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1 Introduction
In differential equations and control engineering, there has been much attention for the

following linear matrix equations:

AXB=C, (1)
AX + XAT =B: Lyapunov equation, (2)
AX +XB=C: Sylvester equation, (3)
AXB+CXD=E: ageneralized Sylvester equation, (4)
AXB+CX'D=E: ageneralized Sylvester-transpose equation, (5)
X +AXB=C: Stein equation, 6)
X+AXT"B=C: Stein-transpose equation. (7)
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These equations are special cases of a generalized Sylvester-transpose matrix equation:

P q
ZAtXBt + Z CXTD, =E, (8)

t=1 s=1

where, foreacht=1,...,p,A; € R>m B, ¢ R™ foreachs=1,. . q, Cs € R D, e R,
E € R™" are known matrices whereas X € R”*" is the matrix to be determined. These
equations play important roles in control and system theory, robust simulation, neural
network, and statistics; see e.g. [1-4].

A traditional method of finding their exact solutions is to use the Kronecker product of
a matrix and the vectorization to reduce the matrix equation to a linear system; see e.g. [5,
Ch. 4]. However, the dimension of the linear system can be very large due to the Kronecker
multiplication, so that the step of finding the inversion of the associated matrix will result
in excessive computer storage memory. For that reason, iterative approaches have received
much attention. The conjugate gradient (CG) is an interesting idea to formulate finite-step
iterative procedures to obtain the exact solution at the final step. There are variants of CG
method for solving linear matrix equations, namely, the generalized conjugate direction
method (GCD) [6], the conjugated gradient least-squares method (CGLs) [7], generalized
product-type methods based on a bi-conjugate gradient (GPBi) [8]. Another interesting
idea to create an iterative method is to use Hermitian and skew-Hermitian splitting (HSS);
see e.g. [9].

A group of methods, called gradient-based iterative methods, aim to construct a se-
quence of approximated solutions that converges to the exact solution for any given initial
matrices. These methods are derived from the minimization of associated norm-error
functions using gradients, and the hierarchical identification. Such techniques have stim-
ulated and have played a role in many pieces of research in a few decades. In 2005, Ding
and Chen [10] proposed a gradient-based iterative (GI) method for solving Egs. (3), (4),
and (6). Ding et al. [11] proposed the GI and the least-squares iterative (LSI) methods for
solving Zle A;XB; = F which includes Eqs. (1) and (4). Niu et al. [12] developed a relaxed
gradient-based iterative (RGI) method for solving Eq. (3) by introducing a weighted fac-
tor. The MGI method, developed by Wang et al. [13], is a half-step-update modification
of the GI method. Zhaolu et al. [14] presented two methods for solving Eq. (3). The first
method is based on the GI method and called the Jacobi gradient iterative (JGI) method.
Furthermore, they introduced relaxation factors to accelerate the speed of convergence
and called the accelerated Jacobi gradient iterative (AJGI) method. Recently, Sun et al.
(2019, [15]) proposed two modified least-squares iterative algorithms namely, LSIA1 [15,
Theorem 2.3] and LSIA2 [15, Theorem 3.1] for the Lyapunov equation (2). See more algo-
rithms in [16—24]. The developed iterative methods can be applied to state-space models
[25], controlled autoregressive systems [26], and parameter estimation in signal process-
ing [27].

Let us focus on gradient-based iterative methods for solving Egs. (5) and (8). A recent
gradient iterative method for Eq. (5) is AGBI method, developed in [28]. The following two
methods were proposed to produce the sequence X (k) of approximated solutions converg-

ing to the exact solution X* of Eq. (8).
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Method 1.1 ([29]) Gradient iterative (GI) method.

q
X(k) = — (ZX (k) + > Xpu k))
= =1

b q
X;(k) = X(k —1) + uAl <E - ZAiX(k ~1)B; - Z CxT (k- 1)Di>B/T,
i=1

i=1
q T
Xpo(k) = X (k- 1) +MD1( ZAXk 1) i—ZCiXT(k—l)Di) C.

A conservative choice of the convergence factor p is

p q
0<p< 2(2 Dmax (AFA] ) Amax (B By) + D Amax (CIC/) Arma (D,TD,)).
j=1 =1

Method 1.2 ([29]) Least-squares iterative (LSI) method.

r q
R(k)=E-Y AX(k-1)B;=> CX(k-1)D;,
i=1

i=1
X;(k) = X(k 1) + (AT A) " ATR(k)BT (B;BT) ™"

Xpui(k) = X(k = 1) + u(D,D]) " DIRK)CI(CF C) 7,

p q
X(k) = b (ZX,-(k) + pr+,(k)>, 0<u<2(p+q).
prq j=1 =1

In this work, we introduce a new iterative algorithm based on gradient-descent for solv-
ing Eq. (8). The techniques of gradient and steepest descent let us obtain the search direc-
tion and the step sizes. Indeed, our varied step sizes are the optimal convergence factors
that guarantee the algorithm to have a minimum error at each iteration. Our convergence
analysis proves that, when Eq. (8) has a unique solution, the algorithm constructs a se-
quence of approximated solutions converging to the exact solution. On the other hand,
when Eq. (8) has no solution, the generated sequence converges to the unique least-squares
solution. We provide the convergence rate to show that the speed of convergence depends
on the condition number of the associated certain matrix. In addition, we have an error
analysis that gives an error estimation comparing the current iteration with the preced-
ing and the initial iterations. Finally, we provide numerical simulations to guarantee the
efficiency and effectiveness of our algorithm. The illustrative examples show that our al-
gorithm is applicable to both Eq. (8) and its certain interesting special cases.

The organization of this paper is as follows. In Sect. 2, we recall the criterion for the
matrix equation (8) to have a unique solution or a unique least-squares solution, via the
Kronecker linearization. We propose the gradient-descent algorithm to solve Eq. (8) in
Sect. 3. The proof of convergence criteria, convergence rates, and error estimation for the
proposed algorithm are provided in Sect. 4. In Sect. 5, we present the comparison of the
efficiency of our proposed algorithm to well-known and recent iterative algorithms.

In the remainder of this paper, all vectors and matrices are real. Denote the set of n
columns vectors by R” and the set of m x n matrices by R”*”. The (i,)th entry of a matrix
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A is denoted by A(i,j) or a;. To perform a convergence analysis, we use the Frobenius
norm, the spectral norm, and the (spectral) condition number of A € R”*", which are,
respectively, defined by

mdx( TA)
IAllF = /tr(ATA), IIAHF\/M’ K<A):<m>

2 Exact and least-squares solutions of the matrix equation by the Kronecker
linearization
In this section, we explain how to solve the generalized Sylvester-transpose matrix equa-
tion (8) directly using the Kronecker linearization.
Recall that the Kronecker product of A = [a;] € R"*" and B € R”*? is defined by A ®
B = [a;B] € R™P>", The vector operator Vec(-) turns each matrix A = [a;] € R™*” to the

vector
r mn
Vec(A)=[a11...am1 aw...dyy ... dmmdmn] e R"™,

Lemma 2.1 (e.g. [5]) For compatible matrices A, B, and C, we have the following properties
of the Kronecker product and the vector operator.

i) A®B)=AT® B,

(ii) Vec(ABC) = (CT ® A) Vec(B).

Recall also that there is a permutation matrix P(m, n) € R”"*"" such that
Vec(XT) = P(m,n) Vec(X) forall X e R"™*", 9)

This matrix depends only on the dimensions m and # and is given by

P(m, n)-ZZEL,@@ T

i=1 j=1

where Ej; has entry 1 in (i, j)th position and all other entries are 0.
Now, we can transform Eq. (8) to an equivalent linear system by applying the vector
operator and utilizing Lemma 2.1(ii) and the property (9). Indeed, we get the linear system

Q Vec(X) = Vec(E), (10)
where
p q
Q=) (B ®A;)+ Y (DI ® C;)P(m,n) € R, (11)
t=1 s=1

Thus Eq. (8) has a (unique) solution if and only if Eq. (10) does. We impose the assumption
that Q is of full column-rank, or equivalently, Q7 Q is invertible.
If Eq. (8) has a solution, then we obtain the exact (vector) solution to be

Vec(X*) = (Q7Q) Q" Vec(E). (12)
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If Eq. (8) has no solution, then we can seek for a least-squares solution, i.e. a matrix X*
that minimizes the squared Frobenius norm ||Q Vec(X) — Vec(E)||%. The assumption on Q
implies that the least-squares solution for Eq. (8) is uniquely determined by the solution
of the associated normal equation, and it is also given by Eq. (12). In this case, the least-
squares error is given by

|Q Vec(X*) - Vec(E) ||12D = || Vec(E) H; — Vec” (E)Q Vec(X*)

= L)% - VecT (E)Q(QTQ) ™ Q" Vec(E). (13)
We denote both the exact and the least-squares solutions of Eq. (8) by X*.

3 Gradient-descent iterative solutions for the matrix equation
This section is intended to propose a new iterative algorithm for creating a sequence {X}
of well-approximated solutions of Eq. (8) that converges to the exact or least-squares solu-
tion X™*. This algorithm will be applicable if the matrix Q is of full column-rank, no matter
Eq. (8) has a solution or not.

Our aim is to generate a sequence {x;}, starting from an initial vector x¢, using the re-

currence

Xks1 =Xk + Tes1di, k=0,1,...,
where x; is the kth approximation, 74, > 0 is the step size, and dj is the search direc-
tion. To obtain the search direction, we consider the Frobenius-norm error || Y7 | A,XB, +

37, CXTD; - E||r which is then transformed into ||Qx — Vec(E) | ¢ via Lemma 2.1(ii) and
x = Vec(X). Let f : R” — R be the norm-error function defined by

fx):= % | Qx - Vec(B)| 7.

It is easily seen that f is convex. Hence, the gradient-descent iterative method can be
shown as the following recursive equation:

Kkl = Xk — The1 VI (k).

To find the gradient of the function f, the following properties of the matrix trace will be

used:
d
— w(AX)=AT,
7y TAX)
d T Ty AT
— tr(XAX"B) = BXA + BTXA".
dx
By letting e = Vec(E), we compute the derivative of f as follows:

1d
Vf(x)=§%tr
_1d TAT 5. TAT ~T | ==T
—zdxtr(Qxx Q" —ex" Q" —Qxe +ee)

(Qx-2)(Qx-2))
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- 5 (QTQr+ QT Qx— Qe - Q")
=Q"(Qx-?). (14)

Thus, we have the new form of the iterative equation as follows:
X1 = %5 + T QT (€ — Q).

The above equation can be transformed into matrix form via Lemma 2.1(ii), i.e.,

14 q
Xir1 = Xic + Tent (ZAtTRkBtT + ZDSR,{CS>

t=1 s=1

where Ry =E - Y7 | A XyB, - > 1, CSXkTDS.
To choose a step size, we define ¢, : [0,00) — R by for each k € NU {0},

1 -
Grs1(T) =f(xk+l) = EllekH - e”%
1 T~ ~ 112
= 5 [7QQ" @~ Qu) + Qu—z[ .
We differentiate ¢,1 by using the properties of a matrix trace and obtain
d T 1~ 2 T /~ 2
E(pkﬂ(f) = 71| QQ (e - Q)| — | Q" (@ — Qi) | -

It is obvious that the second-order derivative of @1 is [| QQT (€— Qux)||% which is a positive

constant. So when %(blﬁ_l(f) =0, we get the minimizer of ¢, 1, i.e.

Q7 (2 — Qxp) 112

T+l = T e o~ <o
T QQTE - Qw2
) Il Vec(W7) 112
| Vec(Y0, A WiB, + > L, C,W[IDy) 2
AR

I AWB + YL CWI D2

Here Wy = > 7 | ATRBI + Y1 CTR(D!.

An implementation of the gradient-descent iterative algorithm for solving Eq. (8) is
given by the following algorithm where the search direction and the step size are taken
into account. To terminate the algorithm, one can alternatively set the stopping rule to

be ||Rk||F — § < € where € > 0 is a small error and § is the least-squares error described in
Eq. (13).

4 Convergence analysis of the proposed algorithm
In this section, Algorithm 1 will be proved to converge to the exact solution or the unique

least-squares solution. Recall the next lemma.

Page 6 of 18
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Algorithm 1: The gradient-descent iterative algorithm for Eq. (8)

A;, By, Cs, Dy, E, X;
fork=1,...,ndo
Re=E-Y" AXiB, - Y1, CXIDg;
Wi =200 AT ReB! + 30, CTRD];
Trer = | Wil F/ X0 AWiBe + YL CWID|3
Xier = Xic + T (0 AT RiBY + 3L, DR CY)
end

Lemma 4.1 ([30]) Let f:R"” — R be a strongly convex function, i.e. there exist two non-
negative constants yr, V such that yI < V*f(x) < W1 for all x € R". Then, for any x,y € R",

FOVZS0) + VfG -2+ Ly -, (15)
F0) <)+ V@)l 2) + 5yl (16)

The following definition is an extension of the Frobenius norm and will be used in the
convergence analysis.

Definition 4.2 Given a full-column-rank matrix P € R*" we define the P-weighted
Frobenius norm of A € R"*" by

IAllp = |IPAllf = \/tr(ATPTPA). (17)

Theorem 4.3 Consider Eq. (8). Assume that Q is of full column-rank.

(i) Suppose Eq. (8) has a solution (and thus, the solution is unique). Then, for any initial
matrix Xy, the sequence Xy of approximated solutions generated by Algorithm 1
converges to the exact solution X*.

(i) Suppose Eq. (8) has no solution (and thus, it has the unique least-squares solution
X*). Then || X¢llq — |1 X*||q for any initial matrix Xo. Here, || - || is the Q-weighted
Frobenius norm defined by Eq. (17).

Proof Since x* = Vec(X™) is the optimal solution of min,cgm» f(x), we denote the minimum
value, inf,cpmn f(x) = f(x*) as §. Note that § is equal to the least-squares error determined
by Eq. (13) and is zero if X* is the unique exact solution. If there exists k € N such that
Vf(xx) = 0, then X = X* and the result holds. To investigate the convergence of the algo-
rithm, we assume that Vf(x;) # 0 for all k. Considering the strong convexity of f, we have
from Eq. (14) V*f(xx) = QT Q. Let Amin (Amax) be the minimum (maximum) eigenvalue of
QT Q, respectively. Since QT Q is symmetric, we have

Amind < sz(xk) < Amax].

Thus, f is strongly convex. From (15), substituting y = x,; and x = x; yields

)Lmin‘f2
2

) =) - | V)| + D]
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We minimize the RHS by taking © = 1/Ay;, so that

1

2
2)"min H Vf(xk) ”F

SO) = flx) -

Since the above equation is true for all y € R, we have

52 f) - o | Ve 18)

Similarly, from (16), we have

)\max":2

IVl

Floin) <f0) — | VF@o |2 +

Minimizing the RHS by taking © = 1/Anax vields
1 2
S i) < f () - T |V f )| - (19)
max
Subtracting each side of (19) by § and combining with || Vf(x)[|2 > 2Amin(f (xx) — 8) (from

(18)), we get

1
Vel

< (0 ~3) - 2™ (fl) ~5)

< (1 - i“““ ) (f (i) - 5).

max

S @) =8 <flox) -8 —

Putting & := 1 — Apin/Amax, We have

S @) =8 < a(f(ax) - ). (20)
By induction, we obtain

fwe) =8 < e (f(xo) - 8). (21)

Since QT Qis assumed to be invertible, Q7 Q > 0, it follows that A, > 0 and hence 0 < @ < 1.
Thus, f(x¢) — 8§ — 0, or equivalently, f(xx) — § as k — oo.

Consider the case of X* is the unique exact solution, i.e., § = 0. We have f(xx) — 0, or
equivalently Qx; — Vec(E) — 0 as k — oo. Now, the assumption that Q is of full column-
rank implies that

Xp —> (QTQ)_IQT Vec(E).
Therefore, Xi = Vec™!(x;) — X* as k — oo.

The other case is that X* is the unique least-squares solution, i.e., § > 0. We have f(xx) —
8 or ]|Quxx — Vec(E) (|7 — || Vec(E)||2 — Vec(E)” Qx*. Then

% tr((Qux — Vec(E))T(ka — Vec(E))) — tr(Vec(E)" Vec(E)) - Vec(E)" Qx™.
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We omit some algebraic operations and hence immediately write
2
||xk||%2 = tr(x; Q" Quy) — tr(Vec(E)" Vec(E)) = |x* ||Q
Therefore, || Xi|lo = |1 X*]lq as kK — oo. O

We denote the condition number of Q by k = k(Q). Observe that @ = 1—« 2. The relation

between the quadratic norm-error f(x;) and the norm of residual error ||Ry|| is given by

F6) = S IR

Making use of Lemma 2.1(ii), the inequalities (20) and (21) become the following estima-

tion:

IRellZ < &l Rk 12 + 2872, (22)

IRelIZ < X [IRo 1% +28(1 — o). (23)

In the case of Eq. (8) having a unique exact solution (§ = 0), the error estimations (22) and
(23) reduce to (24) and (25), respectively.

1
IRkl < o2 | Re-1ll s (24)

IRl < @2 IRyl (25)
Since 0 < « < 1, it follows that, if | Rx_1 ||r are nonzero, then

1Rl < | Re-11lF- (26)
The above discussion is summarized in the following theorem.

Theorem 4.4 Assume that Q is of full column-rank.

(i) Suppose Eq. (8) has a unique solution. The error estimation ||Ri||r compared with
|Rk_1||F (the preceding iteration) and || Ry || (the initial iteration) are given by (24)
and (25), respectively. Particularly, the relative error || R || gets smaller than the
preceding (nonzero) error, as in (26).

(i) When Eq. (8) has a unique least-squares solution, the error estimation (22) and (23)
hold.

In both cases, the convergence rate of Algorithm 1 (regarding the error ||Ri||g) is governed

by V1 —k~2.
Remark 4.5 The relative errors (22) and (23) do not seem to decrease every step of itera-
tion since the terms 28«2 and 28(1 — a¥) are positive. However, the inequality (19) implies

that {||Rx[lF}32, is a strictly decreasing sequence converging to é.

We recall the following properties.
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Lemma 4.6 (e.g. [5]) For any compatible matrices A and B, we have
(i) IATAlly = 113,
(i) AT ]2 = [All2,
(i) [IABllF < [|All2/IBll£-

Theorem 4.7 Suppose that Q is of full column-rank and Eq. (8) has a unique exact solu-
tion. We have the error estimation | Xy — X*||p compared with the preceding iteration and
the initial iteration of Algorithm 1 are provided by

X = X*|| p < 6K = 1| Xpoy — X (27)

P

k
[ X = X7 = (1= 17) 2 X0 = X7 . (28)
Particularly, the convergence rate of the algorithm is governed by ~1 — k2.

Proof Utilizing (25) and Lemma 4.6, we have

[ X =X = [l =]
- (Q"Q 7 (Q"Qm - (Q"Q) (R Q"]
= [(@" Q' [,1Q" | @xi - @s*]
<(1-62)2](Q"Q) [, 1Q" [ Qxo -l

< (1= (@ Q) L1 Q" [, Il X0 - X,

o K Amax(QTQ)
=(1-g2)2 < <2
(=) 3 QT

=k*(1- K_Z)]% | X0 - Xx*

“XO - X “F

I

As the limiting behavior of || Xx — X*||r depends on (1 — K_Z)g, the convergence rate for
Algorithm 1 is governed by /1 — k2. Similarly, using (24), it follows that

X=X = (1= 622 (QTQ) | Q7 |, @kt —&lle
= (1= (Q"Q) | Q7 [, Il [Xeor - X*

=i (1- K_Z)% [ Xi-1 — X*

£

and hence (28) is obtained. O

Theorem 4.8 Suppose Q is of full column-rank and Eq. (8) has a unique least-squares
solution. The error estimation | Xy — X*||% compared to the preceding iteration and the

initial iteration of Algorithm 1 are provided by

0= |2 < iy = 20| 289

— min’

(29)

(30)

min*

X = X* |12 < @it | Xo - X -+ 2862 (1 - ¥
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Proof The proof is similar to that of Theorem 4.7 and carried out by (22) and (23). We,
therefore, omit the proof. 0

Consequently, our convergence analysis indicates that the proposed algorithm always
converges to the unique (exact or least-squares) solution for any initial matrices and small
condition numbers. Moreover, the algorithm will converge fast when the condition num-
ber is close to 1.

5 Numerical experiments for the generalized Sylvester-transpose matrix

equation and its special cases
In this section, we provide numerical results to show the efficiency and effectiveness of
Algorithm 1. We perform the experiments in the following cases:

e alarge-scaled square generalized Sylvester-transpose equation,

e asmall-scaled rectangular generalized Sylvester-transpose equation,

e asmall-scaled square Sylvester-transpose equation,

e alarge-scaled square Sylvester equation,

e a moderate-scaled square Lyapunov equation.
Each example contains some comparisons of the proposed algorithm (denoted by TauOpt)
with the mentioned existing algorithms as well as the direct method Eq. (12). CT stands for
the computational time (in seconds) and is measured by the Zic foc function in MATLAB.
The relative error || Rg|| is used to measure error at the kth step of the iteration. All itera-
tions have been evaluated by MATLAB R2020b, on a PC (2.60-GHz intel(R) Core(TM) i7
processor, 8 Gbyte RAM).

Example 5.1 Consider a generalized Sylvester-transpose matrix equation

2 3
ZA[XBt + Z CX'D,=E

t=1 s=1

with 100 x 100 coefficient matrices:

A; = tridiag(—0.242,0.217,0.109), A, = tridiag(0.539, 0.253,-0.835),
B; = tridiag(0.098,-0.793,0.561), B, = tridiag(0.001,0.533,0.212),

C; = tridiag(0.586,0.462, —0.688), C, = tridiag(-0.245,-0.937,0.687),
Cs = tridiag(-0.930,0.471,-0.813), D, = tridiag(0.440, —-0.762,0.008),
D, = tridiag(0.995,0.075,0.169), D5 = tridiag(0.514, -0.779,0.358),

and E = septdiag(-0.427,-0.158,-1.181,1.182,-0.452,-0.014,—0.158).

We choose an initial matrix Xy = zero(100), where zero(n) is the # x n zero matrix. In fact,

this equation has the unique solution

X* = tridiag(0.293,0.152,0.905).

Table 1 shows that the direct method consumes a big amount of time to get the exact

solution, while Algorithm 1 produces a small-error solution in a small time (0.1726 sec-
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Table 1 Relative errors and CTs for Ex. 5.1

(2021) 2021:266

Method  Iterations  Relative error ~ CT
TauOpt 100 0.0014 0.1726
Gl 100 4.0260 0.3252
LSI 100 17.8265 2.0425
direct - 0 54274e+03
18 : :
l'\\ — =k— - TauOpt
16 ) \ Gl i
i By ]|
T ¢
141 \
[ \
12 f) A\ 1
2
s | \
oo L1
g 10 | \
o |
E= L1 |
_g 8 | \\
o | \\
6 * e
1 T
40 50 60 70 80 90 100
Iteration number k
Figure 1 Relative errors for Ex. 5.1

onds after 100 iterations). We compare the efficiency of Algorithm 1 with another existing
gradient-based iterative algorithms, namely, GI (Method 1.1) and LSI (Method 1.2). Fig-
ure 1 displays the error plot which supports the theoretical results i.e., the sequence of
errors generated by Algorithm 1 is monotone decreasing. Table 1 indicates that our algo-
rithm performs well in computational time.

Example 5.2 Consider the equation

3 2
ZAtXBt ¥ Z CX'D,=E

t=1 s=1

with the rectangular coefficient matrices as follows:

0.491
A =10.071
0.887
531
B, = 0.53
0.202

0.064
0.436
0.826

0.453
0.427

0.966
0.620

Ay =

|

0.394 0.886
0.613 0931 |, Asz =
0.818 0.190

[0695 0346 0556
710720 0517 0.156

0.258 0.503
0.897 0.612
0.593 0.819

|
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Table 2 Errors and CTs for Ex. 5.2

Method  Iterations  Error cT

TauOpt 100 7.3178e-04  0.0015
Gl 100 0.6164 0.0025
LS 100 0.8453 0.0076
direct - 0 0.0020

0.454 0.734
0.562 0.426 0.731
3= ’ Cl = 0.386 0.430 )
0.694 0.836 0.360
0.775 0.693
0.945 0.109
0.459 0.228 0.015
C,=10.784 0.389 |, 1= ’
0.050 0.834 0.863
0.705 0.590

[0.078 0500 0.571

D, =
0.669 0.218 0.122

0.599 0.152 0.832
0.056 0.019 0.617

0.671 0.056 0.435
} ar-

We find that 4 = rank Q # rank[Q Vec(E)] = 5, i.e., the matrix equation does not have an
exact solution. However, the size of Q is 9 x 4, i.e., Q is of full-column rank. Hence, ac-
cording to Theorem 4.3, Algorithm 1 will converge to the least-squares solution in which
the least-squares error (13) is equal to 0.0231. We choose an initial matrix Xy = zero(2).
Algorithm 1 is compared with GI (Method 1.1), LSI (Method 1.2) and the direct method
Eq. (12). In this case, we consider the error || X* — Xj||r where X* is the least-squares solu-
tion. Figure 2 displays the error plot, and Table 2 shows the errors and CTs for TauOpt, GI,
LSI and the direct method. We see that the errors converge monotonically to zero, i.e., the
approximate solutions X generated by Algorithm 1 converge to X*. Moreover, Algorithm
1 consumes less computational time than other methods.

Next, we will consider the Sylvester-transpose equation (5) which is a special case of the

generalized Sylvester-transpose equation (8). From Algorithm 1, the optimal step size 7 is
described by

_ Wiz
|AWB + CWID|2’

Tk+1

where Wy = ATRB” + CTR¢ D" and Ry = E - AX; B - CX['D.

Example 5.3 Let us consider the Sylvester-transpose equation (5) with

6 -4 -7 -8 6 -5 4 =2
9 -4 5 2 -7 -
A ’ B 9 -7 -5 6 ,
-9 6 -5 4 6 -8 2
|8 -3 3 9| 7 3 -1 -1
(-8 -5 —4 77 -5
2 7 -4 6 6 3
C= , D= and

|
Ne)
|
~
W s o W
|
o)
|
al
O B =N
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Figure 2 Errors for Ex. 5.2

Table 3 Relative errors and CTs for Ex. 5.3

Method  Iterations  Relative error ~ CT

TauOpt 100 0.3368 0.0011
Gl 100 302.3879 0.0021
LSI 100 562.8838 0.0034
AGBI 100 80.7919 0.0015
direct - 0 0.0051

-284 13 74 -93

F_| 248 —47 -103 109
| 54 92 8 -112
326 -98 -127 167

Choosing X, = zero(4), then the sequence of numerical solutions generated by Algo-
rithm 1 converges to the exact solution,

0.3342
0.9568
0.0177
0.4516

0.3443
0.7485
0.8061
0.1859

0.4843
0.4250
0.6380
0.7069

0.7574
0.2941
0.6972
0.6669

We report the comparison of Algorithm 1 with GI (Method 1.1), LSI (Method 1.2), AGBI
([28]) and the direct method Eq. (12) by Fig. 3 and Table 3. Both of them imply that Algo-
rithm 1 outperforms other algorithms.

Next, we will consider the Sylvester equation (3) which is also a special case of Eq. (8).
For this equation, the optimal step size 7 is described by

2
| Willz

k 1 = —}
T AW + WiB|12

Page 14 of 18
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Figure 3 Relative errors for Ex. 5.3

Table 4 Relative errors and CTs for Ex. 5.4

Method  Iterations  Relativeerror ~ CT

TauOpt 100 0.1457 0.0681
Gl 100 1834122 0.0731
RGI 100 33.0116 0.0661
MGI 100 115.7206 0.0640
AGBI 100 57.8981 0.0839
JGl 100 515.9767 0.0385
AJGI 100 469.0704 0.0547
direct - 0 5.4606e+03

where Wy = ATR; + Ry BT and Ry = C — AXy — X;B.

Example 5.4 Suppose that the Sylvester equation (3) has large-scaled tridiagonal coeffi-

cient matrices, i.e.,
A = tridiag(10,-2,9), B =tridiag(-1,2,-5), and C = tridiag(-45,13,-20),

where A, B, C € R190%100 /e choose an initial matrix X, = zero(100). Here, the symmetric
exact solution is given by X* = tridiag(1, -5, 1), so that AGBI algorithm can be applicable.
We compare Algorithm 1 with GI (Method 1.1), AGBI ([28]), RGI [12], MGI [13], JGI [14],
and AJGI [14]. Although Table 4 tells us that our algorithm takes a slightly more time than
some other algorithms, Fig. 4 illustrates that Algorithm 1 reaches the fastest convergence.

The last example presents another special case of Eq. (8) that is the Lyapunov equation
(2). The optimal step size 7 is described by

2
| Willz

T =
T AW + WRAT |2
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Iteration number k

Table 5 Relative errors and CTs for Ex. 5.5

Method  Iterations  Relative error ~ CT

TauOpt 50 24121e-06 0.0056
Gl 50 8.9274 0.0056
RGI 50 6.8604 0.0063
MGI 50 2.5820 0.0061
AGBI 50 10.0789 0.0072
JGl 50 83219 0.0056
AJGI 50 0.5565 0.0058
LSIA 1 50 5.1063 0.0080
LSIA 2 50 5.1708 0.0041
direct - 0 04636

where Wi = ATR; + RyA and Ry = B— AX; — X3 AT.

Example 5.5 We consider the Lyapunov equation (2) with medium-scale coefficient ma-
trices

A= —triu(rand(n), 1) + diag(8 - diag(rand(n))), B =rand(n).
We choose n = 20 and set X, = zero(20). Algorithm 1 is compared with GI, RGI, MGI,
AGBI, JGI, AJGI, LSIA1, and LSIA2 methods. We report the results in Fig. 5 and Table 5.

In conclusion, Algorithm 1 takes a slightly more computational time than some other al-
gorithms but still outperforms distinctly in performance of convergence.

6 Concluding remarks

We properly establish a gradient-descent iterative algorithm for solving the generalized
Sylvester-transpose matrix equation (8). We show that the proposed algorithm is useful
and applicable for wide range of problems, even though the problem has no solution, as

Page 16 of 18
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Figure 5 Relative errors for Ex. 5.5

long as the associated matrix Q, defined by Eq. (11), is of full column-rank. If the prob-
lem has the unique exact solution, then the approximate solutions converge to the exact
solution. In the case of a no-solution problem, we have || X[l o — [|X*|lq where X* is the
unique least-squares solution. The convergence rate is described in terms of , the matrix
condition number of Q, that is, +/1 — k2. Moreover, the analysis shows that the sequence
of errors generated by our algorithm is monotone decreasing. Numerical examples are

provided to verify our theoretical findings.
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