function on N , and let fj = ρ j ◦ ϑ on M, j = 1, 2. Recall that
	φ is a connected component of ϑ–1(BN

r (q)) and fj are smooth on ϑ–1(BN
r (q)). Denoting

Vj = ∇fj, j = 1, 2, and using (2.11), we obtain

inf
	φ

[
eφ div

(
e–φV1

)] ≥
[
inf
	φ

div(V1) – c sup
	φ

‖V1‖
]

+
. (3.21)

(1) If kr(q) = k2 and r < min{inj(q), π
2k , 1

k cot–1( �(q,inj(q))
(m–1)k )} = min{inj(q), 1

k cot–1( �(q,inj(q))
(m–1)k )},

then by (3.21) we have

inf
	φ

[
eφ div

(
e–φV1

)] ≥
[
(m – 1)k cot(kr) – �(q, r) – c sup

	φ

‖V1‖
]

+
.

(2) If the hypotheses of (2) hold, analogously to (1), we have

inf
	φ

[
eφ div

(
e–φV1

)] ≥
[
(m – 1)

√
kr(q) cot

(
r
√

kr(q)
)

– �(q, r) – c sup
	φ

‖V1‖
]

+
.

(3) If kr(q) = 0 and r < min{inj(q), m
�(q,inj(q)) }, then using (2.11), we obtain

inf
	φ

[
eφ div

(
e–φV2

)] ≥ inf
	φ

div(V2) – c sup
	φ

‖V2‖

≥
[
2
(
m – �(q, r)r

)
– c sup

	φ

‖V2‖
]

+
.
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Since ‖V1‖ ≤ 1 and ‖V2‖ ≤ 2r, the desired estimate in each case follows by Theo-
rem 3.1. �
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