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Abstract
The behavior of any complex dynamic system is a natural result of the interaction
between the components of that system. Important examples of these systems are
biological models that describe the characteristics of complex interactions between
certain organisms in a biological environment. The study of these systems requires
the use of precise and advanced computational methods in mathematics. In this
paper, we discuss a prey–predator interaction model that includes two competitive
predators and one prey with a generalized interaction functional. The primary
presumption in the model construction is the competition between two predators
on the only prey, which gives a strong implication of the real-world situation. We
successfully establish the existence and stability of the equilibria. Further, we
investigate the impact of the memory measured by fractional time derivative on the
temporal behavior. We test the obtained mathematical results numerically by a
proper numerical scheme built using the Caputo fractional-derivative operator and
the trapezoidal product-integration rule.

Keywords: Predator–prey model; Generalized functional response; Predator
competition; Fractional calculus; Sensitivity analysis

0 Highlights
• A fractional-order predator–prey system is proposed.
• The local behavior of the solution is studied.
• An efficient numerical scheme is used for investigating the solution of the fractional

system.
• Some graphical representations with their biological interpretations are provided.
• The numerical method also works to solve other similar problems in mathematical

biology.

1 Introduction
Mathematical modeling of the real-world phenomenon is a potent tool for predicting
some ecological and biological components. The validity of this mathematical approxi-
mation depends on the model itself. The crucial component that describes the interaction
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between different species in a certain environment is the interaction functional. There are
many types of these functionals in the literature. Each one describes a specific manner of
intermingling between two species. More precisely, let us assume that x(t) and y(t) are
the densities of the prey and predator populations at the time t, respectively. One of the
first interaction functionals is the Holling I interaction functional ax(t)y(t), where a is the
hunting (predation) rate of the prey population by a predator. This functional response is
one of the most used tools in the literature. For instance, we refer to [27, 29–38, 42, 43, 49–
51]. The issue with this interaction functional is the unboundedness of the consumption
of the prey by a predator, which is inconsistent with the actual conditions in nature. To fix
this defect, Holling [26] constructed the saturated functional response ax(t)y(t)

1+athx(t) , where th

is the average handling time of prey by a predator. This functional resolves the unbound-
edness of the prey consumption by a predator. There are many other functional responses
in the literature. In each case a specific manner on the intermingling between two species
has been assumed.

The following items are some related examples:
• Holling III interaction functional a(x(t))2y(t)

1+ath(x(t))2 [30].

• Generalized Holling III interaction functional a(x(t))2y(t)
1+bx(t)+c(x(t))2 [32].

• Beddington–DeAngelis interaction functional ax(t)y(t)
1+bx(t)+cy(t) [28].

• Ratio-dependent interaction functional ax(t)y(t)
x(t)+y(t) [42, 55].

• Hassel–Varley interaction functional ax(t)y(t)
1+bx(t)+cy(t) [6].

Here all the parameters are assumed to be positive. The reason for this great diversity in
functionals is due to the variety of environmental conditions in the problem. Some of the
factors that influence the selection of these parameters are the behavior of the prey and
predator, and the studied area. For the last factor, many components play a crucial role
such as rivers (water availability), food (for the prey), and the density of prey and predator.
Overall, the functional selection depends on many factors.

The predator–prey models with three species have been attracted many researchers.
In the environment the intermingling is not limited to just two populations, but inter-
actions can be defined between more than two species in one single place. The scien-
tists interested in this point of view have put efforts to model such complex interactions
in the last few decades. We can take as an example two types of prey and one predator
[15], where the predator has the capability of hunting both prey populations. Moreover,
in prey–predator–superpredator models [35] the predator feeds the prey only, and the
superpredator feeds both prey and predator. In some models, we study the interaction be-
tween two predators and one prey model where two types of predators are fed the same
prey. Due to the intrinsic nature of the predators, there will always be a constant strug-
gle to capture this one prey. In real situations, it is seen that one predator determines its
own hunting territory. The presence of other predators in such territories is entirely unac-
ceptable. This situation is called competition. The models in which competition is found
have also received much attention in many research papers such as [2, 38]. In this paper,
we are interested in studying the intermingling and competition between two competitive
predators on one prey with a generalized class of interaction functionals in the presence
of the time-fractional derivative. In [14], it is highlighted that the fractional-time deriva-
tive explains the memory effect of a dynamical system, where the order of the derivative
is called the memory rate, and the kernel of the factional derivative is called the memory
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function. This point of view has been applied in many disciplines such as mathematics, en-
gineering, signal proceeding, mechanics, and especially in mathematical biology [12, 20–
24, 39–41, 44]. By summarizing all the previously mentioned components let us focus on
the following time-fractional formulation with a generalized consumption functional:

⎧
⎪⎪⎨

⎪⎪⎩

dεx
dtε = rx(1 – x

k ) – f (x)y – g(x)z,
dεy
dtε = e1f (x)y – μ1y – βyz,
dεz
dtε = e2g(x)z – μ2z – γ yz,

(1)

where dδ

dtε represents Caputo’s derivative in terms of time, which is defined by

dεϕ(t)
dtε =

1
�(m – ε)

∫ t

0

ϕm(s)
(t – s)ε+s–i ds, m – 1 < ε < m, m ∈ N.

The conditions on the functionals f and g are defined as
(A1) f (0) = 0, g(0) = 0,
(A2) f ′(x) > 0, g ′(x) > 0 for x > 0.

In model (1), x(t), y(t), and z(t) are the densities of prey, first predator, and other preda-
tor populations at time t, respectively. We assume that the prey population reproduces
logistically with the increasing rate r and the carrying capacity of the space k, e1 and e2

are respectively the conversion rate of the prey biomass into the first predator population
and the diversion of the prey biomass into the second predator biomass, μ1 and μ2 are
the mortality rates of the first and second predators, respectively, β (resp., γ ) is the com-
petition rate of the first predator with the second one (resp., of the second predator with
the first one). The functionals f and g are respectively the interaction functionals for the
first and second predator populations with the prey population. In the literature, there are
a few papers that deal with a generalization of an interaction functional in a three-species
model; we refer, for instance, to [29, 37, 45, 49–51], which give an additional motivation to
our research. Furthermore, it is been also applied in understanding some epidemiological
interactions; we refer, for example, to [3, 4, 16, 17, 31, 36, 46–48]. In nature the interaction
between animals is affected by many factors, such as the weather, animal nature, environ-
mental structure, natural resources (water, food), which can affect the interaction between
the three studied populations. Hence it is wise to consider a wide class of interaction func-
tionals, which provides a wide choice of applications of the obtained results in predicting
the evolution of the species. For more reading about some recent methods of modeling
ecological interactions, we refer the readers to [52, 53]. The applicability of model (1) is
an additional motivation for us to present this paper. There are many functionals com-
patible with conditions (A1) and (A2), including Holling I–III interaction functional. Also,
numerous other functionals fit with these functionals (we consider only the functional f ,
and the same can be assumed for the functional g):

• f (x) = a
√

x [1],
• f (x) = a

√
x

1+ath
√

x [5],
• f (x) = axα (0 < α < 1) [54],
• f (x) = ax

1+b
√

x+cx [8],
• f (x) = axα

1+athxα [9].
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This demonstrates the broad class of interaction functionality that we can consider in this
study. For further details, e see [7, 10, 11, 13]. Based on the above-mentioned mathematical
and biological backgrounds, the paper is structured as follows:

• In Sect. 2, we offer some tools that will be useful in dealing with the fractional
operator.

• Sect. 3 is devoted to the mathematical investigation of model (1), where the
asymptotic behavior of the solutions is investigated.

• Sect. 4 offers a numerical scheme for the fractional system (1). The graphical
representations of the solution for different parameters are also involved.

• The concluding section of the paper is intended to highlight the biological meanings
of the acquired numerical results.

2 Mathematical analysis and asymptotic behavior of the solution
2.1 Equilibria of the model
In this subsection, we determine the local behavior of system (1). First, we determine the
equilibria of system (1), which are the solutions of the following system:

0 = rx
(

1 –
x
k

)

– f (x)y – g(x)z,

0 = e1f (x)y – μ1y – βyz,

0 = e2g(x)z – μ2z – γ yz.

(2)

As a first remark, we deduce that system (2) has the following particular cases:
(i) O = (0, 0, 0), which represents the extinction of the three populations.

(ii) �0 = (k, 0, 0), which implies the extinction of two types of predators. The point is
called the predator-free equilibrium (PFE).

(iii) Searching for the first predator-free equilibrium (FPFE) as �1 = (x1, 0, z1), we insert
y = 0. By replacing this result in the third equation of system (2) we get x1 = g–1( μ2

e2
),

where g–1 is the reciprocal function of g , which exists since g is a bijective function.
Substituting this last result into the first equation of (2) yields

z1 =
rx1e2

μ2

(

1 –
x1

k

)

,

which is positive if x1 < k. Summarizing all the results, we can conclude that FPFE
�1 = (x1, 0, z1) exists if x1 < k.

(iv) Seeking for the second predator-free equilibrium (SPFE) �1 = (x2, y2, 0) by replacing
z = 0 in (2). By substituting this result into the second equation of system (2) we get
x2 = f –1( μ1

e1
), where f –1 is the inverse function of f , which exists since f is a bijective

function. Taking this last result along with the first equation of (2), we get

y2 =
rx2e1

μ1

(

1 –
x2

k

)

,

which is biologically relevant if x2 < k. Summarizing all the results, we can deduce
that SPFE �2 = (x2, y2, 0) exists if x2 < k.



Djilali and Ghanbari Advances in Difference Equations        (2021) 2021:235 Page 5 of 19

Remark 1 It is assumed that both functional f and g are increasing in x. From x2 and x1,
if limx→+∞ f (x) = a (resp., limx→+∞ g(x) = b), then another condition on the parameters
arises, μ1

e1
< a (resp., μ2

e2
< b), which is a necessary condition for having a solution for the

equation f (x) = μ1
e1

(resp., g(x) = μ2
e2

). This feature can be seen in the Holling II–III interac-
tion functional.

(v) Now we are in a position to seek the coexistence equilibrium, which is the positive
solution of the following system:

0 = rx
(

1 –
x
k

)

– f (x)y – g(x)z,

0 = e1f (x) – μ1 – βz,

0 = e2g(x) – μ2 – γ y.

(3)

From e2g(x) – μ2 – γ y = 0 we obtain

y =
e2

γ
g(x) –

μ2

γ
. (4)

Moreover, from e1f (x) – μ1 – βz = 0 we find that

z =
e1

β
f (x) –

μ1

β
. (5)

Substituting (4) and (5) into the first equation of (3), we get F1(x) = F2(x), where

F1(x) = rx
(

1 –
x
k

)

, F2(x) = f (x)g(x)
(

e2

γ
+

e1

β

)

–
(

μ2

γ
f (x) +

μ1

β
g(x)

)

.

Some straightforward calculations suggest that

F1(0) = F1(k) = 0, F1(x) =

⎧
⎨

⎩

> 0 for x < k
2 ,

< 0 for x > k
2 .

To guarantee at least one nontrivial intersection between two curves of the
functionals F1 and F2, we introduce the following assumption:

F1(x̃) > F2(x̃), F2(k) > 0 with x̃ = max{x1, x2},

which it can be rewritten as

(H1) : x̃ < k, e2 > e∗
2 :=

f (k)g(k)( e2
γ

+ e1
β

) – ( μ2
γ

f (k) + μ1
β

g(k))
βf (k)g(k)

– e1γ ,

r > rE :=
k[f (x̃)g(x̃)( e2

γ
+ e1

β
) – ( μ2

γ
f (x̃) + μ1

β
g(x̃))]

x̃(k – x̃)
.

Under condition (H1), we get the existence of at least one nonnegative solution of
system (3).
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Remark 2
(i) If x̃ > k, then system (3) has no solution.

(ii) The condition F1(x̃) > F2(x̃) came from the fact that F ′
1(0) = –( μ2

γ
f (0) + μ1

β
g(0)) < 0

(thus we can have F ′
1(υ) < 0 for υ sufficiently small).

2.2 Asymptotic behavior of (1)
In this part, we are interested in determining the asymptotic stability of the equilibria
obtained in the previous section.

Remark 3 Consider the following fractional-order system:

dεU
dtε = 
U(t) + ϕ(U), U(0) = U0 ∈R

i, (6)

where ε ∈ (0, 1), A ∈R
i×i, and ϕ ∈ C1(Ri,Ri) with Dϕ(0) = 0. For the time-fractional-order

derivative, the concept of the local stability is very different from the first-order derivative,
where in this case, we have an expansion of the stability region in comparison with the
first-order derivative.

Let (x, y, z) be an equilibrium for system (1). The Jacobian matrix of system (1) at (x, y, z)
is expressed as

J(x, y, z) =

⎛

⎜
⎝

rx(1 – 2x
k ) – f ′(x)y – g ′(x)z –f (x) –g(x)

e1f ′(x)y e1f (x) – μ1 – βz –βy
e2g ′(x)z –γ z e2g(x) – μ2 – γ y

⎞

⎟
⎠ , (7)

At the predator-free equilibrium the Jacobian matrix (7) reduces into

J(k, 0, 0) =

⎛

⎜
⎝

–r –f (k) –g(k)
0 e1f (k) – μ1 0
0 0 e2g(k) – μ2

⎞

⎟
⎠ . (8)

The Jacobian matrix (8) has the eigenvalues ϑ1 = –r < 0, ϑ2 = e1f (k) – μ1, and ϑ3 = e2g(k) –
μ2. Hence

ϑ2 =

⎧
⎨

⎩

< 0 for k < x2,

> 0 for k > x2,

and

ϑ3 =

⎧
⎨

⎩

< 0 for k < x1,

> 0 for k > x1,

which means that the eigenvalues ϑi, i = 1, 2, 3, satisfy | arg(ϑi)| > επ
2 if and only if x < x̄ :=

min{x1, x2}; in this case the predator-free equilibrium is locally stable, and it is unstable for
x > x̄. We summarize the obtained results in the following lemma.

Lemma 1 The predator-free equilibrium is locally stable if x < x̄ and unstable if x > x̄.
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Now we analyze the linear stability of FPFE point of �1. The Jacobian matrix correspond-
ing to the equilibrium FPFE is evaluated as

J(x, y, z) =

⎛

⎜
⎝

rx1(1 – 2x1
k ) – g ′(x1)z1 –f (x1) –g(x1)

0 e1f (x1) – μ1 – βz1 0
e2g ′(x1)z1 –γ z1 0

⎞

⎟
⎠ . (9)

As a first look, we can deduce that ϑ2 = e1f (x1) – μ1 – βz1 is an eigenvalue of the Jacobian
matrix (9). By replacing the explicit formula of z1 we obtain ϑ2 = e1f (x1) – μ1 – βrx1e2

μ2
(1 –

x1
k ). Obviously, if e1f (x1) – μ1 < 0 (equivalent to x1 < x2), then | arg(ϑ2)| > επ

2 . Now we pre-
sume that if e1f (x1) – μ1 > 0 (equivalent to x1 > x2), then

ϑ2 =

⎧
⎨

⎩

> 0 for r < r1 := kμ2(e1f (x1)–μ1)
βx1e2(k–x1) ,

< 0 for r > r1.

Under the condition ϑ2 > 0, we get | arg(ϑ2)| < επ
2 . This means that FPFE is an unstable

equilibrium point. Besides, from ϑ2 > 0 we conclude that | arg(ϑ2)| < επ
2 . This means that

two remaining eigenvalues of the Jacobian matrix (9) determine the stability (resp., insta-
bility) of this equilibrium. Note that these significant eigenvalues are the eigenvalues of
the matrix

J̃ =

(
rx1(1 – 2x1

k ) – g ′(x1)z1 –g(x1)
e2g ′(x1)z1 0

)

. (10)

To determine the nature of the eigenvalues of the reduced matrix (10), we define the char-
acteristic equation of (10) as

ϑ2 – 
̃1ϑ + 
̃2 = 0, (11)

where


̃1 = rx2

(

1 –
2x2

k

)

– f ′(x2)y2

= r
[

–(1 + A) +
x1

k
A

]

,


2 = e2g ′(x1)g(x1)z1 > 0

= re2g ′(x1)x1

(

1 –
x1

k

)

> 0,

where A = –2 + g′(x1)x1e2
μ2

. To determine the sign of 
1, the following results arise.

Lemma 2 Assuming x1 < k, we obtain the following results:
(i) 
1 ≤ 0 if (–1 ≤ A ≤ 0) or (A > 0 and k ≤ k1 := Ax1

1+A ) or (A < –1 and k ≤ k1).
(ii) 
1 > 0 if (A > 0 and k < k1) or (A < –1 and k > k1).

Proof The proof can be easily deduced from the explicit formula of 
. �
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From Lemma 2, we can see that 
1 ≤ 0 next to 
2 > 0 gives | arg{ϑ1,2}| > επ
2 , which means

that this equilibrium is stable. Now assume that 
1 > 0 (which means that the second
assumption of Lemma 2 holds). In this situation, (11) admits two complex roots of ϑ± =
a1 ± a2i, a1, a2 ∈R. Then these roots satisfy

tan2(arg{ϑi}
)

=
4a2

a2
1

– 1 =
e2g ′(x1)x1(1 – x1

k )
r(–(1 + A) + x1

k A)2 – 1, i = 1, 2.

To guarantee the stability of the equilibrium, we must have tan2(arg{ϑi}) > tan2( επ
2 ), i = 1, 2,

which implies that

r < r∗ :=
4g ′(x1)x1e2(k – x1)

k(1 + tan2( επ
2 ))(–(1 + A) + x1

k A)2 .

Obviously, it is unstable for r > r∗. Hence we resume the stability conditions for the equi-
librium (x1, 0, z1) by the following theorem.

Theorem 1 If x1 < k, then we have:
(i) If x1 > x2 and r < r1, then the FPFE is unstable.

(ii) For (x1 < x2 or (x1 > x2 and r > r1)), under condition (i) in Lemma 2, we get the local
stability of FPFE.

(iii) (x1 < x2 or (x1 > x2 and r > r1)), condition (ii) in Lemma 2, and r < r∗ give the local
stability of FPFE.

(vi) (x1 < x2 or (x1 > x2 and r > r1)), condition (ii) in Lemma 2, and r > r∗ imply that
FPFE is unstable.

To study the stability of the SPFE of �2, we construct the Jacobian matrix

J(x2, y2, 0) =

⎛

⎜
⎝

rx2(1 – 2x2
k ) – f ′(x2)y2 –f (x2) –g(x2)

e1f ′(x2)y2 0 –βy2

0 0 e2g(x2) – μ2 – γ y2

⎞

⎟
⎠ . (12)

Obviously, ϑ3 = e2g(x) – μ2 – γ y2 is an eigenvalue of the Jacobian matrix (12). Replacing
y2 = rx2e1

μ1
(1 – x2

k ) in ϑ3, we obtain ϑ3 = e2g(x2) – μ2 – γ rx2e1
μ1

(1 – x2
k ). Obviously, if e2g(x2) –

μ2 < 0 (equivalent to x1 > x2), then | arg(ϑ3)| > επ
2 . Now we suppose that e2g(x2) – μ2 > 0

(equivalent to x1 < x2). Then

ϑ3 =

⎧
⎨

⎩

> 0 for r < r2 := kμ1(e2g(x2)–μ2)
γ x2e1(k–x2) ,

< 0 for r > r2.

For ϑ3 > 0, we obtain | arg(ϑ3)| < επ
2 , which means that SPFE is unstable. In fact, for ϑ3 > 0,

we get | arg(ϑ3)| < επ
2 . This means that the other two eigenvalues of the Jacobian matrix

(12) determine the stability (resp., instability) of this equilibrium. These eigenvalues are
the eigenvalues of the matrix

J̄ =

(
rx2(1 – 2x2

k ) – f ′(x2)y2 –f (x2)
e1f ′(x2)y2 0

)

. (13)
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The nature of the eigenvalues of the reduced matrix (13) can be determined through the
quadratic equation

ϑ2 – 
1ϑ + 
2 = 0, (14)

where


1 = rx1

(

1 –
2x2

k

)

– f ′(x2)y2

= r
[

B –
xk

k
(1 + B)

]

,


2 = e1f ′(x2)f (x2)y2 > 0

= re1f ′(x2)x2

(

1 –
x2

k

)

> 0,

where B = 1 – f ′(x2)x2e2
μ1

.
To prove the positivity of 
1, we use the following lemma.

Lemma 3 Let x2 < k. Then:
(i) 
1 ≤ 0 if (–1 ≤ B ≤ 0) or (B > 0 and k ≤ k2 := 1+B

Bx1
) or (B < –1 and k ≥ k1).

(ii) 
1 > 0 if (A > 0 and k > k2) or (A < –1 and k < k2).

Proof Form the explicit formula of 
 we can determine its positivity. The proof is com-
pleted. �

From Lemma 2, we can see that 
1 ≤ 0 and 
2 > 0 lead to | arg{ϑ1,2}| > επ
2 , and hence

the SPFE is stable. Now assume that 
1 > 0 (which means that the second assumption of
Lemma 3 holds). In this case, equation (14) has complex roots ϑ± = b1 ± b2, b1b2 ∈ R.
Then we get

tan2(arg{ϑi}
)

=
4b2

b2
1

– 1 =
e1f ′(x2)x2(1 – x2

k )
r(B – x1

k (1 + B))2 – 1, i = 1, 2.

To ensure the stability of SPFE, we must have tan2(arg{ϑi}) > tan2( επ
2 ), i = 1, 2, which im-

plies that

r < r∗∗ :=
4f ′(x2)x2e1(k – x2)

k(1 + tan2( επ
2 ))(B + x2

k B)2 , (15)

and it is unstable for r > r∗∗. We summarize the obtained results in the following theorem.

Theorem 2 Let x2 < k. Then:
(i) If x1 < x2 and r < r2, then the SPFE is unstable.

(ii) If ((x1 > x2) or (x1 < x2 and r > r2)) and condition (i) in Theorem 1 is satisfied, then
the SPFE is stable.

(iii) ((x1 > x2) or (x1 < x2 and r > r2)), condition (ii) in Theorem 1, and r < r∗∗ imply that
the SPFE is stable.
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(vi) ((x1 > x2) or (x1 < x2 and r > r2)), condition (ii) in Theorem 1, and r > r∗∗ imply that
the SPFE is unstable.

Now we are in a position to focus on studying the local behavior of the coexistence
equilibrium. For this equilibrium, we suppose that assumption (H1) holds. The Jacobian
matrix at this equilibrium is expressed as

J
(
x∗, y∗, z∗) =

⎛

⎜
⎝

rx∗(1 – 2x∗
k ) – f ′(x∗)y∗ – g ′(x∗)z∗ –f (x∗) –g(x∗)

e1f ′(x∗)y∗ 0 –βy∗

e2g ′(x∗)z∗ –γ z∗ 0

⎞

⎟
⎠ , (16)

The characteristic equation associated with Jacobian (16) is

� = ϑ3 + �2ϑ
2 + �1ϑ + �0,

where

�2 = rx∗
(

1 –
2x∗

k

)

– f ′(x∗)y∗ – g ′(x∗)z∗,

�1 = e1f ′(x∗)g ′(x∗)z∗y∗ + e2g
(
x∗)g ′(x∗)z∗ – βγ z∗y∗,

�0 = –e2βg ′(x∗)f
(
x∗)y∗z∗ + γβy∗z∗

[

rx∗
(

1 –
2x∗

k

)

– f ′(x∗)y∗ – g ′(x∗)z∗
]

– e1γ z∗y∗f ′(x∗)g
(
x∗).

Let

D = 18�2�1�0 + (�2�1)2 – 4�0�
3
2 – 4�3

1 – 27�3
0.

Using the Routh–Hurwitz stability criterion for fractional calculus defined in [19], we get
the stability conditions for the nontrivial equilibrium.

Theorem 3 The positive equilibrium is stable if one of the following assumptions holds:
(i) D > 0, �2 > 0, �0 > 0, �2�1 > �0.

(ii) D < 0, �2 ≥ 0, �1 ≥ 0, �0 ≥ 0, and ε < 2
3 .

3 Numerical analysis of system (1)
3.1 A numerical scheme
The main purpose of this section is to numerically solve the following fractal problem:

dδV
dtε = P

(
t, V (t)

)
. (17)

By applying the fundamental theorem of fractional calculus on (1) we get

V (t) – V (0) =
1

�(ε)

∫ t

0
P
(
ω, V (ω)

)
(t – ω)ε–1 dω. (18)



Djilali and Ghanbari Advances in Difference Equations        (2021) 2021:235 Page 11 of 19

Letting t = tn = n� in (18), we arrive at

V (tn) = V (0) +
1

�(ε)

n–1∑

i=0

∫ ti+1

ti

P
(
ω, V (ω)

)
(tn – ω)ε–1 dω. (19)

Now we can approximate the function P(t, V (t)) by the following linear approximation:

P
(
t, U(t)

) ≈ P(ti+1, Vi+1) +
t – ti+1

�

(
P(ti+1, Vi+1)

)
– P(ti, Vi)), t ∈ [ti, ti+1], (20)

with the notation Vi = V (ti).
By substituting Eq. (20) into (19) and applying some algebra (for more detail, see [18])

we get

Vn = V0 + �
δ

(

�nP(t0, V0) +
n∑

i=1

�n–iP(ti, Vi)

)

(21)

with

�n =
(n – 1)ε+1 – nε(n – ε – 1)

�(ε + 2)
,

�n =

⎧
⎨

⎩

1
�(ε+2) , n = 0,
(n–1)ε–2nε+(1+n)ε

�(+2) , n = 1, 2, . . . .

Using the numerical method presented in formula (21) to solve problem (1), we obtain the
following iterative schemes:

xn = x0 + �
δ

(

�nP1(x0, y0, z0) +
n∑

i=1

�n–iP1(xi, yi, zi)

)

,

yn = y0 + �
δ

(

�nP2(x0, y0, z0) +
n∑

i=1

�n–iP2(xi, yi, zi)

)

,

zn = z0 + �
δ

(

�nP3(x0, y0, z0) +
n∑

i=1

�n–iP3(xi, yi, zi)

)

,

where

P1(x, y, z) = rx
(

1 –
x
k

)

– f (x)y – g(x)z,

P2(x, y, z) = e1f (x)y – μ1y – βyz,

P3(x, y, z) = e2g(x)z – μ2z – γ yz.

3.2 Applications and graphical representations
3.2.1 Example 1
In this section, we numerically investigate system (1) to ensure the obtained results in the
previous sections. First, we choose the functional f to be a Holling II interaction functional
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Figure 1 The local stability of the equilibrium �2 = (0.0497, 0.0346, 0)

Figure 2 The local stability of the equilibrium �1 = (2.01, 0, 0.8)

f (x) = ax
1+athx . Then f –1(x) = x

a(1–thx) , and based on Remark 3.1 for the existence of x2, we
must have μ1

e1
< 1

th
, and the functional g to be a Holling I interaction functional.

Figure 1 We consider the following parameters:

r = 0.5, k = 10.5, a = 1, b = 0.5, e1 = 0.5, e2 = 0.5,

μ1 = 0.5, μ2 = 0.5, β = 0.5,

γ = 0.5, th = 0.5, x(0) = 0.04, y(0) = 0.01, z(0) = 0.01.

For these values, we obtain the local stability of FPFE. Indeed, these values satisfy x1 =
x2 and 
1 = –1.309 < 0 (condition (i) in Lemma 2), which means that condition (ii) in
Theorem 2 holds.

Figure 2 We consider the following parameters:

r = 0.15, k = 10.5, a = 5, b = 1, e1 = 0.7, e2 = 0.5,

μ1 = 0.15, μ2 = 0.15, β = 0.35, γ = 0.75, th = 0.65, ε = 0.9.

For these values, we get the local stability of the SPFE �2 = (0.0497, 0.0346, 0). More pre-
cisely, these values satisfy r < r1 = 1.12, which means that �1 = (0.3, 0, 0.145) is unstable
and satisfy the second condition of Theorem 3 (x1 > x2 and �1 = 0.148 > 0), which means
that the SPFE is stable.
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Figure 3 The instability of the equilibrium �1 = (2.01, 0, 0.8)

Figure 4 The memory effect on the stability of the SPFE

Figure 3 We set the following values of parameters:

r = 0.15, k = 10.5, a = 5, b = 1, e1 = 0.7, e2 = 0.5,

μ1 = 0.15, μ2 = 0.15, β = 0.35, γ = 0.75, th = 0.65, ε = 0.9.

Figure 4 We consider

r = 3.05, k = 10.5, a = 0.5, b = 0.1, e1 = 0.7, e2 = 0.6,

μ1 = 0.15, μ2 = 0.15, β = 0.35, γ = 0.75, th = 0.65,

and multivalues of the memory rate. In this example, we realize the effect of the memory
on the stability of SPFE. More precisely, this figure highlights that the memory has a huge
influence on the condition of the stability obtained in (15), which shows a great agreement
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between the theoretical findings and numerical ones, and thus we conclude the efficiency
of the obtained numerical method.

3.2.2 Example 2
In this example, we consider another behavior of the prey population known by herd be-
havior (see [1, 34, 56]). In fact, we consider the functionals f (x) = axα and g(x) = bxα , where
0 < α < 1 represents the herd shape rate. Thus f –1(x) = ( x

a ) 1
α and g–1(x) = ( x

b ) 1
α . For the

graphical representations, we take the following values of parameters.
Figure 5 In this figure, we consider the values

r = 3.05, k = 10.5, a = 0.5, b = 0.1, e1 = 0.7, e2 = 0.6,

μ1 = 0.15, μ2 = 0.15, β = 0.35, γ = 0.75, ε = 0.9, α = 0.95.

These values provide the local stability of the SPFE.
Figure 6 We considered the same values as in Fig. 5, except α = 0.8. This leads to the

instability of the SPFE and the occurrence of oscillations of the solution.
Figure 7 In this figure, we have taken

r = 1.05, k = 7.5, a = 0.2, b = 0.5, e1 = 0.7, e2 = 0.7,

μ1 = 0.15, μ2 = 0.15, β = 0.75, γ = 0.75, ε = 0.9, α = 0.8.

Figure 5 The local stability of the equilibrium �2 = (0.41, 5.6, 0)

Figure 6 The local stability of the equilibrium �2 = (0.40, 5.58, 0)
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Figure 7 The local stability of the equilibrium FPFE

Figure 8 The existence of oscillation generated by the instability of SPFE

These values provide the instability of the FPFE.
Figure 8 In this figure, we consider the following choices:

r = 1.5, k = 10.5, a = 1.5, b = 0.5, e1 = 0.5, e2 = 0.5,

μ1 = 0.5, μ2 = 0.5, β = 0.5, γ = 0.5, ε = 0.9, α = 0.7.

These values provide the instability of the SPFE.
Figure 9 We consider the values

r = 1.5, k = 10.5, a = 1.5, b = 0.5, e1 = 0.5, e2 = 0.5,

μ1 = 0.5, μ2 = 0.5, β = 0.5, γ = 0.5, α = 0.7

For these values, we have studied the effect of the memory rate on the stability of the SPFE.
Figure 10 The following values are used in numerical simulations

r = 5.5, k = 3.5, a = 0.5, b = 1.5, e1 = 0.5, e2 = 0.5,

μ1 = 0.5, μ2 = 0.5, β = 0.5, γ = 0.5, α = 0.7.

Using these values, we can investigate the effect of the memory rate on the stability of the
FPFE.
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Figure 9 The influence of the memory rate on the stability of the SPFE �2 = (0.56, 0.79, 0)

Figure 10 The influence of the memory rate on the stability of the SPFE �2 = (0.56, 0.79, 0)

4 Conclusions
In this research, we studied an ecological model with two predators fighting on one prey
with a generalized functional response. The reason behind considering a comprehensive
generalized class of functional interaction is to model the diversity in predator–prey in-
teraction with the environment. These interactions can be affected by many factors, such
as the environment and the adaptation of the three species. In the first section, we studied
the existence of the equilibria of system (1), where we can have many equilibrium points
next to the predator-free equilibrium. By analyzing the existence of the equilibria we ob-
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tained that these populations may have many scenarios. They include the extinction of
three populations, two types of predators, the extinction of each population of predators,
and finally the coexistence of the three populations. For the coexistence stage, we pro-
vided some conditions on the model parameters for the existence of this equilibrium. To
determine which scenario will prevail, we have utilized the local asymptotic stability us-
ing the Jacobian matrix. Further, we proposed a numerical scheme to find an approximate
solution of the fractional-derivative system (1), which is based on the trapezoidal product-
integration rule. For the application part, we have utilized two examples. The first example
models the interaction of the three populations in the case of the solitary behavior for the
prey population. We obtained an excellent agreement between the mathematical results
and graphical representation, which proves the accuracy of the obtained approximations
by proposed iterative schemes. In fact, in the case of the extinction of the second predator,
two sceneries may happen. The first case is to stabilize on the SPFE as it has been high-
lighted in Fig. 1 for the prey solitary behavior (PSB) of the prey population. Moreover,
Fig. 5 displays the case of the prey herd behavior (PHB). The second case corresponds to
the instability of the SPFE and the presence of oscillations. The numerical simulations for
this case have been plotted in Fig. 7, and also Fig. 8 for PHB. The same remark is obtained
for the extinction of the first predator population, presented in Figs. 2, 3, 7, in different
cases (the stability and instability of SPFE). Furthermore, the effect of the memory rate
measured by the time-fractional derivative order ε is established numerically in Figs. 4,
9, 10. In these figures, we proved that the memory rate can destabilize the equilibrium
states, which demonstrates the importance of considering it in the model construction,
where in the real-world, the influence of the time-fractional-order derivative can repre-
sent the influence of these two populations on the hunting. Further, we can highlight that
system (1) undergoes Hopf bifurcation at FPFE and SPFE at r = r∗ for FPFE. Moreover, at
r = r∗∗ system undergoes Hopf bifurcation for FPFE. The oscillatory behaviors generated
by these equilibria are presented in Figs. 3, 4, 6, 7, 8, 9. For more detail about the proof, we
refer to the readers to [25]. Based on the obtained results in this contribution, the diversity
of the ecological systems can be measured by the choice of the functional response.
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