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Abstract
The forward–backward algorithm is a splitting method for solving convex
minimization problems of the sum of two objective functions. It has a great attention
in optimization due to its broad application to many disciplines, such as image and
signal processing, optimal control, regression, and classification problems. In this
work, we aim to introduce new forward–backward algorithms for solving both
unconstrained and constrained convex minimization problems by using linesearch
technique. We discuss the convergence under mild conditions that do not depend
on the Lipschitz continuity assumption of the gradient. Finally, we provide some
applications to solving compressive sensing and image inpainting problems.
Numerical results show that the proposed algorithm is more efficient than some
algorithms in the literature. We also discuss the optimal choice of parameters in
algorithms via numerical experiments.
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1 Introduction
In a real Hilbert space H , the unconstrained minimization problem of the sum of two
convex functions is modeled in the following form:

min
x∈H

(
f (x) + g(x)

)
, (1.1)

where f , g : H → R ∪ {+∞} are proper lower semicontinuous convex functions. It is well
known that (1.1) is equivalent to the problem of finding the zero of subdifferentials of
f + g at x. This problem is called the variational inclusion problem, see [19]. We denote by
argmin(f + g) the solution set of (1.1). If f is differentiable on H , then (1.1) can be described
by the fixed point equation

x = proxαg
(
x – α∇f (x)

)
, (1.2)
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where α > 0, and proxg is the proximal operator of g defined by proxg = (Id + ∂g)–1, where
Id denotes the identity operator in H , and ∂g is the subdifferential of g . In this connection,
we can define a simple splitting method

xk+1 = proxαk g︸ ︷︷ ︸
backward step

(Id – αk∇f )
︸ ︷︷ ︸

forward step

(
xk), k ≥ 0, (1.3)

where αk is a suitable stepsize. This method is often called the forward–backward algo-
rithm. Due to its simplicity and efficiency, there have been many modifications of (1.3) in
the literature; see, for example, [1, 6–8, 12, 14]. The relaxed version of (1.3) was proposed
by Combettes and Wajs [9] as follows.

Algorithm 1.1 ([9]) Given ε ∈ (0, min{1, 1
α
}), let x0 ∈R

N and, for k ≥ 1,

yk = xk – αk∇f
(
xk),

xk+1 = xk + λk
(
proxαk gyk – xk), (1.4)

where αk ∈ [ε, 2
α

– ε], λk ∈ [ε, 1], and α is the Lipschitz constant of the gradient of f .

Based on the fixed point concept, there have been many optimization algorithms and
fixed point algorithms for solving such problems; see [13, 15–17, 21]. In 2016, Cruz and
Nghia [3] introduced a new forward–backward method using the linesearch technique.
This method does not require the Lipschitz constant in computation.

Algorithm 1.2 Given σ > 0, θ ∈ (0, 1), and δ ∈ (0, 1
2 ), let x0 ∈ dom g and, for k ≥ 0, calculate

xk+1 = proxαk g
(
xk – αk∇f

(
xk)),

where αk = σθmk with mk the smallest nonnegative integer satisfying the following line-
search rule:

αk
∥
∥∇f

(
xk+1) – ∇f

(
xk)∥∥ ≤ δ

∥
∥xk+1 – xk∥∥.

It was proved that the sequence (xk) converges weakly to a minimizer of f + g under
suitable conditions.

In practical applications, many problems in real world such as image inpainting can be
modeled as a subproblem. To investigate them, we suggest a projected forward–backward
algorithm for solving the constrained convex minimization problem modeled as follows:

min
x∈	

(
f (x) + g(x)

)
, (1.5)

where 	 is a nonempty closed convex subset of H , f and g are convex functions on H , and
f is differentiable on H .

In variational theory, Tseng [23] introduced the modified forward–backward splitting
algorithms for finding zeros of the sum of two monotone operators. Let X ⊂ dom A be a
closed convex set.
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Algorithm 1.3 Given x0 ∈ dom A and αk ∈ (0, +∞), calculate

yk = (Id + αkB)–1(Id – αkA)
(
xk),

xk+1 = PX
[
yk – αk

(
A

(
yk) – A

(
xk))], (1.6)

where A is L-Lipschitz continuous on X ∪ dom B, and αk ∈ (0, 1/L). It was proved that (xk)
converges weakly to zeros of A + B that are also contained in X.

Most of the work related to two convex minimization problems usually assume the Lip-
schitz condition on the gradient of f . This restriction can be relaxed by using a linesearch
technique. So we suggest new forward–backward algorithms to solve the unconstrained
and constrained convex minimization problems, which are based on a new linesearch
technique [14]. Then we prove weak convergence theorems for the proposed algorithm.
As applications, we apply our main results to solving compressed sensing and image in-
painting problems. Then we compare the performance of our algorithms with Algorithms
1.1 and 1.2. Moreover, we discuss numerical results of the comparative analysis to show
the optimal choice of parameters.

The content is organized as follows. In Sect. 2, we recall some the useful concepts. In
Sect. 3, we establish the main theorem on our algorithms. In Sect. 4, we give numerical
experiments to support the convergence of our algorithms. Finally, in Sect. 5, we end this
paper by conclusions.

2 Preliminaries
In this section, we give some definitions and lemmas that play an essential role in our
analysis. Let H be a real Hilbert space equipped with inner product 〈·, ·〉 and norm ‖ · ‖.
Let h : H → R̄ be a proper lower semicontinuous convex function. We use the following
notations:

• ⇀ denotes the weak convergence.
• dom h := {x ∈ H|h(x) < +∞} denotes the domain of h.
• Gph(A) ∈ H × H = {(x, y) : y ∈ Ax}, where A : H → 2H is a multivalued operator,

denotes the graph of A.
• ωw(xk) = {x : ∃(xkn ) ⊂ (xk) such that xkn ⇀ x} denotes the set of all weak limit points.
• F(T) = {x ∈ C : x = Tx} denotes the set of fixed points of T : C → C.
We recall the following definitions:

(1) A mapping T : H → H is said to be nonexpansive if, for all x, y ∈ H ,

‖Tx – Ty‖ ≤ ‖x – y‖.

(2) A mapping T : H → H is said to be firmly nonexpansive if, for all x, y ∈ H ,

‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉.

(3) A mapping T : H → H is said to be monotone if, for all x, y ∈ H ,

〈x – y, Tx – Ty〉 ≥ 0.
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(4) An operator A : H → 2H is said to be maximal monotone if there is no monotone
operator B : H → 2H such that Gph(B) properly contains Gph(A), that is, for every
(x, u) ∈ H × H ,

(x, u) ∈ Gph(A) ⇐⇒ 〈x – y, Ax – Ay〉 ≥ 0

for all (y, v) ∈ Gph(A).
(5) A function h : H →R is said to be convex if

h
(
λx + (1 – λ)y

) ≤ h(x) + (1 – λ)h(y)

for all λ ∈ (0, 1) and x, y ∈ H .
(6) A differentiable function h is convex if and only if

h(x) +
〈∇h(x), y – x

〉 ≤ h(y)

for all y ∈ H .
(7) An element g ∈ H is said to be a subgradient of h : H →R at x if

h(x) + 〈g, y – x〉 ≤ h(y)

for all y ∈ H .
(8) The subdifferential of h at x is defined by

∂h(x) =
{

v ∈ H : 〈v, y – x〉 + h(x) ≤ h(y), y ∈ H
}

.

(9) A function f : H →R is said to be weakly lower semicontinuous at x if xn ⇀ x
implies

f (x) ≤ lim inf
n→∞ f (xn).

(10) A projection of x onto a nonempty, closed and convex subset C of H is defined by

PCx := argmin
y∈C

‖x – y‖2.

(11) The proximal operator proxg : H → H of g is defined by

proxg(z) = (Id + ∂g)–1(z), z ∈ H .

We know that proximal operator is single-valued with full domain. Moreover, from [3]
we have

z – proxαg(z)
α

∈ ∂g
(
proxαg(z)

)
for all z ∈ H ,α > 0. (2.1)

Lemma 2.1 ([2]) Let C be a nonempty closed convex subset of a real Hilbert space H . Then
for any x ∈ H , the following statements hold:
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(i) 〈x – PCx, y – PCx〉 ≤ 0 for all y ∈ C;
(ii) ‖PCx – PCy‖2 ≤ 〈PCx – PCy, x – y〉 for all x, y ∈ H ;

(iii) ‖PCx – y‖2 ≤ ‖x – y‖2 – ‖PCx – x‖2 for all y ∈ C.

Lemma 2.2 ([4]) The subdifferential operator ∂h of a convex function h is maximal mono-
tone. Moreover, the graph of ∂h, Gph(∂h) = {(x, v) ∈ H × H : v ∈ ∂h(x)}, is demiclosed, that
is, if a sequence (xk , vk) ⊂ Gph(∂h) is such that (xk) converges weakly to x and (vk) converges
strongly to v, then (x, v) ∈ Gph(∂h).

Lemma 2.3 ([20]) Let H be a real Hilbert space. Let C be a nonempty closed convex subset
of H , and let T : C → C be a nonexpansive mapping such that F(T) �= ∅. If (xk) ⊂ C, xk ⇀ z,
and ‖Txk – xk‖ → 0, then Tz = z.

Lemma 2.4 ([2]) Let H be a real Hilbert space. Let S be a nonempty closed convex subset
of H , and let (xk) be a sequence in H satisfying:

(i) limk→∞ ‖xk – x‖ exists for each x ∈ S;
(ii) ωw(xk) ⊂ S.

Then (xk) weakly converges to an element of S.

3 Main results
In this section, we assume that the set S∗ of all solutions of problem (1.1) is nonempty.
We propose new algorithms by combining a new linesearch technique and prove weak
convergence theorems. We assume that

(1) f , g : H →R∪ {+∞} are proper lower semicontinuous convex functions, f is
differentiable on H and

(2) the gradient ∇f is uniformly continuous and bounded on bounded subsets of H .
Note that the latter condition holds if ∇f is Lipschitz continuous on H .

Algorithm 3.1 Given σ > 0, θ ∈ (0, 1), γ ∈ (0, 2), and δ ∈ (0, 1
6 ). Let x0 ∈ H .

Step 1. Calculate

yk = proxαk g
(
xk – αk∇f

(
xk))

and

zk = proxαk g
(
yk – αk∇f

(
yk)),

where αk = σθmk with mk the smallest nonnegative integer such that

αk · max
{∥∥∇f

(
xk) – ∇f

(
yk)∥∥,

∥
∥∇f

(
zk) – ∇f

(
yk)∥∥} ≤ δ

(∥∥xk – yk∥∥ +
∥
∥zk – yk∥∥)

. (3.1)

Step 2. Calculate

xk+1 = xk – γ ηkdk ,
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where

dk = xk – zk – αk
(∇f

(
xk) – ∇f

(
zk)) and ηk =

( 1
2 – 3δ)(‖xk – yk‖2 + ‖zk – yk‖2)

‖dk‖2 .

Set k := k + 1, and go to Step 1.

Remark 3.2 For variational inequality problem, this kind of method is firstly appeared in
Noor [18, 19, 22]

Lemma 3.3 ([14]) Linesearch (3.1) stops after finitely many steps.

Theorem 3.4 Let (xk) and (αk) be generated by Algorithm 3.1. Assume that there is α > 0
such that αk ≥ α > 0 for all k ∈N. Then (xk) weakly converges to an element of S∗.

Proof Let x∗ be a solution in S∗. Then we obtain

∥∥xk+1 – x∗
∥∥2 =

∥∥xk – γ ηkdk – x∗
∥∥2

=
∥
∥xk – x∗

∥
∥2 – 2γ ηk

〈
xk – x∗, dk

〉
+ γ 2η2

k‖dk‖2. (3.2)

Since yk = proxαk g(xk – αk∇f (xk)), we have (Id – αk∇f )(xk) ∈ (Id + αk∂g)(yk). Moreover, ∂g
is maximal monotone, so there is uk ∈ ∂g(yk) such that

(Id – αk∇f )
(
xk) = yk + αkuk .

So we have

uk =
1
αk

(
xk – yk – αk∇f

(
xk)). (3.3)

Note that 0 ∈ ∇f (x∗) + ∂g(x∗) ⊆ ∂(f + g)(x∗) and ∇f (yk) + uk ∈ ∂(f + g)yk . Therefore we
obtain

〈∇f
(
yk) + uk , yk – x∗

〉 ≥ 0. (3.4)

Using (3.3) and (3.4), we have

1
αk

〈
xk – yk – αk∇f

(
xk) + αk∇f

(
yk), yk – x∗

〉 ≥ 0.

It follows that

〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – x∗

〉 ≥ 0. (3.5)

From zk = proxαk g(yk – αk∇f (yk)) we get (Id – αk∇f )(yk) ∈ (Id + αk∂g)(zk). Since ∂g is max-
imal monotone, there is vk ∈ ∂g(zk) such that

(Id – αk∇f )
(
yk) = zk + αkvk .
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This shows that

vk =
1
αk

(
yk – zk – αk∇f

(
yk)). (3.6)

Similarly to yk , we can show that

〈
yk – zk – αk

(∇f
(
yk) – ∇f

(
zk)), zk – x∗

〉 ≥ 0. (3.7)

Combining (3.5) and (3.7), we have

0 ≤ 〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – x∗

〉
+

〈
yk – zk – αk

(∇f
(
yk) – ∇f

(
zk)), zk – x∗

〉

=
〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – zk 〉 +

〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), zk – x∗

〉

+
〈
yk – zk – αk

(∇f
(
yk) – ∇f

(
zk)), zk – x∗

〉

=
〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – zk 〉

+
〈
xk – zk – αk

(∇f
(
xk) – ∇f

(
zk)), zk – x∗

〉
. (3.8)

We consider

〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – zk 〉

=
〈
xk – yk , yk – zk 〉 + αk

〈∇f
(
yk) – ∇f

(
xk), yk – zk 〉

=
〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉 +

〈∇f
(
zk) – ∇f

(
xk), yk – zk 〉]

=
〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉

+
〈∇f

(
zk), yk – zk 〉 +

〈∇f
(
xk), zk – yk 〉]

=
〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉 +

〈∇f
(
zk), yk – zk 〉

+
〈∇f

(
xk), zk – xk 〉 +

〈∇f
(
xk), xk – yk 〉]

=
〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉

+
〈∇f

(
zk), yk – zk 〉 +

〈∇f
(
xk), zk – xk 〉

+
〈∇f

(
xk) – ∇f

(
yk), xk – yk 〉 +

〈∇f
(
yk), xk – yk 〉].

By the convexity of f we have

〈
xk – yk – αk

(∇f
(
xk) – ∇f

(
yk)), yk – zk 〉

≤ 〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉 + f

(
yk) – f

(
zk) + f

(
zk) – f

(
xk)

+
〈∇f

(
xk) – ∇f

(
yk), xk – yk 〉 + f

(
xk) – f

(
yk)]

=
〈
xk – yk , yk – zk 〉 + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉

+
〈∇f

(
xk) – ∇f

(
yk), xk – yk 〉]. (3.9)
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Using 2〈xk – yk , yk – zk〉 = ‖xk – zk‖2 – ‖xk – yk‖2 – ‖yk – zk‖2, (3.1), (3.8), and (3.9), we see
that

–
〈
xk – zk – αk

(∇f
(
xk) – ∇f

(
zk)), zk – x∗

〉

≤ 1
2
[∥∥xk – zk∥∥2 –

∥
∥xk – yk∥∥2 –

∥
∥yk – zk∥∥2] + αk

[〈∇f
(
yk) – ∇f

(
zk), yk – zk 〉

+
〈∇f

(
xk) – ∇f

(
yk), xk – yk 〉]

≤ 1
2
[∥∥xk – zk∥∥2 –

∥∥xk – yk∥∥2 –
∥∥yk – zk∥∥2] + αk

[∥∥∇f
(
yk) – ∇f

(
zk)∥∥∥∥yk – zk∥∥

+
∥
∥∇f

(
xk) – ∇f

(
yk)∥∥

∥
∥xk – yk∥∥]

≤ 1
2
[∥∥xk – zk∥∥2 –

∥
∥xk – yk∥∥2 –

∥
∥yk – zk∥∥2] + δ

[(∥∥xk – yk∥∥ +
∥
∥zk – yk∥∥)∥∥yk – zk∥∥

+
(∥∥xk – yk∥∥ +

∥∥zk – yk∥∥)∥∥xk – yk∥∥]

≤ 1
2
[∥∥xk – zk∥∥2 –

∥∥xk – yk∥∥2 –
∥∥yk – zk∥∥2] + δ

[∥∥xk – yk∥∥∥∥yk – zk∥∥ +
∥∥zk – yk∥∥2

+
∥∥xk – yk∥∥2 +

∥∥zk – yk∥∥∥∥xk – yk∥∥]

≤ 1
2
[∥∥xk – zk∥∥2 –

∥∥xk – yk∥∥2 –
∥∥yk – zk∥∥2]

+ δ
[
2
∥∥xk – yk∥∥∥∥yk – zk∥∥ +

∥∥zk – yk∥∥2 +
∥∥xk – yk∥∥2]

≤ 1
2
[∥∥xk – zk∥∥2 –

∥∥xk – yk∥∥2 –
∥∥yk – zk∥∥2] + 2δ

[∥∥zk – yk∥∥2 +
∥∥xk – yk∥∥2]

≤ 1
2
∥∥xk – zk∥∥2 –

(
1
2

– 2δ

)∥∥xk – yk∥∥2 –
(

1
2

– 2δ

)∥∥yk – zk∥∥2.

So we have

〈
dk , zk – x∗

〉 ≥ –
1
2
∥∥xk – zk∥∥2 +

(
1
2

– 2δ

)∥∥xk – yk∥∥2 +
(

1
2

– 2δ

)∥∥yk – zk∥∥2. (3.10)

Using the definition of dk and Linesearch (3.1), we have

〈
dk , xk – x∗

〉

=
〈
xk – zk – αk

(∇f
(
xk) – ∇f

(
zk)), xk – zk 〉 +

〈
dk , zk – x∗

〉

=
∥∥xk – zk∥∥2 – αk

〈
xk – zk ,∇f

(
xk) – ∇f

(
zk)〉 +

〈
dk , zk – x∗

〉

=
∥∥xk – zk∥∥2 – αk

〈
xk – zk ,∇f

(
xk) – ∇f

(
yk)〉 – αk

〈
xk – zk ,∇f

(
yk) – ∇f

(
zk)〉

+
〈
dk , zk – x∗

〉

≥ ∥∥xk – zk∥∥2 – αk
∥∥xk – zk∥∥∥∥∇f

(
xk) – ∇f

(
yk)∥∥ – αk

∥∥xk – zk∥∥∥∥∇f
(
yk) – ∇f

(
zk)∥∥

+
〈
dk , zk – x∗

〉

≥ ∥∥xk – zk∥∥2 – δ
∥∥xk – zk∥∥(∥∥xk – yk∥∥ +

∥∥zk – yk∥∥)

– δ
∥∥xk – zk∥∥(∥∥xk – yk∥∥ +

∥∥zk – yk∥∥)

+
〈
dk , zk – x∗

〉
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=
∥∥xk – zk∥∥2 – δ

(∥∥xk – zk∥∥∥∥xk – yk∥∥ +
∥∥xk – zk∥∥∥∥zk – yk∥∥)

– δ
(∥∥xk – zk∥∥

∥
∥xk – yk∥∥ +

∥
∥xk – zk∥∥

∥
∥zk – yk∥∥)

+
〈
dk , zk – x∗

〉

=
∥
∥xk – zk∥∥2 – δ

(
2
∥
∥xk – zk∥∥

∥
∥xk – yk∥∥ + 2

∥
∥xk – zk∥∥

∥
∥zk – yk∥∥)

+
〈
dk , zk – x∗

〉

≥ ∥
∥xk – zk∥∥2 – δ

(∥∥xk – zk∥∥2 +
∥
∥xk – yk∥∥2 +

∥
∥xk – zk∥∥2 +

∥
∥zk – yk∥∥2) +

〈
dk , zk – x∗

〉

= (1 – 2δ)
∥∥xk – zk∥∥2 – δ

(∥∥xk – yk∥∥2 +
∥∥zk – yk∥∥2) +

〈
dk , zk – x∗

〉
. (3.11)

From (3.10) and (3.11) we have

〈
dk , xk – x∗

〉 ≥ (1 – 2δ)
∥
∥xk – zk∥∥2 – δ

(∥∥xk – yk∥∥2 +
∥
∥zk – yk∥∥2) –

1
2
∥
∥xk – zk∥∥2

+
(

1
2

– 2δ

)∥
∥xk – yk∥∥2 +

(
1
2

– 2δ

)∥
∥yk – zk∥∥2

=
(

1
2

– 2δ

)∥
∥xk – zk∥∥2 +

(
1
2

– 3δ

)(∥∥xk – yk∥∥2 +
∥
∥yk – zk∥∥2). (3.12)

Since ηk = ( 1
2 –3δ)(‖xk –yk‖2+‖zk –yk‖2)

‖dk‖2 , we have ηk‖dk‖2 = ( 1
2 – 3δ)(‖xk – yk‖2 + ‖zk – yk‖2). So

〈
dk , xk – x∗

〉 ≥
(

1
2

– 2δ

)∥∥xk – zk∥∥2 + ηk‖dk‖2. (3.13)

This gives

–2γ ηk
〈
dk , xk – x∗

〉 ≤ –2γ ηk

(
1
2

– 2δ

)∥
∥xk – zk∥∥2 – 2γ η2

k‖dk‖2. (3.14)

Therefore from (3.2) and the above we obtain

∥∥xk+1 – x∗
∥∥2 ≤ ∥∥xk – x∗

∥∥2 – 2γ ηk

(
1
2

– 2δ

)∥∥xk – zk∥∥2 – 2γ η2
k‖dk‖2 + γ 2η2

k‖dk‖2

=
∥
∥xk – x∗

∥
∥2 – 2γ ηk

(
1
2

– 2δ

)∥
∥xk – zk∥∥2 –

2 – γ

γ
‖γ ηkdk‖2. (3.15)

By the monotonicity of ∇f we get

‖dk‖2 =
∥
∥xk – zk – αk

(∇f
(
xk) – ∇f

(
zk))∥∥2

=
∥∥xk – zk∥∥2 + α2

k
∥∥∇f

(
xk) – ∇f

(
zk)∥∥2 – 2αk

〈
xk – zk ,∇f

(
xk) – ∇f

(
zk)〉

≤ ∥∥xk – zk∥∥2 + α2
k
∥∥∇f

(
xk) – ∇f

(
yk) + ∇f

(
yk)∇ – f

(
zk)∥∥2

≤ ∥
∥xk – zk∥∥2 + 2α2

k
[∥∥∇f

(
xk) – ∇f

(
yk)∥∥2 +

∥
∥∇f

(
yk)∇ – f

(
zk)∥∥2]

≤ ∥
∥xk – zk∥∥2 + 2α2

k
[(∥∥xk – yk∥∥ +

∥
∥zk – yk∥∥)2 +

(∥∥xk – yk∥∥ +
∥
∥zk – yk∥∥)2]

≤ ∥∥xk – zk∥∥2 + 4α2
k
(∥∥xk – yk∥∥2 + 2

∥∥xk – yk∥∥∥∥zk – yk∥∥ +
∥∥zk – yk∥∥2)

≤ ∥∥xk – yk∥∥2 + 2
∥∥xk – yk∥∥∥∥yk – zk∥∥ +

∥∥yk – zk∥∥2 + 8α2
k
(∥∥xk – yk∥∥2 +

∥∥zk – yk∥∥2)

≤ 2
(∥∥xk – yk∥∥2 +

∥
∥yk – zk∥∥2) + 8α2

k
(∥∥xk – yk∥∥2 +

∥
∥zk – yk∥∥2)

=
(
2 + 8δ2)(∥∥xk – yk∥∥2 +

∥∥yk – zk∥∥2) (3.16)
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and, equivalently,

1
‖dk‖2 ≥ 1

(2 + 8δ2)(‖xk – yk‖2 + ‖yk – zk‖2)
. (3.17)

Therefore we have

ηk =
( 1

2 – 3δ)(‖xk – yk‖2 + ‖zk – yk‖2)
‖dk‖2 ≥ ( 1

2 – 3δ)
(2 + 8δ2)

> 0.

On the other hand, we have

ηk‖dk‖2 =
(

1
2

– 3δ

)
(∥∥xk – yk∥∥2 +

∥∥zk – yk∥∥2). (3.18)

Thus it follows that

∥
∥xk – yk∥∥2 +

∥
∥zk – yk∥∥2 =

1
( 1

2 – 3δ)
ηk‖dk‖2

=
1

( 1
2 – 3δ)(γ 2ηk)

‖γ ηkdk‖2. (3.19)

From (3.18) and (3.19) we get

∥∥xk – yk∥∥2 +
∥∥zk – yk∥∥2 ≤ (2 + 8δ2)

( 1
2 – 3δ)

‖γ ηkdk‖2.

Since xk+1 = xk – γ ηkdk , it follows that γ ηkdk = xk – xk+1. This implies that

∥∥xk+1 – x∗
∥∥2 ≤ ∥∥xk – x∗

∥∥2 – 2γ ηk

(
1
2

– 2δ

)∥∥xk – zk∥∥2 –
2 – γ

γ

∥∥xk – xk+1∥∥2. (3.20)

Thus limk→∞ ‖xk – x∗‖ exists, and (xk) is bounded. Note that by (3.20)

2 – γ

γ

∥∥xk – xk+1∥∥2 + 2γ ηk

(
1
2

– 2δ

)∥∥xk – zk∥∥2 ≤ ∥∥xk – x∗
∥∥2 –

∥∥xk+1 – x∗
∥∥2.

Hence ‖xk – zk‖ → 0 and ‖xk+1 – xk‖ → 0 as k → ∞. It follows that ‖xk – yk‖ → 0 and
‖yk – zk‖ → 0 as k → ∞. By the boundedness of (xk) we know that the set of its weak limit
points is nonempty. Let x∞ ∈ ωw(xk). Then there is a subsequence (xkn ) of (xk) such that
xkn ⇀ x∞. Next, we show that x∞ ∈ S∗. Let (v, u) ∈ Gph(∇f + ∂g), that is, u – ∇f (v) ∈ ∂g(v).
Since ykn = (Id + αkn∂g)–1(Id – αkn∇f )xkn , we have

(Id – αkn∇f )xkn ∈ (Id + αkn∂g)ykn ,

which gives

1
αkn

(
xkn – ykn – αkn∇f

(
xkn

)) ∈ ∂g
(
ykn

)
.
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Since ∂g is maximal monotone, it follows that

〈
v – ykn , u – ∇f (v) –

1
αkn

(
xkn – ykn – αkn∇f

(
xkn

))
〉
≥ 0.

This shows that

〈
v – ykn , u

〉 ≥
〈
v – ykn ,∇f (v) +

1
αkn

(
xkn – ykn – αkn∇f

(
xkn

))
〉

=
〈
v – ykn ,∇f (v) – ∇f

(
xkn

)〉
+

〈
v – ykn ,

1
αkn

(
xkn – ykn

)〉

=
〈
v – ykn ,∇f (v) – ∇f

(
ykn

)〉
+

〈
v – ykn ,∇f

(
ykn

)
– ∇f

(
xkn

)〉

+
〈
v – ykn ,

1
αkn

(
xkn – ykn

)〉

≥ 〈
v – ykn ,∇f

(
ykn

)
– ∇f

(
xkn

)〉
+

〈
v – ykn ,

1
αkn

(
xkn – ykn

)〉
. (3.21)

Since limk→∞ ‖xk – yk‖ = 0, by the assumption we have limk→∞ ‖∇f (xk) – ∇f (yk)‖ = 0.
Taking the limit as n → ∞ in (3.21), we have

〈
v – x∞, u

〉 ≥ 0.

Thus 0 ∈ (∇f + ∂g)x∞, and consequently x∞ ∈ S∗. By Lemma 2.4 we conclude that (xk)
converges weakly to an element of S∗. Thus we complete the proof. �

Remark 3.5 If ∇f is L-Lipschitz continuous, then the condition on αk in Theorem 3.4 can
be removed since αk ≥ min{σ , δθ/L} > 0; see [3].

Next, we introduce a new projected forward–backward algorithm and the convergence
analysis. We denote by 	∩argmin(f +g) the solution set of (1.5). Assume that this solution
set is nonempty.

Algorithm 3.6 Given σ > 0, θ ∈ (0, 1), γ ∈ (0, 2), and δ ∈ (0, 1
6 ). Let w0 ∈ H .

Step 1. Calculate

xk = proxαk g
(
wk – αk∇f

(
wk))

and

yk = proxαk g
(
xk – αk∇f

(
xk)),

where αk = σθmk with mk the smallest nonnegative integer such that

αk · max
{∥∥∇f

(
wk) – ∇f

(
xk)∥∥,

∥
∥∇f

(
yk) – ∇f

(
xk)∥∥} ≤ δ

(∥∥wk – xk∥∥ +
∥
∥yk – xk∥∥)

. (3.22)

Step 2. Calculate

zk = wk – γ ηkdk ,
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where

dk = wk – yk – αk
(∇f

(
wk) – ∇f

(
yk)) and ηk =

( 1
2 – 3δ)(‖wk – xk‖2 + ‖yk – xk‖2)

‖dk‖2 .

Step 3. Calculate

wk+1 = P	

(
zk).

Set k := k + 1, and go to Step 1.

Theorem 3.7 Let (xk) and (αk) be generated by Algorithm 3.6. Assume that there is α >
0 such that αk ≥ α > 0 for all k ∈ N. Then (xk) weakly converges to an element of 	 ∩
argmin(f + g).

Proof Let w∗ be a solution in 	 ∩ argmin(f + g). Then using Lemma 2.1(ii), we have

∥∥wk+1 – w∗
∥∥2 =

∥∥P	

(
zk) – w∗

∥∥2

≤ ∥∥zk – w∗
∥∥2 –

∥∥P	

(
zk) – zk∥∥2. (3.23)

Since zk = wk – γ ηkdk , we have γ ηkdk = wk – zk . Similarly to Theorem 3.4, we can show
that

∥∥zk – w∗
∥∥2 ≤ ∥∥wk – w∗

∥∥2 – 2γ ηk

(
1
2

– 2δ

)∥∥wk – yk∥∥2 –
2 – γ

γ

∥∥wk – zk∥∥2. (3.24)

From (3.23) and (3.24) we obtain

∥∥wk+1 – w∗
∥∥2 ≤ ∥∥wk – w∗

∥∥2 – 2γ ηk

(
1
2

– 2δ

)∥∥wk – yk∥∥2 –
2 – γ

γ

∥∥wk – zk∥∥2

–
∥
∥P	

(
zk) – zk∥∥2. (3.25)

Thus limk→∞ ‖wk – w∗‖ exists, and (wk) is bounded. From (3.25) we see that

2γ ηk

(
1
2

– 2δ

)∥∥wk – yk∥∥2 +
2 – γ

γ

∥∥wk – zk∥∥2 +
∥∥P	

(
zk) – zk∥∥2

≤ ∥
∥wk – w∗

∥
∥2 –

∥
∥wk+1 – w∗

∥
∥2.

Thus ‖wk – yk‖ → 0, ‖wk – zk‖ → 0, and ‖P	(zk) – zk‖ → 0 as k → ∞. Also, we can show
that ‖wk – xk‖ → 0 and ‖yk – xk‖ → 0 as k → ∞. Let w∞ ∈ ωw(w∗). As in Theorem 3.7,
we can show that w∞ ∈ argmin(f + g). On the other hand, since limk→∞ ‖P	(zk) – zk‖ = 0
and zk ⇀ w∞, by Lemma 2.3 we have w∞ ∈ 	. Therefore w∞ ∈ 	 ∩ argmin(f + g). Using
Lemma 2.4, we can conclude that Theorem 3.7 holds. �

4 Numerical experiments
In this section, we apply our result to the signal recovery in compressive sensing and image
inpainting. We compare the performance of our algorithms with those of Combettes and
Wajs [9] and Cruz and Nghia [3].
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The numerical experiments are performed by Matlab 2020b on a 64-bit MacBook Pro
Chip Apple M1 and 8 GB of RAM.

We consider the following LASSO problem:

min
x∈RN

(
1
2
‖Ax – y‖2

2 + λ‖x‖1

)
, (4.1)

where A : RN → R
M(M < N) is a bounded linear operator, y ∈ R

M is the observed data,
and λ > 0. Rewriting (4.1) as problem (1.1), we can set

f (x) =
1
2
‖y – Ax‖2

2, g(x) = λ‖x‖1.

In experiment, y is generated by the Gaussian noise with SNR = 40, A is generated by
normal distribution with mean zero and variance one, and x ∈ R

N is generated by uni-
form distribution in [–2,2] that contains m nonzero components. The stopping criterion
is defined by

MSE =
1
N

∥∥xk – x∗
∥∥2 < 10–4,

where xk is an estimated signal of x∗.
The initial point x0 is chosen to be zero. Let α = 1

‖A‖2 and λk = 0.82 in Algorithm 1.1.
Let σ = 7, δ = 0.02, θ = 0.15, and γ = 1.85 in Algorithms 1.2 and 3.1, respectively. We now
present the corresponding numerical results (the number of iterations is denoted by Iter,
and CPU denotes the time of CPU) using different numbers of inequality constraints m.
The numerical results are shown in Table 1.

From Table 1 we see that the experiment result of Algorithm 3.1 is better than those of
Algorithms 1.1 and 1.2 in terms of CPU time and number of iterations in all cases.

Next, we provide Fig. 1 to show the convergence of each algorithm via the graph of the
MSE value and number of iterations and Fig. 2 to show signal recovery in compressed
sensing when N = 1024, M = 512, and m = 70.

Next, we analyze the convergence and the effects of the stepsizes depending on the pa-
rameters σ , δ, θ , and γ in Algorithm 3.1.

Table 1 Computational results for compressive sensing

m-sparse signal Methods N = 1024,M = 512 N = 2048,M = 1024

CPU Iter CPU Iter

m = 50 Algorithm 1.1 17.2860 8219 60.6703 11,237
Algorithm 1.2 15.6780 2941 54.0610 4429
Algorithm 3.1 10.1545 1266 29.8420 1522

m = 60 Algorithm 1.1 30.3607 11,478 82.9704 13746
Algorithm 1.2 20.5542 3700 56.8577 4718
Algorithm 3.1 12.4216 1622 30.7309 1742

m = 70 Algorithm 1.1 39.9470 13,507 97.9897 15191
Algorithm 1.2 21.8114 4079 60.7027 5035
Algorithm 3.1 14.4815 1873 33.8620 1880

m = 90 Algorithm 1.1 112.9716 24,608 124.0622 17,415
Algorithm 1.2 30.4207 5683 72.1555 5793
Algorithm 3.1 24.9734 3121 38.2926 2137
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Figure 1 The MSE value and number of iterations for all cases when N = 1024 and M = 512

Figure 2 Original, observed, and recovered signals by Algorithms 1.1, 1.2, and 3.1, respectively



Suantai et al. Advances in Difference Equations        (2021) 2021:265 Page 15 of 22

Table 2 The convergence of Algorithm 3.1 with various γ

Given: σ = 1, θ = 0.15, δ = 0.02,m = 80

γ N = 1024,M = 512 N = 2048,M = 1024

CPU Iter CPU Iter

0.15 383.4834 33,965 860.0725 32,155
0.55 70.5710 8959 165.9668 8510
1.35 27.1354 3732 59.5584 3278
1.95 15.6307 2243 35.8540 2024

Figure 3 Graphs of MSE value and number of iterations when N = 1024, M = 512 and N = 2048, M = 1024

Table 3 The convergence of Algorithm 3.1 with each θ

Given: σ = 1, δ = 0.02, γ = 1.85,m = 80

γ N = 1024,M = 512 N = 2048,M = 1024

CPU Iter CPU Iter

0.15 15.6425 2203 37.4697 2045
0.25 17.8066 2195 41.1519 1950
0.75 48.5706 1818 143.6058 1896
0.95 203.4910 1428 587.1587 1530

In the first experiment, we investigate the effect of the parameter γ in the proposed
algorithm. We intend to vary this parameter and study its convergence behavior. The nu-
merical results are shown in Table 2.

From Table 2 we see that the CPU time and the number of iterations of Algorithm 3.1
decrease when the parameter γ approaches 2. We show numerical results for each case of
γ in Fig. 3.

In the second experiment, we compare the performance of Algorithm 3.1 with different
parameters θ in Theorem 3.4. Numerical results are shown in Table 3.

From Table 3 we observe that the CPU time of Algorithm 3.1 increases, but the number
of iterations decreases when the parameter θ approaches 1. Figure 4 shows numerical
results for each θ .

Next, we compare the performance of Algorithm 3.1 with different parameters σ in The-
orem 3.4. Numerical results are reported in Table 4.

From Table 4 we observe that CPU increases when σ increases. However, there is no
effect in terms of iterations.

Similarly, we obtain numerical results of Algorithm 3.1 with different δ in Table 5.
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Figure 4 Graph of MSE value and number of iterations when N = 1024, M = 512 and N = 2048, M = 1024

Table 4 The convergence of Algorithm 3.1 with different σ

Given: δ = 0.02, θ = 0.15, γ = 1.85,m = 80

γ N = 1024,M = 512 N = 2048,M = 1024

CPU Iter CPU Iter

0.1 13.2968 2228 26.7530 1765
1 14.3224 2069 39.0200 2177
10 19.6720 2428 54.4288 2624
100 21.7268 2261 49.6928 2165

Table 5 The convergence of Algorithm 3.1 with different δ

Given: σ = 1, θ = 0.02, γ = 1.85,m = 80

γ N = 1024,M = 512 N = 2048,M = 1024

CPU Iter CPU Iter

0.03 14.3172 2074 30.5167 1680
0.05 15.2507 2223 27.4978 1371
0.07 16.1215 2325 24.2387 1457
0.15 18.7078 2685 37.4357 2148

From Table 5 we see that the parameter δ has no effect in terms of the number of itera-
tions and CPU time for both cases.

Next, we aim to apply our result for solving an image inpainting problem described by
the following mathematical model:

min
x∈RM×N

1
2
∥∥A(x – x0)

∥∥2
F + μ‖x‖∗, (4.2)

where x0 ∈R
M×N (M < N) is a matrix with entries that lie in the interval [l, u], A is a linear

map that selects a subset of the entries of an M × N matrix by setting each unknown
entry in the matrix to 0, x is matrix of known entries A(x0), and μ > 0 is a regularization
parameter.

In particular, we consider the following image inpainting problem [10, 11]:

min
x

1
2
∥∥P	(x) – P	(x0))

∥∥2
F + μ‖x‖∗, (4.3)
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where ‖ · ‖F is the Frobenius norm, and ‖ · ‖∗ is the nuclear norm. Here we define P	 by

P	(x) =

⎧
⎨

⎩
xij, (i, j) ∈ 	,

0, otherwise.
(4.4)

The nuclear norm has been widely used in image inpainting and matrix completion prob-
lem, which is a convex relaxation of low rank constraint. It is obvious that the opti-
mization problem (4.3) is related to (1.5). Indeed fact, let f (x) = 1

2‖P	(x) – P	(x0)‖2
F and

g(x) = μ‖x‖∗. Then ∇f (x) = P	(x) – P	(x0) is 1-Lipschitz continuous. The proximity op-
erator of g(x) can be computed by the singular value decomposition (SVD) [5].

To evaluate the quality of the restored images, we use the peak signal-to-noise ratio
(PSNR) and the structural similarity index (SSIM) [24] defined by

PSNR = 20 log
‖x‖F

‖x – xr‖F
(4.5)

and

SSIM =
(2uxuxr + c1)(2σxxr + c2)

(u2
x + u2

xr + c1)(σ 2
x + σ 2

xr + c2)
, (4.6)

where x is the original image, xr is the restored image, ux and uxr are the mean values of
the original image x and restored image xr , respectively, σ 2

x and σ 2
xr are the variances, σ 2

xxr

is the covariance of two images, c1 = (K1L)2 and c2 = (K2L)2 with K1 = 0.01 and K2 = 0.03,
and L is the dynamic range of pixel values. SSIM ranges from 0 to 1, with 1 meaning per-
fect recovery. The initial point x0 is chosen to be zero. Let α = 1

‖A‖2 and λk = 0.82 in Algo-
rithm 1.1. Let σ = 7, δ = 0.02, θ = 0.15, and γ = 1.85 in Algorithms 1.2 and 3.1, respectively.
We obtain the following results.

From Table 6 we see that the experiment results of Algorithm 3.6 are better than those
of Algorithms 1.1 and 1.2 in terms of PSNR and SSIM in all cases.

The original images are given in Fig. 5. The figures of inpainting images for the 250th
and 350th iterations are shown in Figs. 6–7. The PSNR values and iterations are plotted
in Fig. 8.

Next, we analyze the convergence and the effects of the stepsizes depending on the pa-
rameters σ , γ , θ , and δ in Algorithm 3.6.

Figure 5 The original image
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Table 6 Computational results for solving (4.3)

Methods N = 512,M = 256, Iter = 250 N = 1024,M = 512, Iter = 350

PSNR SSIM CPU PSNR SSIM CPU

Algorithm 1.1 31.7958 0.9777 42.9632 26.3070 0.9375 157.0621
Algorithm 1.2 31.9191 0.9780 350.0757 26.6354 0.9381 1295.4495
Algorithm 3.6 32.2537 0.9789 541.9922 27.6598 0.9400 2249.6655

Figure 6 The missing and restored images by Algorithm 1.1 (PSNR: 31.7958, SSIM: 0.9777), Algorithm 1.2
(PSNR: 31.9191, SSIM: 0.9780), and Algorithm 3.6 (PSNR: 32.2537, SSIM: 0.9789), respectively

Figure 7 The missing and restored images by Algorithm 1.1 (PSNR: 26.3070, SSIM: 0.9375), Algorithm 1.2
(PSNR: 26.6354, SSIM: 0.9381), and Algorithm 3.6 (PSNR: 27.6598, SSIM: 0.9400)

Figure 8 Graphs of PSNR value and number of iterations of Figs. 6 and 7, respectively

First, we study the effect of the parameter σ in the proposed algorithm. The numerical
results are shown in Table 7.

From Table 7 we observe that the PSNR and the SSIM of Algorithm 3.6 increase when
the parameter σ increases. Figure 9 shows numerical results for various σ .
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Table 7 Computational results for each σ

Given: γ = 1.75, θ = 0.57, δ = 0.17

σ N = 512,M = 256, Iter = 80 N = 1024,M = 512, Iter = 120

PSNR SSIM CPU PSNR SSIM CPU

1.5 31.8628 0.9777 231.7521 26.9550 0.9388 911.3357
1 31.8185 0.9778 105.0579 27.0448 0.930 390.0906
0.1 26.3606 0.9644 29.3329 20.6162 0.9292 118.4001
0.01 5.7995 0.6534 29.2479 7.9950 0.8156 119.6576

Figure 9 Graph of PSNR value and number of iterations

Table 8 Computational results for each γ

Given: σ = 5, θ = 0.57, δ = 0.17

γ N = 512,M = 256, Iter = 80 N = 1024,M = 512, Iter = 120

PSNR SSIM CPU PSNR SSIM CPU

1.75 31.9129 0.9780 175.6244 27.0498 0.9390 707.5356
1.55 31.6503 0.9775 177.3801 26.6102 0.9381 722.1810
0.65 24.2457 0.9580 193.9734 20.4814 0.9292 750.3288
0.15 9.3123 0.8814 195.3802 12.0074 0.9118 789.5196

Next, we investigate the effect of the parameter γ in the proposed algorithm. We in-
tend to vary this parameter and study its convergence behavior. The numerical results are
shown in Table 8.

From Table 8 we observe that the PSNR and the SSIM of Algorithm 3.6 increase when the
parameter γ approaches 2. Moreover, we see that CPU time decreases when the parameter
γ approaches 2. Figure 10 shows numerical results for various γ .

Next, we study the effect of the parameter θ . The numerical results are shown in Table 9.
From Table 8 we observe that the PSNR, SSIM, and CPU time of Algorithm 3.6 increase

when the parameter θ approaches 1. Figure 11 shows numerical results for various θ .
We next study the effect of the parameter δ. The results are shown in Table 10.
From Table 10 we observe that the PSNR and SSIM of Algorithm 3.6 increase when the

parameter δ approaches 1/6. Moreover, we see that CPU time increases when the param-
eter δ approaches 0. Figure 12 shows numerical results for each δ.
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Figure 10 Graph of PSNR value and number of iterations

Table 9 Computational results for each θ

Given: γ = 1.75, σ = 5, δ = 0.17

θ N = 512,M = 256, Iter = 80 N = 1024,M = 512, Iter = 120

PSNR SSIM CPU PSNR SSIM CPU

0.15 27.2789 0.9672 85.4890 21.2435 0.9298 337.5378
0.25 27.5130 0.9681 109.2624 25.0008 0.9351 402.7532
0.75 31.8248 0.9778 302.6839 26.8473 0.9386 1261.3915
0.95 32.0885 0.9784 1569.6501 27.3524 0.9396 7198.9700

Figure 11 Graph of PSNR value and number of iterations

Table 10 Computational results for each δ

Given: γ = 1.75, σ = 5, θ = 0.57

δ N = 512,M = 256, Iter = 80 N = 1024,M = 512, Iter = 120

PSNR SSIM CPU PSNR SSIM CPU

0.03 19.1459 0.9376 296.1227 17.7976 0.9285 1155.8961
0.05 23.8391 0.9542 265.7709 20.3615 0.9289 1020.0585
0.07 27.4554 0.9676 237.0004 21.9502 0.9306 925.7105
0.15 30.1473 0.9743 202.3671 24.1919 0.9337 793.9251
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Figure 12 Graph of PSNR value and number of iterations

5 Conclusion
In this work, we proposed new forward–backward algorithms for solving convex min-
imization problem. We proved weak convergence theorems under some weakened as-
sumptions on the stepsize. Our algorithms do not require the Lipschitz constant of the
gradient of functions. Moreover, we proposed a new projected forward–backward split-
ting algorithm using new linesearch to solve constrained convex minimization problem.
As a result, it can be applied effectively to solve signal recovery and image inpainting. Our
algorithms have a good performance in terms of iterations and CPU times. We also have
discussed the effects of all parameters in our algorithms.
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