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Abstract
In this paper, we study even-order DEs where we deduce new conditions for
nonexistence Kneser solutions for this type of DEs. Based on the nonexistence criteria
of Kneser solutions, we establish the criteria for oscillation that take into account the
effect of the delay argument, where to our knowledge all the previous results
neglected the effect of the delay argument, so our results improve the previous
results. The effectiveness of our new criteria is illustrated by examples.
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1 Introduction
There is no doubt that the theory of oscillation of DEs is a fertile study area and has at-
tracted the attention of many researchers recently. This is due to the existence of many
important applications of this theory in various fields of applied science, see [18, 19]. In
the last decade, it is easy to notice the new research movement that aims to improve and
develop the criteria for oscillations of DEs of different orders, see [3–5] and [9–17].

In detail, we consider the even-order delay DE of the form

(
r · (y(n–1))γ )′(ς ) + A

[
q · (y ◦ g)γ ; a, b

]
(ς ) = 0, ς ≥ ς0, (1.1)

where n ≥ 4 is an even natural number, γ is quotient of odd positive integers, and
A[f ; a, b](ς ) :=

∫ b
a f (ς ,�) d�. Our study is under the following conditions:

(�1) r ∈ C1(I0, (0,∞)), r′(ς ) ≥ 0,
∫ ∞
ς0

r–1/γ (ξ ) dξ < ∞, and Iϑ := [ςϑ ,∞);
(�2) q ∈ C(I0 × [a, b], [0,∞)) and q is not zero on any half line [T ,∞) × [a, b] for all

T ≥ ς0;
(�3) g ∈ C(I0 × [a, b],R), g has nonnegative partial derivative w.r.t s and g(ς , s) ≤ ς ,

limς→∞ g(ς , s) = ∞ for all s ∈ [a, b].
A solution of (1.1) means a function y ∈ C(n–1)(Iy,R), ςy ≥ ς0, which satisfies the prop-

erty r · (y(n–1))γ ∈ C1(Iy,R); moreover, it satisfies (1.1) on Iy. We consider only the proper
solutions y of (1.1), that is, y is not identically zero eventually.
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Definition 1.1 A solution y of (1.1) is called a Kneser solution if there exists ς∗ ∈ I0 such
that y(ς )y′(ς ) < 0 for all ς ≥ ς∗. (The set of all eventually positive Kneser solutions of (1.1)
is denoted by K.)

Definition 1.2 A solution y of (1.1) is said to be nonoscillatory if it is positive or negative,
ultimately; otherwise, it is said to be oscillatory. The equation itself is termed oscillatory
if all its solutions oscillate.

Next, let us briefly review a number of closely related results which motivated the
present study.

Li and Rogovchenko [9] were concerned with the asymptotic behavior of a class of
higher-order sublinear Emden–Fowler delay DEs

(
r(ς )y(n–1)(ς )

)′ + q(ς )yβ
(
τ (ς )

)
= 0,

where 0 < β < 1 is a ratio of odd natural numbers and τ (ς ) < ς . They established two tests
for the asymptotic behavior of solutions to the above equations. Moreover, they improved
the theorems reported by Li and Rogovchenko [8] and Zhang et al. [20, 22].

Moaaz and Muhib [17] and Zhang et al. [21] presented criteria for oscillation of solutions
of the DE

(
r(ς )

(
y′′′(ς )

)γ )′ + f
(
ς , y

(
σ (ς )

))
= 0,

where f (ς , y) ≥ h(ς )yβ , γ , β are quotients of odd natural numbers and σ (ς ) < ς . Results
in [17] are an improvement on some of the results obtained in Zhang et al. [2].

Recently, Moaaz et al. [14] studied the oscillation and the asymptotic behavior of solu-
tions of the DE

(
r(ς )

(
y′′′(ς )

)γ )′ + q(ς )yβ
(
σ (ς )

)
= 0

with the middle term

(
r(ς )

(
y′′′(ς )

)γ )′ + p(ς )
(
y′′′(ς )

)γ + q(ς )yβ
(
σ (ς )

)
= 0

under the condition
∫ ∞

ς0

1
r1/γ (s)

ds = ∞

and the condition

∫ ∞

ς0

[
1

r(s)
exp

(
–

∫ s

ς0

p(ξ )
r(ξ )

dξ

)]1/γ

ds = ∞,

where r′(ς ) + p(ς ) ≥ 0.
In the paper, we are working on finding new criteria for oscillation of solutions of a class

of even-order DEs in a noncanonical case. The paper is organized as follows. In Sect. 2,
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we present new conditions for the nonexistence of Kneser solutions of nonlinear even-
order DEs with continuous delay arguments. In Sect. 3, we are taking advantage of the new
nonexistence criteria of Kneser solutions to create better criteria that ensure all solutions
of (1.1) are oscillatory. In Sect. 4, we illustrate the effectiveness of our new criteria with
examples.

Now, we provide the lemmas that will be needed during the results.

Lemma 1.1 ([1, Lemma 2.2.3]) Assume that � ∈ Cn(I0,R+) and � (n) are of fixed sign and
not identically zero on a subray of I0. Furthermore, suppose that there exists ς1 ∈ I0 such
that � (n–1)� (n) ≤ 0 for ς ∈ I1. If limς→∞ � (ς ) 
= 0, then there exists ςλ ∈ I1 such that

� ≥ λ

(n – 1)!
ςn–1∣∣� (n–1)∣∣

for every λ ∈ (0, 1) and ς ∈ Iλ.

Lemma 1.2 Let � (ξ ) = Dξ – M(ξ – N)(γ +1)/γ , where M > 0, D and N are constants. Then
the maximum value of � on R at ξ ∗ = N + (γ D/((γ + 1)M))γ is

max
ξ∈R

� (ξ ) = �
(
ξ ∗) = DN +

γ γ

(γ + 1)(γ +1)
Dγ +1

Mγ
. (1.2)

2 Nonexistence of Kneser solutions
Firstly, we define the notations δ0(ς ) :=

∫ ∞
ς

r–1/γ (ξ ) dξ and δm(ς ) :=
∫ ∞
ς

δm–1(ξ ) dξ for m =
1, 2, . . . , n – 2. The following lemma is an adaptation of Lemma 1.1 in [6] based on n even.

Lemma 2.1 If y is an eventually positive solution of (1.1), then (r · y(n–1))′ ≤ 0, and one of
the following cases holds for ς large enough:

(1) y′(ς ) > 0, y(n–1)(ς ) > 0 and y(n)(ς ) < 0;
(2) y′(ς ) > 0, y(n–2)(ς ) > 0 and y(n–1)(ς ) < 0;
(3) (–1)ky(k)(ς ) > 0 for k = 1, 2, . . . , n – 1.

Remark 2.1 Based on the definition of the class K, we note that y ∈ K if and only if y
satisfies case (3).

Lemma 2.2 Assume that y ∈ K. Then y converges to zero if

∫ ∞

ς0

(
1

r(ξ )

∫ ξ

ς0

A[q; a, b](v) dv
)1/γ

dξ = ∞. (2.1)

Proof Based on the belonging of y to K, we note that y is a positive decreasing function,
and so limς→∞y(ς ) = ε ≥ 0. Assuming the opposite of that, it is required that ε > 0. Then
there exists ς1 ∈ I0 such that y(ς ) > ε for all ς ≥ ς1. Thus, from (�3), there exists ς2 ≥ ς1

such that (y ◦ g)(ς ) > ε for ς ≥ ς2. From (1.1), we arrive at

(
r · (y(n–1))γ )′(ς ) ≤ –εγ A[q; a, b](ς ) for ς ≥ ς2.
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Integrating the above inequality from ς2 to ς , we get

(
r · (y(n–1))γ )

(ς ) ≤ (
r · (y(n–1))γ )

(ς2) – εγ

∫ ς

ς2

A[q; a, b](v) dv,

that is,

y(n–1)(ς ) ≤ –ε

(
1

r(ς )

∫ ς

ς2

A[q; a, b](v) dv
)1/γ

.

Integrating the last inequality from ς2 to ς , we obtain

y(n–2)(ς ) ≤ y(n–2)(ς2) – ε

∫ ς

ς2

(
1

r(ξ )

∫ ξ

ς2

A[q; a, b](v) dv
)1/γ

dξ .

Taking limς→∞ and assumption (2.1) into account, we get that y(n–2)(ς ) → –∞ as ς → ∞,
which is a contradiction. Thus, ε = 0. This completes the proof. �

Lemma 2.3 Assume that (2.1) holds. If y ∈ K, then

–
(
r · (y(n–1))γ )

(ς ) ≥
∫ ς

ς0

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ (2.2)

and

(–1)(k)y(k)(ς ) ≥ –
(
r · (y(n–1))γ )1/γ (ς )δn–2–k(ς ) (2.3)

for k = 0, 1, . . . , n – 2.

Proof Assume that y ∈ K on [ς1,∞). Integrating (1.1) from ς1 to ς and using that fact that
y′(ς ) < 0, we obtain

–
(
r · (y(n–1))γ )

(ς ) ≥ –
(
r · (y(n–1))γ )

(ς1) +
∫ ς

ς1

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ

≥ –
(
r · (y(n–1))γ )

(ς1) +
∫ ς

ς0

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ

–
∫ ς1

ς0

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ (2.4)

for all ς ∈ I1. It follows from Lemma 2.2 that y converges to zero. Then there is ς2 ∈ I1

such that, for ς ≥ ς2,

(
r · (y(n–1))γ )

(ς1) +
∫ ς1

ς0

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ < 0,

which with (2.4) gives

–
(
r · (y(n–1))γ )

(ς ) ≥
∫ ς

ς0

A
[
q · (y ◦ g)γ ; a, b

]
(ξ ) dξ .
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Next, by using the fact that (r1/γ · y(n–1))′ ≤ 0, we see that

y(n–2)(g(ς , s)
) ≥ y(n–2)(ς ) ≥

∫ ∞

ς

1
r1/γ (�)

(
–r1/γ (�)y(n–1)(�)

)
d�

≥ –
(
r · (y(n–1))γ )1/γ (ς )δ0(ς ). (2.5)

Integrating (2.5) from ς to ∞ and taking the monotonicity of y(n–3)(ς ) into account, we
find

–y(n–3)(ς ) ≥ –
(
r · (y(n–1))γ )1/γ (ς )δ1(ς ).

Integrating again from ς to ∞, we obtain

y(n–4)(ς ) ≥ –
(
r · (y(n–1))γ )1/γ (ς )δ2(ς ).

Going forward along the same method, we get

(–1)(k)y(k)(ς ) ≥ –
(
r · (y(n–1))γ )1/γ (ς )δn–2–k(ς )

for k = 0, 1, . . . , n – 2. This completes the proof. �

Theorem 2.2 Assume that (2.1) holds. If

η := lim sup
ς→∞

δn–2(ς )
(∫ ς

ς0

A[q; a, b](ξ ) dξ

)1/γ

> 1, (2.6)

then K = ∅.

Proof Suppose to the contrary that y ∈ K on [ς1,∞). From Lemma 2.3, we obtain (2.2)
and (2.3) hold. Since g is delay w.s.t ς , we get y ◦ g ≥ y for ς ≥ ς2 and s ∈ [a, b]. Thus, (2.2)
becomes

–
(
r · (y(n–1))γ )

(ς ) ≥ yγ (ς )
∫ ς

ς0

A[q; a, b](ξ ) dξ ,

which with ((2.3), k = 0) gives

–
(
r · (y(n–1))γ )

(ς ) ≥ –
(
r · (y(n–1))γ )

(ς )δγ
n–2(ς )

∫ ς

ς0

A[q; a, b](ξ ) dξ

or equivalently,

1 ≥ δ
γ
n–2(ς )

∫ ς

ς0

A[q; a, b](ξ ) dξ .

Taking the limsup on both sides of the inequality, we arrive at contradiction with (2.6).
This completes the proof. �

For the next results, we introduce the following additional condition:
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(�) There is a constant h > 1 t such that δn–2(g(ς ,s))
δn–2(ς ) ≥ h for ς ≥ ς0 and s ∈ [a, b].

Lemma 2.4 Assume that y ∈ K, (2.1) hold and η is defined as in (2.6). Then there exists
ςε ≥ ς1 such that

d
dς

(
y(ς )

δ
η–ε
n–2(ς )

)
≤ 0

for any ε > 0 and ς ≥ ςε . Moreover, if (�) holds, then

y
(
g(ς , s)

) ≥ hη–εy(ς )for ς ≥ ςε and s ∈ [a, b]. (2.7)

Proof Assume that y ∈ K on I1. From Lemma 2.3, we obtain (2.2) and (2.3) hold. It follows
from (2.2) and the fact that g(ς , s) ≤ ς that

–
(
r · (y(n–1))γ )

(ς ) ≥ yγ (ς )
∫ ς

ς0

A[q; a, b](ξ ) dξ . (2.8)

From the definition of η in Theorem 2.2, there exists ς2 ≥ ς1 such that

δn–2

(∫ ς

ς0

A[q; a, b](ξ ) dξ

)1/γ

> η∗ := η – ε

for all ε > 0 and ς ≥ ς2. Hence, from ((2.3), k = 1), we have

d
dς

(
y(ς )

δ
η∗
n–2(ς )

)
≤ δ

η∗
n–2(ς )r1/γ (ς )y(n–1)(ς )δn–3(ς )

δ
2η∗
n–2(ς )

+
y(ς )η∗δ

η∗–1
n–2 (ς )δn–3(ς )
δ

2η∗
n–2(ς )

,

which with (2.8) gives

d
dς

(
y(ς )

δ
η∗
n–2(ς )

)
≤ –y(ς )δη∗

n–2(ς )δn–3(ς )
δ

2η∗
n–2(ς )

(∫ ς

ς0

A[q; a, b](ξ ) dξ

)1/γ

+
y(ς )η∗δ

η∗–1
n–2 (ς )δn–3(ς )
δ

2η∗
n–2(ς )

≤ y(ς )δn–3(ς )
δ

η∗+1
n–2 (ς )

(
η∗ – δn–2(ς )

(∫ ς

ς0

A[q; a, b](ξ ) dξ

)1/γ )
≤ 0.

Using this fact, one can easily see that

y
(
g(ς , s)

) ≥ y(ς )
(

δn–2(g(ς , s))
δn–2(ς )

)η∗
≥ hη∗y(ς ).

This completes the proof. �

Theorem 2.3 Assume that (�), (2.1) hold and η is defined as in (2.6). If

hηη > 1, (2.9)

then K = ∅.
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Proof Suppose to the contrary that y ∈ K on I1. From Lemma 2.3 and 2.4, we obtain that
(2.2), (2.3), and (2.7) hold. Combining (2.2) and (2.7), we obtain

–
(
r · (y(n–1))γ )

(ς ) ≥ yγ (ς )hγ η∗
∫ ς

ς0

A[q; a, b](ξ ) dξ (2.10)

for all ε > 0 and ς ≥ ς1. Using ((2.3), k = 0), we have

–
(
r · (y(n–1))γ )

(ς ) ≥ –
(
r · (y(n–1))γ )

(ς )δγ
n–2(ς )hγ η∗

∫ ς

ς0

A[q; a, b](ξ ) dξ .

Taking the limsup on both sides of the latter inequality, we obtain hηη ≤ 1. Then we obtain
a contradiction with (2.9). This completes the proof. �

Theorem 2.4 Assume that (�), (2.1) hold and η is defined as in (2.6). If

lim sup
ς→∞

∫ ς

ς0

(
hγ ηδ

γ
n–2(�)A[q; a, b](�) –

γ γ +1

(γ + 1)γ +1
δn–3(�)
δn–2(�)

)
d� = ∞, (2.11)

then K = ∅.

Proof Suppose to the contrary that y ∈ K on I1. From Lemmas 2.3 and 2.4, we obtain that
(2.2), (2.3), and (2.7) hold. Define the function

ω(ς ) :=
(r · (y(n–1))γ )(ς )

yγ (ς )
.

Differentiating ω(ς ), we get

ω′(ς ) =
(r(ς )(y(n–1)(ς ))γ )′

yγ (ς )
–

γ r(ς )(y(n–1)(ς ))γ y′(ς )
yγ +1(ς )

.

Using (1.1), ((2.3), k = 1), and (2.7), we arrive at

ω′(ς ) ≤ –hγ η∗A[q; a, b](ς ) – γ δn–3(ς )ω(γ +1)/γ (ς ). (2.12)

Multiplying (2.12) by δ
γ
n–2 and integrating the resulting inequality from ς1 to ς , we obtain

δ
γ
n–2(ς )ω(ς ) – δ

γ
n–2(ς1)ω(ς1) ≤ –

∫ ς

ς1

hγ η∗δγ
n–2(�)A[q; a, b](�) d�

–
∫ ς

ς1

γ δ
γ –1
n–2 (�)δn–3(�)ω(�) d�

–
∫ ς

ς1

γ δn–3(�)δγ
n–2(�)ω(γ +1)/γ (�) d�.

Using the inequality

–Bυ + Aυ(γ +1)/γ ≥ –
γ γ

(γ + 1)γ +1
Bγ +1

Aγ
, A, B > 0,



Muhib et al. Advances in Difference Equations        (2021) 2021:250 Page 8 of 17

with A = δn–3(�)δγ
n–2(�), B = δ

γ –1
n–2 (�)δn–3(�), and υ = –ω(�), we conclude that

∫ ς

ς1

(
hγ η∗δγ

n–2(�)A[q; a, b](�) –
γ γ +1

(γ + 1)γ +1
δn–3(�)
δn–2(�)

)
d�

≤ δ
γ
n–2(ς1)ω(ς1) – δ

γ
n–2(ς )ω(ς ). (2.13)

From ((2.3), k = 0), one can easily see that –1 ≤ ω(ς )δγ
n–2(ς ) < 0, which with (2.13) gives

∫ ς

ς1

(
hγ η∗δγ

n–2(�)A[q; a, b](�) –
γ γ +1

(γ + 1)γ +1
δn–3(�)
δn–2(�)

)
d� < 1 + δ

γ
n–2(ς1)ω(ς1).

Taking the limsup on both sides of the latter inequality, we obtain a contradiction with
(2.11). This completes the proof. �

Theorem 2.5 Assume that (�) and (2.1) hold. If there exists a function ρ ∈ C1(I0, (0,∞))
such that

lim sup
ς→∞

δ
γ
n–2(ς )
ρ(ς )

∫ ς

ς1

(
ρ(ζ )hγ ηA[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ζ )

)
dζ > 1, (2.14)

then K = ∅.

Proof Suppose to the contrary that y ∈ K on I1. Using Lemmas 2.3 and 2.4, we obtain that
(2.2), (2.3), and (2.7) hold. From ((2.3), k = 0), we obtain

(r · (y(n–1))γ )(ς )
yγ (ς )

≥ –
1

δ
γ
n–2(ς )

. (2.15)

Thus, if we define a generalized Riccati substitution as

w(ς ) := ρ

(
r · (y(n–1))γ

yγ
+

1
δ

γ
n–2

)
, (2.16)

then w(ς ) > 0 for all ς ≥ ς1. Differentiating ω, we have

w′(ς ) =
ρ ′(ς )
ρ(ς )

w(ς ) + ρ(ς )
(r · (y(n–1))γ )′(ς )

yγ (ς )

– γρ(ς )
(r · (y(n–1))γ )(ς )

yγ +1(ς )
y′(ς )

–
γρ(ς )δ′

n–2(ς )
δ

γ +1
n–2 (ς )

. (2.17)

From (1.1), we see that

(
r(ς )

(
y(n–1)(ς )

)γ )′ = –A
[
q · (y ◦ g)γ ; a, b

]
(ς ) ≤ 0. (2.18)
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Using ((2.3), k = 1) and (2.18), (2.17) becomes

w′(ς ) ≤ ρ ′(ς )
ρ(ς )

w(ς ) – ρ(ς )
A[q · (y ◦ g)γ ; a, b](ς )

yγ (ς )

– γρ(ς )r(ς )
(

y(n–1)(ς )
y(ς )

)γ +1

r1/γ (ς )δn–3(ς ) +
γρ(ς )δn–3(ς )

δ
γ +1
n–2 (ς )

. (2.19)

Thus, from (2.7), (2.19) yields

w′(ς ) ≤ ρ ′(ς )
ρ(ς )

w(ς ) – ρ(ς )hγ (η–ε)A[q; a, b](ς ) +
γρ(ς )δn–3(ς )

δ
γ +1
n–2 (ς )

– γρ(ς )r(ς )
(

y(n–1)(ς )
y(ς )

)γ +1

r1/γ (ς )δn–3(ς ).

Therefore, from the definition of w, we get

w′(ς ) ≤ –ρ(ς )hγ (η–ε)A[q; a, b](ς ) +
γρ(ς )δn–3(ς )

δ
γ +1
n–2 (ς )

+
ρ ′(ς )
ρ(ς )

w(ς ) – γ
δn–3(ς )
ρ1/γ (ς )

(
w(ς ) –

ρ(ς )
δ

γ
n–2(ς )

)1+1/γ

. (2.20)

Using inequality (1.2) with

D :=
ρ ′(ς )
ρ(ς )

, M := γ
δn–3(ς )
ρ1/γ (ς )

, N :=
ρ(ς )

δ
γ
n–2(ς )

and ξ := w, we obtain

ρ ′(ς )
ρ(ς )

w(ς ) ≤ γ
δn–3(ς )
ρ1/γ (ς )

(
w(ς ) –

ρ(ς )
δ

γ
n–2(ς )

)1+1/γ

+
ρ ′(ς )

δ
γ
n–2(ς )

+
ρ–γ (ς )(ρ ′(ς ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ς )

,

which, with (2.20), gives

w′(ς ) ≤ –ρ(ς )hγ (η–ε)A[q; a, b](ς )

+
ρ–γ (ς )(ρ ′(ς ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ς )

+
ρ ′(ς )

δ
γ
n–2(ς )

+
γρ(ς )δn–3(ς )

δ
γ +1
n–2 (ς )

or

w′(ς ) ≤ –ρ(ς )hγ (η–ε)A[q; a, b](ς ) +
ρ–γ (ς )(ρ ′(ς ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ς )

+
d

dς

(
ρ(ς )

δ
γ
n–2(ς )

)
.

Integrating this inequality from ς1 to ς , we arrive at

w(ς ) – w(ς1) ≤ –
∫ ς

ς1

(
ρ(ζ )hγ (η–ε)A[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ζ )

)
dζ

+
ρ(ς )

δ
γ
n–2(ς )

–
ρ(ς1)

δ
γ
n–2(ς1)

.
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From (2.16), we are led to

∫ ς

ς1

(
ρ(ζ )hγ (η–ε)A[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ζ )

)
dζ

≤ –ρ(ς )
r(ς )(y(n–1)(ς ))γ

yγ (ς )
+ ρ(ς1)

r(ς1)(y(n–1)(ς1))γ

yγ (ς1)

≤ –ρ(ς )
r(ς )(y(n–1)(ς ))γ

yγ (ς )
.

In view of (2.15), we get

∫ ς

ς1

(
ρ(ζ )hγ (η–ε)A[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ζ )

)
dζ ≤ ρ(ς )

δ
γ
n–2(ς )

or

δ
γ
n–2(ς )
ρ(ς )

∫ ς

ς1

(
ρ(ζ )hγ (η–ε)A[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
n–3(ζ )

)
dζ ≤ 1.

Taking the limsup, we obtain a contradiction. This completes the proof. �

Corollary 2.1 Assume that (�) and (2.1) hold. If one of the following conditions holds:

lim sup
ς→∞

δ
γ
n–2(ς )

∫ ς

ς1

hγ ηA[q; a, b](ζ ) dζ > 1 (2.21)

or

lim sup
ς→∞

δ
γ –1
n–2 (ς )

∫ ς

ς1

(
hγ ηδn–2(ζ )A[q; a, b](ζ ) –

1
(γ + 1)(γ +1)

δn–3(ζ )
δ

γ
n–2(ζ )

)
dζ > 1, (2.22)

or

lim sup
ς→∞

∫ ς

ς1

(
hγ ηδ

γ
n–2(ζ )A[q; a, b](ζ ) –

γ γ +1

(γ + 1)(γ +1)
δn–3(ς )
δn–2(ς )

)
dζ > 1, (2.23)

then K = ∅.

Proof By choosing ρ(ς ) = 1, ρ(ς ) = δ2(ς ), and ρ(ς ) = δ
γ
2 (ς ), condition (2.14) in Theorem

2.5 becomes as (2.21), (2.22), and (2.23), respectively. �

3 Oscillation criteria
In this section, we are taking advantage of new nonexistence criteria of Kneser solutions
to create better criteria that ensure all solutions of (1.1) are oscillatory.

Theorem 3.1 Assume that (�) and (2.1) hold and there exists a function ρ ∈ C1(I0, (0,∞))
such that (2.14) holds. If the DE

υ ′(ς ) +
(

λ0gn–1(ς , a)
(n – 1)!

)γ A[q; a, b](ς )
r(g(ς , a))

υ
(
g(ς , a)

)
= 0 (3.1)
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is oscillatory for some λ0 ∈ (0, 1) and there exists a function θ ∈ C1(I0, (0,∞)) such that

lim sup
ς→∞

∫ ς

ς0

(
�(�) –

r(�)θ (�)
(γ + 1)γ +1

(
θ ′(�)
θ (�)

+
1 + γ

r1/γ (�)δ0(�)

)γ +1)
d� = ∞ (3.2)

holds for some λ1 ∈ (0, 1), where

� := θ (ς )
(

λ1gn–2(ς , a)
(n – 2)!

)γ

A[q; a, b](ς ) + (1 – γ )
θ (ς )

r1/γ (ς )δγ +1
0 (ς )

,

then (1.1) is oscillatory.

Proof Suppose that there exists a nonoscillatory solution y of (1.1) in I0. Without loss of
generality, we suppose that y is eventually positive. From Lemma 2.1, we have three cases
(1) – (3). Since y > 0 and y′ > 0 in cases (1) and (2), we have that limς→∞ y(ς ) 
= 0.

Now, let case (1) hold. Using Lemma 1.1, we get

y
(
g(ς , s)

) ≥ λ0gn–1(ς , s)
(n – 1)!r1/γ (g(ς , s))

r1/γ (
g(ς , s)

)
y(n–1)(g(ς , s)

)
(3.3)

for all λ0 ∈ (0, 1) and sufficiently large ς . So, from (3.3), we get that υ(ς ) = r(ς )(y(n–1)(ς ))γ >
0 is a solution of the delay differential inequality

υ ′(ς ) +
(

λ0gn–1(ς , a)
(n – 1)!

)γ A[q; a, b](ς )
r(g(ς , a))

υ
(
g(ς , a)

) ≤ 0.

From [19, Corollary 1], there exists also a positive solution of (3.1), a contradiction.
Assume that case (2) holds. Note that r(ς )(y(n–1)(ς ))γ is nonincreasing, and so

y(n–2)(ν) – y(n–2)(ς ) =
∫ ν

ς

1
r1/γ (�)

(
r(�)

(
y(n–1)(�)

)γ )1/γ d�

≤ r1/γ (ς )y(n–1)(ς )
∫ ν

ς

1
r1/γ (�)

d�.

Letting ν → ∞, we get

y(n–2)(ς ) ≥ –r1/γ (ς )y(n–1)(ς )δ0(ς ). (3.4)

Next, we define the function �(ς ) by

�(ς ) := θ (ς )
(

r(ς )(y(n–1)(ς ))γ

(y(n–2)(ς ))γ
+

1
δ

γ
0 (ς )

)
. (3.5)

From (3.4), �(ς ) > 0 for ς ≥ ς1. Therefore, we have

�′(ς ) =
θ ′(ς )
θ (ς )

�(ς ) + θ (ς )
(

(r(ς )(y(n–1)(ς ))γ )′

(y(n–2)(ς ))γ
–

γ r(ς )(y(n–1)(ς ))γ +1

(y(n–2)(ς ))γ +1 –
γ δ′

0(ς )
δ

γ +1
0 (ς )

)
,
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it follows from (1.1) and (3.5) that

�′(ς ) ≤ θ ′(ς )
θ (ς )

�(ς ) – θ (ς )
yγ (g(ς , a))
(y(n–2)(ς ))γ

A[q; a, b](ς )

–
γ θ (ς )
r1/γ (ς )

(
�(ς )
θ (ς )

–
1

δ
γ
0 (ς )

)(γ +1)/γ

+
γ θ (ς )

r1/γ (ς )δγ +1
0 (ς )

. (3.6)

Using Lemma 1.1, we get

y
(
g(ς , a)

) ≥ λ1
gn–2(ς , a)

n – 2!
y(n–2)(g(ς , a)

)
.

Thus, (3.6) becomes

�′(ς ) ≤ θ ′(ς )
θ (ς )

�(ς ) – θ (ς )
(

λ1gn–2(ς , a)
(n – 2)!

)γ

A[q; a, b](ς ) +
γ θ (ς )

r1/γ (ς )δγ +1
0 (ς )

–
γ θ (ς )
r1/γ (ς )

(
�(ς )
θ (ς )

–
1

δ
γ
0 (ς )

)(γ +1)/γ

.

Using the inequality

A(γ +1)/γ – (A – B)(γ +1)/γ ≤ B1/γ

γ

[
(1 + γ )A – B

]
, AB ≥ 0,

with A = �(ς )/θ (ς ), B = 1/δγ
0 (ς ), we obtain

�′(ς ) ≤ θ ′(ς )
θ (ς )

�(ς ) – θ (ς )
(

λ1gn–2(ς , a)
(n – 2)!

)γ

A[q; a, b](ς ) +
γ θ (ς )

r1/γ (ς )δγ +1
0 (ς )

–
γ θ (ς )
r1/γ (ς )

((
�(ς )
θ (ς )

)(γ +1)/γ

–
1

γ δ0(ς )

[
(1 + γ )

�(ς )
θ (ς )

–
1

δ
γ
0 (ς )

])
.

Therefore,

�′(ς ) ≤
(

θ ′(ς )
θ (ς )

+
1 + γ

r1/γ (ς )δ0(ς )

)
�(ς ) – θ (ς )

(
λ1gn–2(ς , a)

(n – 2)!

)γ

A[q; a, b](ς )

–
γ

r1/γ (ς )θ1/γ (ς )
�(γ +1)/γ (ς ) –

θ (ς )
r1/γ (ς )δγ +1

0 (ς )
+

γ θ (ς )
r1/γ (ς )δγ +1

0 (ς )
.

By using the inequality

νE – VE(γ +1)/γ ≤ γ γ

(γ + 1)γ +1
νγ +1

V γ
, V > 0,

with ν = θ ′(ς )/θ (ς ) + (1 + γ )/(r1/γ (ς )δ0(ς )), V = γ /(r1/γ (ς )θ1/γ (ς )), and E = �(ς ), we find

�′(ς ) ≤ –θ (ς )
(

λ1gn–2(ς , a)
(n – 2)!

)γ

A[q; a, b](ς ) + (γ – 1)
θ (ς )

r1/γ (ς )δγ +1
0 (ς )

+
r(ς )θ (ς )

(γ + 1)γ +1

(
θ ′(ς )
θ (ς )

+
1 + γ

r1/γ (ς )δ0(ς )

)γ +1

.
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Integrating this inequality from ς1 to ς , we find

∫ ς

ς1

(
�(�) –

r(�)θ (�)
(γ + 1)γ +1

(
θ ′(�)
θ (�)

+
1 + γ

r1/γ (�)δ0(�)

)γ +1)
d� ≤ �(ς1),

which contradicts (3.2).
Next, using Theorem 2.5, it follows from (�) and (2.14) that y /∈ K, and so y does not

satisfy case (3).
This completes the proof. �

Corollary 3.1 Assume that (�) and (2.1) hold and there exist functions ρ, θ ∈ C1(I0, (0,∞))
such that (2.14) and (3.2) hold. If

lim inf
ς→∞

∫ ς

g(ς ,a)

(λ0gn–1(ξ , a))γ

((n – 1)!)γ r(g(ξ , a))
A[q; a, b](ξ ) dξ >

1
e

, (3.7)

then (1.1) is oscillatory.

Proof Applying a well-known criterion [7, Theorem 2] for first-order equation (3.1) to be
oscillatory, we obtain immediately criterion (3.7). �

Theorem 3.2 Assume that n = 4, (�) and (2.1) hold. If there exist functions ϕ, φ, ρ ∈
C1(I0, (0,∞)) such that

∫ ∞

ς0

(
ϕ(s)

(
g(s, a)

s

)3γ

A[q; a, b](s) –
2γ

(γ + 1)γ +1
r(s)(ϕ′(s))γ +1

(μs2ϕ(s))γ

)
ds = ∞, (3.8)

∫ ∞

ς0

(
φ(ξ )

∫ ∞

ξ

(
1

r(v)

∫ ∞

v

gγ (s, a)
sγ

A[q; a, b](s) ds
)1/γ

dv –
(φ′(ξ ))2

4φ(ξ )

)
dξ

= ∞, (3.9)

lim
ς→∞ sup

δ
γ
0 (ς )
ρ(ς )

∫ ς

ς0

(
ρ(�)

(
λ

2!
g2(�, a)

)γ

A[q; a, b](�) –
r(�)(ρ ′(�))γ +1

(γ + 1)(γ +1)ργ (�)

)
d�

> 1, (3.10)

and

lim sup
ς→∞

δ
γ
2 (ς )
ρ(ς )

∫ ς

ς1

(
ρ(ζ )hγ ηA[q; a, b](ζ ) –

ρ–γ (ζ )(ρ ′(ζ ))γ +1

(γ + 1)(γ +1)δ
γ
1 (ζ )

)
dζ > 1, (3.11)

for some λ, μ ∈ (0, 1), then (1.1) is oscillatory.

Proof Suppose that there exists a nonoscillatory solution y of (1.1) in I0. Without loss of
generality, we suppose that y is eventually positive. Using [1, Lemma 2.2.1], there exist four
possible cases:

C1 : y′(ς ) > 0, y′′(ς ) > 0 and y′′′(ς ) > 0;

C2 : y′(ς ) > 0, y′′(ς ) < 0 and y′′′(ς ) > 0;
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C3 : y′(ς ) > 0, y′′(ς ) > 0 and y′′′(ς ) < 0;

C4 : y′(ς ) < 0, y′′(ς ) > 0 and y′′′(ς ) < 0.

The proof of the case where C1 or C2 holds is the same as that of [16, Theorem 2.1].
Assume that C3 holds. Proceeding as in the proof of Theorem 3.1, we obtain that (3.6)

holds. Thus, we get

�′(ς ) ≤ ρ ′(ς )
ρ(ς )

�(ς ) –
ρ(ς )yγ (g(ς , a))

(y′′(ς ))γ
A[q; a, b](ς )

–
γ

r1/γ (ς )ρ1/γ (ς )

(
�(ς ) –

ρ(ς )
δ

γ
0 (ς )

)(γ +1)/γ

–
γρ(ς )δ′

0(ς )
δ

γ +1
0 (ς )

.

Using Lemma 1.2 with D = ρ ′(ς )/ρ(ς ), M = γ /(r1/γ (ς )ρ1/γ (ς )), N = ρ(ς )/δγ
0 (ς ), and ξ = �,

we obtain

�′(ς ) ≤ –
ρ(ς )yγ (g(ς , a))

(y′′(ς ))γ
A[q; a, b](ς )

–
γρ(ς )δ′

0(ς )
δ

γ +1
0 (ς )

+
ρ ′(ς )
δ

γ
0 (ς )

+
r(ς )(ρ ′(ς ))γ +1

(γ + 1)γ +1ργ (ς )

or

�′(ς ) ≤ –
ρ(ς )yγ (g(ς , a))

(y′′(ς ))γ
A[q; a, b](ς ) +

(
ρ(ς )
δ

γ
0 (ς )

)′
+

r(ς )(ρ ′(ς ))γ +1

(γ + 1)γ +1ργ (ς )
.

From Lemma 1.1, we have

�′(ς ) ≤ –ρ(ς )
(

λ

2!
g2(ς , a)

)γ

A[q; a, b](ς ) +
(

ρ(ς )
δ

γ
0 (ς )

)′
+

r(ς )(ρ ′(ς ))γ +1

(γ + 1)γ +1ργ (ς )
.

Integrating the above inequality from ς1 to ς , we find

�(ς ) – �(ς1) ≤ –
∫ ς

ς1

(
ρ(�)

(
λ

2!
g2(�, a)

)γ

A[q; a, b](s) –
r(�)(ρ ′(�))γ +1

(γ + 1)(γ +1)ργ (�)

)
d�

+
ρ(ς )
δ

γ
0 (ς )

–
ρ(ς1)
δ

γ
0 (ς1)

.

From the definition of �, we see that

∫ ς

ς1

(
ρ(�)

(
λ

2!
g2(�, a)

)γ

A[q; a, b](s) –
r(�)(ρ ′(�))γ +1

(γ + 1)(γ +1)ργ (�)

)
d�

≤ –
ρ(ς )r(ς )(y′′′(ς ))γ

(y′′(ς ))γ
+

ρ(ς1)r(ς1)(y′′′(ς1))γ

(y′′(ς1))γ
.

This provides

∫ ς

ς1

(
ρ(�)

(
λ

2!
g2(�, a)

)γ

A[q; a, b](s) –
r(�)(ρ ′(�))γ +1

(γ + 1)(γ +1)ργ (�)

)
d� ≤ ρ(ς )

δ
γ
0 (ς )

.
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Hence,

δ
γ
0 (ς )
ρ(ς )

∫ ς

ς1

(
ρ(�)

(
λ

2!
g2(�, a)

)γ

A[q; a, b](s) –
r(�)(ρ ′(�))γ +1

(γ + 1)(γ +1)ργ (�)

)
d� ≤ 1,

which contradicts (3.10).
Next, using Theorem 2.5 with n = 4, it follows from (�) and (3.11) that y /∈ K, and so y

does not satisfy case C4.
This completes the proof. �

4 Examples
Example 4.1 Consider the fourth-order DE

(
eγ ς

(
y′′′(ς )

)γ )′ + q0eγ ς A[y ◦ g;λ, 1](ς ) = 0, (4.1)

where ς ≥ 1, λ ∈ (0, 1–1/e), g(ς , s) = sς , and q0 > 0. Then we get δm(ς ) = e–ς for m = 0, 1, 2.
Moreover, it is easy to verify that conditions (2.1), (3.2), and (3.7) are satisfied.

By using the fact that eυ > eυ for υ > 0, we get

δ2(g(ς , s))
δ2(ς )

≥ δ2(g(ς , a))
δ2(ς )

= e(1–λ)ς > e(1 – λ)ς ≥ e(1 – λ) := h > 1.

From Theorems 2.2 and 2.3, equation (4.1) has no Kneser solutions if

η =
(

q0

γ

)1/γ

(1 – λ)1/γ > 1

or

hηη =
(
e(1 – λ)

)(1–λ)1/γ ( q0
γ )1/γ

(
q0

γ

)1/γ

(1 – λ)1/γ > 1

holds.
Next, condition (2.14) takes the form

(
e(1 – λ)

)γ (1–λ)1/γ ( q0
γ )1/γ

q0(1 – λ) >
(

γ

γ + 1

)γ +1

. (4.2)

By Corollary 3.1, equation (4.1) is oscillatory provided that (4.2) holds.

Example 4.2 Consider the fourth-order DE

(
ς5y′′′(ς )

)′ + q0ςA[y ◦ g;λ2, 1](ς ) = 0, (4.3)

where ς ≥ 1, λ2 ∈ (0, 1), g(ς , s) = sς , and q0 > 0. Then we have that δ0(ς ) = 1/4ς4, δ1(ς ) =
1/12ς3, and δ2(ς ) = 1/24ς2. Moreover, it is easy to verify that conditions (3.8) and (3.9)
are satisfied. Using Theorem 3.2, equation (4.3) is oscillatory if

(3.10) → λ1

8
λ2

2q0(1 – λ2) > 1
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and

(3.11) → 1
24

(
1
λ2

) q0
48 (1–λ2)

q0(1 – λ2) >
1
2

hold.

Remark 4.1 Consider the fourth-order DE (4.3). Condition (3.7) is not satisfied, so The-
orem 3.1 cannot be applied. Thus, Theorem 3.2 provides an applicable criterion when
Theorem 3.1 fails to apply.
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