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Abstract
This paper deals with the generalized q-theory of the q-Mellin transform and its
certain properties in a set of q-generalized functions. Some related q-equivalence
relations, q-quotients of sequences, q-convergence definitions, and q-delta
sequences are represented. Along with that, a new q-convolution theorem of the
estimated operator is obtained on the generalized context of q-Boehmians. On top of
that, several results and q-Mellin spaces of q-Boehmians are discussed. Furthermore,
certain continuous q-embeddings and an inversion formula are also discussed.

MSC: Primary 54C40; 14E20; secondary 46E25; 20C20

Keywords: q-delta sequences; q-Mellin; q-convolution; q-calculus; q-Boehmian

1 Introduction and preliminaries
The quantum calculus or the q-calculus theory has been given a noticeable importance
and popularity due to its wide application in various fields of mathematics, statistics, and
physics [1]. The q-calculus theory has appeared as a connection between mathematics
and physics. Recently, this topic has attracted the attention of several researchers, and a
variety of results have been derived in various areas of research including number theory,
hypergeometric functions, orthogonal polynomials, quantum theory, combinatorics, and
electronics as well. The q-calculus begins with the definition of the q-analogue dqg of the
differential

dqg(t) = g(qt) – g(t)

of the function g , where q is a fixed real number such that 0 < q < 1 (see [1–3]). Having
said this, we immediately get the q-analogue of the derivative of g as

Dqg(t) :=
dqg(t)

dqt
:=

g(t) – g(qt)
(1 – q)t

for t �= 0

and Dqg(0) = limt−→0 Dqg(t) = g ′(0) provided g ′(0) exists. Also, when g is differentiable, the
q-derivative Dqg tends to g ′(0) as q tends to 1. It also satisfies the q-analogue of the Leibniz
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rule

Dq
(
g1(t)g(t)

)
= g(t)Dqg1(t) + g1(qt)Dqg(t).

The Jackson q-integrals from 0 to x and respectively from 0 to ∞ are defined by [1, 4]

∫ x

0
g(t) dqt = (1 – q)t

∞∑

0

g
(
tqk)qk , (1)

∫ ∞

0
g(t) dqt = (1 – q)t

∞∑

–∞
g
(
qk)qk , (2)

when the sums converge absolutely. The Jackson q-integral on the generic interval [a, b]
is, therefore, given by [1, 5]

∫ b

a
g(t) dqt =

∫ b

0
g(t) dqt –

∫ a

0
g(t) dqt.

The q-integration by parts for two functions f and g is defined by

∫ b

0
g2(t)Dqg1(t) dqt = g1(b)g2(b) – g1(a)g2(a) –

∫ b

a
g1(qt)Dqg2(t) dqt.

Arising from the notion of regular operators [6], the notion of a Boehmian was firstly intro-
duced by Mikusinski and Mikusinski [7] to generalize distributions and regular operators
[8]. Boehmians are equivalence classes of quotients of sequences constructed from an in-
tegral domain when the operations are interpreted as addition and convolution, see, e.g.,
[9–20]. In terms of the q-calculus concept, we introduce the concept of q-Boehmians to
popularize the concept of q-calculus theory as follows:

For a complex linear space V and a subspace (W ,∗q) of V , let
q• : V ×W → V be a binary

operation such that the undermentioned axioms (1)–(5) hold:
(1) (g1 + g2)

q• ψ = g1
q• ψ + g2

q• ψ ,∀g1, g2 ∈ V and ψ ∈ W .
(2) (αg)

q• ψ = α(g
q• ψ),∀α ∈C,∀g ∈ V and ψ ∈ W .

(3) g
q• (ψ1

q• ψ2) = (g
q• ψ1)

q• ψ2,∀g ∈ V and ψ1,ψ2 ∈ W .
(4)

If gn → g in V as n → ∞ and ψ ∈ W ,

then gn
q• ψ → g

q• ψ as n → ∞ in V . (3)

(5) A collection �q of sequences from W such that, for all (εn), (φn) ∈ �q and (gn) ∈ W ,
we have εn

q• φn ∈ �q and

if gn → g in V as n → ∞, then gn
q• εn → g as n → ∞.

Once the preceding axioms are applied, the name of a q-Boehmian is set to mean the
equivalence class gn

δn
that arises from the equivalence relation

gn
q• εm = gm

q• εn, ∀m, n ∈N, (4)
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where (gn) ∈ V and (εn) ∈ �q. The collection of all q-Boehmians is denoted by Bq which is
the so-called Boehmian space. The classical linear space V is identified as a subset of the
space Bq which can be recognized from the relation

g −→ g
q• εn

εn
, (5)

where (εn) ∈ �q is arbitrary. Two q-Boehmians gn
εn

and ϕn
εn

are said to be equal in Bq if

gn
q• εm = ϕm

q• εn,∀m, n ∈N. Addition in the space Bq is defined as

gn

εn
+

ϕn

εn
=

gn
q• εn + ϕn

q• εn

εn
q• εn

. (6)

The scalar multiplication in the space Bq is defined as

α
gn

εn
=

αgn

εn
, α ∈C.

The q-convergence of type δ, βn
δ→ β , is defined in the space Bq when for (ψn) ∈ �q and

each k ∈N such that

βn
q• εk ∈ V , ∀k, n ∈N,β

q• εk ∈ V , (7)

we have βn
q• εk → β

q• εk as n → ∞ in V . The q-convergence βn
�q→ β of type �q is defined

when for some (εn) ∈ �q we have

(βn – β)
q• εn ∈ V , ∀n ∈N and (βn – β)

q• εn → 0 as n → ∞ in V . (8)

The space of q-Boehmians emerging from the q-convergence assigns a complete quasi-
normed space.

In recent work, several remarkable integral transforms were given different q-analogues
in a q-calculus context [4, 21–24]. In the sequence of such q-integral transforms, we recall
the q-Laplace integral transform [25–29], the q-Sumudu integral transform [2, 30–32],
the q-Weyl fractional integral transform [33], the q-wavelet integral transform [34], the q-
Mellin type integral transform [35], the Mangontarum integral transform [36, 37], the E2;1

integral transform [38, 39], the natural integral transform [3], and many others, to mention
but a few. In this paper, we discuss the generalized q-theory of the q-Mellin transform and
obtain several results.

Let g be a function defined on Rq,+,Rq,+ = {qn : n ∈ Z}, then the q-Mellin transform was
defined by [40], p. 521 as

Mq
(
g(t)

)
(ζ ) =

∫ ∞

0
tζ–1g(t) dqt, (9)

provided the q-integral converges. The integral (9) is analytic on the fundamental strip
〈αq,g ;βq,g〉 and periodic with period 2iπ log(q). The inversion formula for the q-analogue



Al-Omari Advances in Difference Equations        (2021) 2021:233 Page 4 of 15

(9) is given by

g(t) =
log(q)

2iπ (1 – q)

∫ c+ iπ
log(q)

c– iπ
log(q)

Mq(g)(ζ )t–ζ dζ , t ∈Rq,+,

where αq,g < c < βq,g . The asymptotic properties as well as the asymptotic singularities of
the q-Mellin transform into asymptotic expansions of the original function for x → 0 and
x → ∞ are given in [40]. Additionally, the asymptotic behavior at 0 or ∞ is studied using
the q-Mellin transform.

Definition 1 The function g is said to be q-integrable on an interval [0,∞[ provided the
infinite series

∑

n∈Z
qng

(
qn)

converges absolutely. The space of all q-integrable functions on [0,∞[ is denoted by
L1

q(Rq,+). In a better recognition, the space L1
q(Rq,+) is defined to be the space of all q-

integrable functions g on Rq,+ such that

L1
qg(t) =

1
1 – q

∫ ∞

0

∣
∣g(t)

∣
∣dqt < ∞. (10)

We denote by Dq the q-space of test functions of compact supports on Rq,+, i.e., Dq is the
q-space of all smooth functions κ ∈ C∞(Rq,+) such that

Dq =
{
κ ∈ C∞(Rq,+) : sup

0<t<∞

∣∣Dqκ(t)
∣∣ < ∞

}
. (11)

However, this theory is new and might be developing a new area of research. It inves-
tigates a generalization to the q-theory of calculus [40] and hence all results can be pop-
ularized. Every element in the space L1

q(Rq,+) is identified as a member in the generalized
theory. To this aim, we spread our results into five sections. In Sect. 1, we recall some
definitions and preliminaries from the q-calculus theory. In Sect. 2, we derive q-delta se-
quences, q-convolution theorems and establish a space of q-Boehmians. In Sect. 3, we
establish a space of q-ultraBoehmians. In Sect. 4, we generalize definitions and obtain
several properties of the q-Mellin transform. In Sect. 5 we include several results.

2 The space B

In this section, we strive to establish the space B of q-Boehmians. Henceforth, we denote
by �q the set of all sequences from Dq such that the undermentioned identities �1

q – �3
q

hold, where

�1
q :

∫ ∞

0

∣∣εn(t)
∣∣dqt = 1, ∀n ∈N,

�2
q :

∣∣εn(t)
∣∣ < M, M > 0, M ∈ R+,

�3
q : supp(εn) ⊆ (0, bn), bn → 0 as n → ∞, 0 < bn,∀n ∈N.

(12)
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On the other hand, we denote by
q• the Mellin type q-convolution product defined on

L1
q(Rq,+) by

(g1
q• g2)(x) =

∫ ∞

0
t–1g1

(
t–1x

)
g2(t) dqt, (13)

provided the integral part exists for every x > 0. It is clear from the context that g1
q• g2 ∈

L1
q(Rq,+) for all g1 and g2 in L1

q(Rq,+). On that account, the q-convolution theorem of the
q-Mellin transform of the product g1

q• g2 can be easily established as follows.

Theorem 2 Let L1
q(Rq,+) be the space of all q-integrable functions on Rq,+. Then the q-

convolution theorem of the transform Mq is given by

Mq(g1
q• g2)(ζ ) = Mqg1(ζ )Mqg2(ζ ) for g1 and g2 in L1

q(Rq,+).

Proof By applying the definition of the Mq transform to the product g1
q• g2, we get

Mq(g1
q• g2)(ζ ) =

∫ ∞

0
(g1

q• g2)(x)xζ–1 dqx

=
∫ ∞

0

(∫ ∞

0
g1(t)g2

(
t–1x

)
x–1 dqt

)
xζ–1 dqx.

Therefore, employing the substitution z = t–1x and, hence, dqz = t–1 dqx, in collaboration
with simple computations, reveals

Mq(g1
q• g2)(ζ ) = Mq(g1)(ζ )Mq(g2)(ζ ).

Hence, the proof of this theorem is completed. �

The following is an imperative result for initiating the q-delta sequence concept.

Lemma 3 Let (εn) and (εn) be sequences in �q. Then (εn
q• εn) is a sequence in �q.

Proof To establish this lemma, we examine the performance of the sequence (εn
q• εn). To

inspect the correctness of the property �1
q, we use the integral equation (3) to get

∫ ∞

0
(εn

q• εn)(x) dqx =
∫ ∞

0
t–1εn(t)

(∫ ∞

0
εn

(
t–1x

)
dqx

)
dqt. (14)

Therefore, by using the change of variables t–1x = y and, hence, dqx = t dqy, (14) we indicate

∫ ∞

0
(εn

q• εn)(x) dqx =
(∫ ∞

0
εn(t) dqt

)(∫ ∞

0
εn(y) dqy

)
= 1.

This proves the �1
q part. The proof of the �2

q part follows from similar techniques, whereas
the �3

q part is clearly valid, by conducting the fact

supp(εn
q• εn) ⊂ supp(εn) + supp(εn) for (εn), (εn) ∈ �q.

This ends the proof of the lemma. �
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Lemma 3, hence, displays that every sequence in �q forms, to a great extent, the q-delta
sequence concept.

Lemma 4 Let g1, g2 ∈ L1
q(Rq,+), κ1,κ2 ∈ Dq, and α ∈ C. Then the following assertions are

valid:

(i) κ1
q• κ2 = κ2

q• κ1, (ii) (g1 + g2)
q• κ1 = g1

q• κ1 + g2
q• κ1,

(iii) (αg1)
q• κ1 = α(g1

q• κ1), (iv) g1
q• (κ1

q• κ2) = (g1
q• κ1)

q• κ2.

Proof (i) As the convolution product of the functions κ1 and κ2 in Dq is exceptionally
given by

(κ
q• κ2)(x) =

∫ ∞

0
t–1κ1

(
t–1x

)
κ2(t) dqt, (15)

the change of variables t–1x = y reveals us to write (15) into the form

(κ1
q• κ2)(x) =

∫ ∞

0
y–1κ2

(
x–1y

)
κ1(y) dqy.

Hence (i) follows. To prove (ii) and (iii), we merely follow simple integral calculus. To prove
(iv), we employ the definition of the product

q• to get

(
g1

q• (κ1
q• κ2)

)
(x) =

∫ ∞

0
t–1g1

(
t–1x

)
(κ1

q• κ2)(t) dqt

=
∫ ∞

0
t–1g1

(
t–1x

)(∫ ∞

0
y–1κ1

(
y–1t

)
κ2(y) dqy

)
dqt.

That is,

(
g1

q• (κ1
q• κ2)

)
(x) =

∫ ∞

0
y–1

(∫ ∞

0
t–1g1

(
t–1x

)
κ1

(
y–1t

)
dqt

)
κ2(y) dqy. (16)

Now, by employing the change of variables y–1t = z, we write down equation (16) into the
form

(
g1

q• (κ1
q• κ2)

)
(x) =

∫ ∞

0
y–1

(∫ ∞

0
z–1g1

(
z–1(y–1x

))
κ1(z) dqz

)
κ2(y) dqy

=
∫ ∞

0
y–1(g1

q• κ1)
(
y–1x

)
κ2(y) dqy.

This ends the proof of the lemma. �

To proceed in our construction, we establish the following lemma.

Lemma 5 (i) Let g1 and g2 be integrable functions in L1
q(Rq,+) and (εn) be a delta sequence

in the set �q such that g1
q• εn = g2

q• εn. Then g1 = g2 in L1
q(Rq,+) for every n ∈N.
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(ii) Let g and (gn) be integrable functions in L1
q(Rq,+) such that gn → g as n → ∞ in

L1
q(Rq,+). Then

gn
q• ψ → g

q• ψ for every ψ ∈Dq as n → ∞.

Proof To prove (i), we merely need to show that g1
q• εn = g1 ∈ L1

q(Rq,+). By using �1
q and

�3
q, we obtain

∫ ∞

0

∣
∣(g1

q• εn)(x) – g1(x)
∣
∣dqx ≤

∫ ∞

0

∫ ∞

0

∣
∣t–1g1

(
t–1x

)
– g1(x)

∣
∣
∣
∣εn(t)

∣
∣dqt dqx

=
∫ ∞

0

∫ bn

an

∣
∣t–1g1

(
t–1x

)
– g1(x)

∣
∣
∣
∣εn(t)

∣
∣dqt dqx.

Therefore,

∫ ∞

0

∣∣(g1
q• εn)(x) – g1(x)

∣∣dqx

≤
∫ ∞

0

∫ bn

an

∣
∣t–1g1

(
t–1x

)∣∣
∣
∣εn(t)

∣
∣dqt dqx

+
∫ ∞

0

∫ bn

an

∣∣g1(x)
∣∣∣∣εn(t)

∣∣dqt dqx. (17)

Hence, for g1 ∈ L1
q(Rq,+), by using (17) we turn to write

∫ ∞

0

∣
∣(g1

q• εn)(x) – g1(x)
∣
∣dqx ≤ A

∫ bn

0

∣
∣t–1∣∣

∣
∣εn(t)

∣
∣dqt + A

∫ bn

0

∣
∣εn(t)

∣
∣dqt.

Therefore, by the properties of the delta sequences �2
q and �3

q, we conclude that

∫ ∞

0

∣
∣(g1

q• εn)(x) – g1(x)
∣
∣dqx ≤ AM ln(bn) + AM(bn) → 0

as n → ∞.
Proof of (ii) follows from simple integration. We therefore omit the details. Hence the

proof of this lemma is ended. �

Lemma 6 Let g1 be an integrable function in the space L1
q(Rq,+). Then g1

q• εn → g1 as
n → ∞ for every (εn) ∈ �q.

The proof of this lemma is a straightforward conclusion from the proof of Lemma 4.
Hence, we delete the details.

Thus, the space B with (L1
q(Rq,+),

q•), (Dq,
q•), and �q is defined. The canonical embedding

of L1
q(Rq,+) in B is given by

g → g
q• εn

εn
. (18)
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That is, every element in the space L1
q(Rq,+) can be identified as a member of the space

B. Addition, scalar multiplication, differentiation, �q and δq convergence are defined in a
natural way as follows:

If (ϕn) ∈ L1
q(Rq,+) and (εn) ∈ �q, then the pair (ϕn, εn) (or ϕn

εn
) is said to be a q-quotient

of sequences if ϕn
q• εm = ϕm

q• εn,∀n, m ∈ N. Therefore, if ϕn
εn

and gn
εn

are q-quotients of
sequences and g ∈ L1

q(Rq,+), then it is easy to see that

g
q• εn

εn
and

ϕn
q• εn + gn

q• εn

εn
q• εn

are q-quotients of sequences. Two q-quotients of sequences ϕn
εn

and gn
εn

are said to be equiv-
alent if

ϕn
q• εm = gm

q• εn, ∀n, m ∈N.

We can easily check the following equivalence relations:

ϕn

εn
q• g

∼ ϕn
q• g

εn
and

ϕn

εn
q• gn

∼ ϕn
q• gn

εn
.

The equivalent class w̆ = ( ϕn
εn

) of q-quotients of sequences containing ϕn
εn

is said to be a
q-Boehmian. The space of such q-Boehmians is denoted by B.

Remark 7 For two q-Boehmians w̆ = ( ϕn
εn

) and z̆ = ( gn
εn

) in B, we have the following identi-
ties:

(i) w̆ + z̆ =
(

ϕn
q• εn + gn

q• εn

εn
q• εn

)
,

(ii) βw̆ =
(

βϕn

εn

)
,

(iii) w̆
q• z̆ =

(
ϕn

q• gn

εn
q• εn

)
,

(iv) Dkw̆ =
(

Dkϕn

εn

)
,

(v) w̆
q• g =

(
ϕn

q• g
εn

)
,

where k ∈R, β ∈C and Dkw̆ is the kth derivative of w̆, and ψ ∈ L1
q(Rq,+).

Definition 8 (i) For n = 1, 2, 3, . . . and w̆n, w̆ ∈ B, the sequence (w̆n) is δq-convergent to w̆,
denoted by δq – limn→∞ w̆n = w̆, provided there can be found a q-delta sequence (εn) such
that

(w̆n
q• εk), (w̆

q• εk) in L1
q(Rq,+) and lim

n→∞ w̆n
q• εk = w̆

q• εk in L1
q(Rq,+) (∀ k ∈N).
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(ii) For n = 1, 2, 3, . . . and w̆n, w̆ ∈ B, the sequence (w̆n) is said to be �q-convergent to w̆,
denoted by �q-limn→∞ w̆n = w̆, provided there can be found a q-delta sequence (εn) such
that

(w̆n – w̆)
q• εn ∈ L1

q(Rq,+) (∀n ∈N) and lim
n→∞(w̆n – w̆)

q• εn = 0 in L1
q(Rq,+).

Now we have the following few corollaries.

Corollary 9 (i) Let g ∈ L1
q(Rq,+) and (εn) ∈ �q be fixed. Then the mapping

g → w̆,

where w̆ = g
q•εn
εn

is an injective mapping from L1
q(Rq,+) into B.

(ii) Let (εn) ∈ �q. Then, if gn → g in L1
q(Rq,+) as n → ∞, then for all k ∈N,

gn
q• εk → g

q• εk and w̆n → w̆ in B as n → ∞.

Therefore, it can be easily checked that L1
q(Rq,+) can be mathematically identified as a sub-

space of B.

The above corollary leads to the following corollary.

Corollary 10 The q-embedding, g → w̆, w̆ = g
q•εn
εn

, of the space L1
q(Rq,+) into the space B is

continuous.

3 The q-ultraBoehmian space BM

In this section, we provide sufficient axioms to define the q-ultraBoehmian space BM with
the set (LM,◦), the subset (DM,◦), the set (�q,M,◦) of q-delta sequences, and the prod-
uct ◦, where LM,DM, and �q,M are the q-Mellin transforms of the sets L1

q(R),Dq, and �q

respectively. To this end, we introduce the following convolution operation.

Definition 11 Let ω1 and ω2 be in BM. For ω1 and ω2, we define a product ◦ as

(ω1 ◦ ω2)(t) = ω1(t)ω2(t). (19)

The following assertion holds in the space LM.

Theorem 12 Let ω1 be in LM. Then ω1 ◦ η ∈ LM for all η ∈ DM.

Proof Let ω1 ∈ LM. Then, by the definition of the space LM and the definition of the prod-
uct ◦, we write

(ω1 ◦ ω2)(t) = ω1(t)ω2(t) = Mq(g1)Mq(g2) (20)

for some g1, g2 ∈ L1
q(Rq,+). Hence, by virtue of Def. 11, (20) can be written in the form

(ω1 ◦ ω2)(t) = Mq(g1
q• g2). (21)
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Therefore, as g1 ◦ g2 ∈ L1
q(Rq,+), it follows from (21) that ω1 ◦ η ∈ LM. This ends the proof

of the theorem. �

Theorem 13 Let ω be an integrable function in LM. Then ω ◦ (η1 ◦ η2) = (ω ◦ η1) ◦ η2 for
all η1,η2 ∈Dq.

Proof By the concept of the convolution ◦, we get

(
ω ◦ (η1 ◦ η2)

)
(t) = ω(t)(η1 ◦ η2)(t) = ω(t)η1(t)η2(t).

By using Def. 11 twice, we write the preceding equation as

(
ω ◦ (η1 ◦ η2)

)
(t) = (ω ◦ η1)(t)η2(t) =

(
(ω ◦ η1) ◦ η2

)
(t).

This ends the proof of the theorem. �

The following axioms are straightforward.

Theorem 14 (i) Let ω1 and ω2 be in LM. Then (ω1 + ω2) ◦ η = ω1 ◦ η + ω2 ◦ η for all η ∈Dq.
(ii) Let ω1 be in LM. Then (αω1 ◦ η) = α(ω1 ◦ η) for all η ∈Dq and α ∈C.

Proof (i) Let ω1 and ω2 be in LM. Then, by Def. 11, we write

(
(ω1 + ω2) ◦ η

)
(t) = (ω1 + ω2)(t)η(t) = ω1(t)η(t) + ω2(t)η(t) = (ω1 ◦ η)(t) + (ω2 ◦ η)(t).

The proof of the first part is finished. The proof of the second part is trivial. This completes
the proof of the theorem. �

Theorem 15 (i) Let ω1 and (ωn) be members of the space LM and η ∈ DM. If ωn → ω1 in
LM as n → ∞, then ωn ◦ η → ω1 ◦ η as n → ∞.

(ii) Let ω1 and ω2 be in LM and (υn) ∈ �q,M. If ω1 ◦ υn = ω2 ◦ υn, then ω1 = ω2 in LM.
(iii) Let ω1 be an integrable function in LM and (υn) ∈ �q,M,υn(t) �= 0 for all t ∈Rq,+. Then

ω1 ◦ υn → 0 in LM as n → ∞.

Proof To prove (i), let ω1 and (ωn) be members of LM and η ∈ DM. If ωn → ω1 in LM as
n → ∞, then by Def. 11 and Theo. 14, we have

(ωn ◦ η – ω1 ◦ η)(t) =
(
(ωn – ω1) ◦ η

)
(t) = (ωn – ω1)(t)η(t) = ωn(t)η(t) – ω1(t)η(t).

Hence, by the hypothesis of the theorem, we obtain

ωn ◦ η – ω1 ◦ η → ω1 ◦ η – ω1 ◦ η → 0 as n → ∞.

Hence, the first part of the theorem is completely proved. To prove (ii), let ω1 and ω2 be
in LM and (υn) ∈ �q,M. If ω1 ◦ υn = ω2 ◦ υn, then ω1(t)υn(t) = ω2(t)υn(t). Hence,

(ω1 – ω2)(t)υn(t) = 0 for all t ∈Rq,+.
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Therefore, (ω1 – ω2)(t) = 0 for all Rq,+. Thus, ω1 = ω2 in LM. The proof of (iii) is similar.
Hence, the theorem is completely proved.

If (ωn) ∈ LM and (υn) ∈ �q,M, then the pair (ωn,υn) (or ωn
υn

) is said to be a q-quotient of
sequences if

ωn ◦ υm = ωm ◦ υn, ∀n, m ∈ N.

Therefore, if ωn
εn

and gn
υn

are q-quotients of sequences and ω ∈ LM, then it is easy to see that

ω ◦ εn

εn
and

ωn ◦ εn + gn ◦ εn

εn ◦ υn

are q-quotients of sequences. Furthermore, it is easy to see the following equivalence re-
lations:

ωn

εn ◦ ω
∼ ωn ◦ ω

εn
and

ωn

εn ◦ gn
∼ ωn ◦ gn

εn
.

Two q-quotients of sequences ωn
εn

and gn
υn

are said to be equivalent if ωn ◦ υm = gm ◦
εn,∀n, m ∈ N. The equivalent class w̆ = ( ωn

εn
) of q-quotients of sequences containing ϕn

εn
is said to be a q-Boehmian. The space of such q-Boehmians is denoted by BM. �

Remark 16 For two q-Boehmians w̆ = ( ωn
εn

) and z̆ = ( gn
υn

) in BM, the following are well de-
fined on BM:

(i) w̆ + z̆ =
(

ωn ◦ εn + gn ◦ εn

εn ◦ υn

)
,

(ii) βw̆ =
(

βωn

εn

)
,

(iii) w̆ ◦ z̆ =
(

ωn ◦ gn

εn ◦ υn

)
,

(iv) Dkw̆ =
(

Dkωn

εn

)
,

(v) w̆ ◦ ω =
(

ωn ◦ ω

εn

)
,

where k ∈R, β ∈C and Dkw̆ is the kth derivative of w̆, and ψ ∈ LM.

Definition 17 (i) For n = 1, 2, 3, . . . and w̆n, w̆ ∈ BM, the sequence (w̆n) is said to be δq-
convergent to w̆, denoted by δq – limn→∞ w̆n = w̆, provided there can be found a q-delta
sequence (υn) such that

(w̆n ◦ υk), (w̆ ◦ υk) in LM (∀n, k ∈N) and lim
n→∞ w̆n ◦ υk = w̆ ◦ υk in LM (∀ k ∈N).

(ii) For n = 1, 2, 3, . . . and w̆n, w̆ ∈ BM, the sequence (w̆n) is said to be �q-convergent to
w̆, denoted by �q-limn→∞ w̆n = w̆, provided there can be found a q-delta q-sequence (υn)
such that

(w̆n – w̆) ◦ υn ∈ LM (∀n ∈N) and lim
n→∞(w̆n – w̆) ◦ υn = 0 in LM.
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Corollary 18 (i) Let ω ∈ LM and (υn) ∈ �q be fixed. Then the mapping

ω → w̆,

where w̆ = ω◦υn
υn

is an injective mapping from LM into BM.
(ii) Let (υn) ∈ �q,M. Then, if ωn → ω in LM as n → ∞, then for all k ∈N,

ωn ◦ υk → ω ◦ υk and w̆n → w̆ in BM as n → ∞. (22)

Therefore, it can be easily checked that LM may be identified as a subspace of BM.

The above corollary can be stated as follows.

Corollary 19 The q-embedding ψ → w̆, w̆ = ω◦υn
υn

, of the space LM into the space BM is
continuous.

4 The q-Mellin transform of the generalized q-theory
This section aims to discuss a definition and some basic properties of the generalized q-
Mellin transform in a context of the new q-theory. All results are brief and concise, and
may give the reader a general overview of the generalized q-theory of the Mellin operator.
However, by virtue of the preceding analysis, we introduce the following definition.

Definition 20 Let gn
εn

∈ B, then we define the q-Mellin transform of the q-Boehmian gn
εn

as

Mq
gn

εn
= ω̃n, (23)

where ω̃n = ωn
υn

,ωn = Mqg , and υn = Mqεn. Indeed ω̃n belongs to BM.

Theorem 21 The operator Mq : B → BM is sequentially continuous, i.e., if
�q – limk→∞ ω̃n,k = ω̃n in B, then �q,M – limn→∞ Mqω̃n,k = Mqω̃n in BM.

Proof Let �q – limk→∞ ω̃n,k = ω̃n in B, then there is (εn) ∈ �q such that

�q – lim
n→∞(ω̃n,k – ω̃n)

q• εn = 0 in B.

The continuity of the integral operator gives

�q,M – lim
n→∞Mq

(
(ω̃n,k – ω̃n)

q• εn
)

= � – lim
n→∞

(
(Mqω̃n,k – Mqω̃n) ◦ υn

)
= 0,

where Mqεn = υn. Thus, we have �q,M – limn→∞ Mqω̃n,k = Mqω̃n in BM.
This finishes the proof of the theorem. �

Theorem 22 (i) Mq is a linear isomorphism from the space B onto the space BM.
(ii) Mq is continuous with respect to δq and �q-convergence.
(iii) The operator Mq coincides with the operator Mq.
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Proof We prove Part (iii) since similar proofs for Part (i)–Part (ii) are available in literature.

Let g ∈ L1
q(Rq,+) and g

q•εn
εn

be its representative in B, where (εn) ∈ �q (∀n ∈ N). Clearly,
for all n ∈ N, (εn) is independent from the representative. Let Mqεn = υn, then, by the q-
convolution theorem, we get

Mq
g

q• εn

εn
= Mq

g
q• εn

εn
=

Mqg ◦ Mqεn

Mqεn
= Mqg ◦ Mqεn

Mqεn
= ω ◦ υn

υn
.

Hence, the q-Boehmian ω◦υn
υn

is the representative of Mq in the space LM, where ω = Mqg .
The proof is, therefore, ended. �

We introduce the inverse transform of Mq as follows.

Definition 23 We define the inverse integral operator of Mq of a q-Boehmian ωn
υn

in BM

as follows:

Nq
ωn

υn
=

gn

εn
∈ B,

where υn = Mqεn and ωn = Mqgn for some (εn) ∈ �q and {gn} ∈ L1
q(Rq,+).

Theorem 24 Let ωn
υn

∈ BM and ω ∈ LM. Then we have

Nq

(
ωn

υn
◦ ω

)
=

gn

εn

q• g and Mq

(
gn

εn

q• g
)

=
ωn

υn
◦ ω.

Proof Assume ωn
υn

∈ BM where ωn = Mqgn. Then, for every ω = Mqg ∈ LM and υn = Mqεn,
we have

Nq

(
ωn

υn
◦ Mqg

)
= Nq

ωn ◦ ω

υn
= Nq

Mq(gn
q• g)

υn
=

gn
q• g

εn
=

gn

εn

q• g.

The proof of the first part is finished. The proof of the second part is almost similar. Hence,
we omit the details.

This completely ends the proof of the theorem. �

5 Conclusion
This paper has given an extension of the quantum theory of the q-Mellin transform oper-
ator [40] to sets of q-generalized functions named q-Boehmians and q-ultraBoehmians.
Every element g in the function space L1

q(Rq,+) is identified as a member in the generalized
space B by the identification formula

g → g
q• εn

εn
,

where (εn) is an arbitrary delta sequence. It also shows that the q-embedding

g → w̆, w̆ =
g

q• εn

εn
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of the space L1
q(Rq,+) into the space B is continuous, (εn) being an arbitrary q-delta se-

quence. The q-Mellin transform operator is extended to the generalized q-calculus the-
ory, and many properties are discussed. Further, the inversion of the q-Mellin transform
operator is also discussed.
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