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Abstract
By using a nonlinear method, we try to solve partial fractional differential equations.
In this way, we construct the Laguerre wavelets operational matrix of fractional
integration. The method is proposed by utilizing Laguerre wavelets in conjunction
with the Adomian decomposition method. We present the procedure of
implementation and convergence analysis for the method. This method is tested on
fractional Fisher’s equation and the singular fractional Emden–Fowler equation. We
compare the results produced by the present method with some well-known results.
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1 Introduction
The fractional calculus has been extended extremely and investigated in distinct areas
and applications by many research works (see, for example, [1–20]). In 1937, Fisher, Kol-
mogorov, Petrovsky, and Piscounov investigated independently the Fisher-KPP equation
(or Fisher’s equation; see [21, 22]). As you know, this equation is about population dynam-
ics to describe the spatial spread of an advantageous allele and explores its traveling wave
solutions. It has been used distinctly for obtaining approximate solutions of this equation
(see, for example, [23–33]). Also, there are some chemical and biological applications for
this famous equation and its fractional version (see, for example, [34–36]).

Many problems on the diffusion of heat and its equations in the mathematical physics
and fluid dynamic are modeled by a form of the equations called Emden–Fowler equa-
tions:

uxx +
s
x

ux + aφ(x, t)ψ(u) + ξ (x, t) = ut ,
(
x, t ∈ [0, 1], s > 0

)
, (1)
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where φ(x, t)ψ(u) + ξ (x, t) denotes the heat source, u is the temperature, and time variable
is t. Put s = 2 and ξ (x, t) = 0. Then relation (1) in one variable version reduces to

uxx +
2
x

ux + aφ(x)ψ(u) = 0
(
u(0) = u0, u′(0) = 0

)
, (2)

and for φ(x) = 1 and ψ(u) = un, we obtain the standard Lane–Emden equation [37, 38].
Based on the singularity point at x = 0, many researchers have tried to solve these equa-
tions by using different numerical methods such as wavelets, Galerkin, or collocation [38–
47].

By developing the Laguerre wavelets collocation method and using the Adomian de-
composition technique, our aim is the investigation of the partial fractional differential
equation

CDα
t u(x, t) +

∂2u(x, t)
∂x2 + a(x)

∂u(x, t)
∂x

+ F
(
u(x, t)

)
= 0, (3)

with boundary conditions u(x, 0) = g(x), u(0, t) = y1(t), u(1, t) = y2(t), where 0 ≤ α < 1, CDα
t

is the Caputo fractional derivative, g(x), y1(t), y2(t) are some functions, F(u(x, t)) is the
nonlinear term, and a(x) has singularity at the point x = 0. One can find notions of frac-
tional calculus such as the Riemann–Liouville integral and Caputo derivative in [48].

2 Laguerre wavelets
On the other hand, by using dilation and translation of a map (as the mother wavelet), we
can construct wavelets. For example, we can consider the family of continuous wavelets

ψa,b(t) = |a|–1/2ψ

(
t – b

a

)
(a, b ∈R, a �= 0),

where a and b are the dilation and translation parameters. If a0 > 1, b0 > 0, a = a–k
0 ,

b = mb0a–k
0 and k and m are positive integers, then it reduces to the discrete wavelets

ψk,m(t) = |a0|k/2ψ(ak
0t – mb0) which is a wavelet basis for L2(R) [15]. If a0 = 2 and b0 = 1,

then {ψk,m(t)}k,m≥0 is an orthonormal basis [15]. It is known that the Laguerre wavelets
are defined on the interval [0, 1) as (see [15])

ψn,m(t) =

⎧
⎨

⎩

1
m! 2

k
2 Lm(2kt – 2n + 1) n–1

2k–1 ≤ t < n
2k–1 ,

0 otherwise,

where k ≥ 1, n = 1, 2, 3, . . . , 2k–1, t is the normalized time, m = 0, 1, 2, . . . , M – 1, M is a fixed
positive integer, Lm(t) are the Laguerre polynomials of degree m which are orthogonal
with respect to the weight function ω(t) = 1 on the interval [0,∞) and satisfy the recursive
relation

L0(t) = 1, L1(t) = 1 – t,

Lm+1(t) =
(2m + 1 – t)Lm(t) – mLm–1(t)

m + 1
(m ≥ 1).
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Let u(x) ∈ L2(R) be a function defined over [0, 1). We say that u is expanded by Laguerre
wavelets whenever

u(x) =
∞∑

n=1

∞∑

m=0

cn,mψn,m(x). (4)

If the series in (4) is truncated, then it can be written by

u(x) ∼=
2k–1∑

n=1

M–1∑

m=0

cn,mψn,m(x) = CT�(x), (5)

where C and �(x) are 2k–1M × 1 matrices given by

C = [c1,0, . . . , c2,0, . . . , c2k–1,M–1]T ,

�(t) = [ψ1,0, . . . ,ψ2,0, . . . ,ψ2k–1,M–1]T .

For simplicity, we rewrite (5) as

u(x) ∼=
m′∑

i=1

ciψi = CT�(x), (6)

where ci = cn,m, ψi(t) = ψn,m(t) and i = M(n – 1) + m + 1. Hence, C = [c1, c2, c3, . . . , cm′ ]T and
�(t) = [ψ1,ψ2,ψ3, . . . ,ψm′ ]T . Consider the collocation points ti = 2i–1

2k M for i = 1, 2, . . . , 2k–1M.
The Laguerre wavelet matrix 	(x)m′×m′ is defined by

	m′×m′ =
[
�

(
1

2m′

)
,�

(
3

2m′

)
, . . . ,�

(
2m′ – 1

2m′

)]
,

where m′ = 2k–1M. If M = 4 and k = 2, then the Laguerre matrix is given by

	8×8 =

⎛

⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

2 2 2 2 0 0 0 0
7
2

5
2

3
2

1
2 0 0 0 0

89
32

49
32

17
32 – 7

32 0 0 0 0
533
384

709
1152

131
1152 – 61

384 0 0 0 0
0 0 0 0 2 2 2 2
0 0 0 0 7

2
5
2

3
2

1
2

0 0 0 0 89
32

49
32

17
32 – 7

32
0 0 0 0 533

384
709

1152
131

1152 – 61
384

⎞

⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Similarly, the function u(x, t) ∈ L2([0, 1] × [0, 1]) can be also approximated as

u(x, t) = �T (x)U�(t), (7)

in which U is an m′ × m′ matrix with uij = 〈ψi(x), 〈u(x, t),ψj(t)〉〉. We use the wavelet col-
location method to determine the coefficients ui,j.
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3 Fractional integral of the Laguerre wavelets
Here, we review the Riemann–Liouville integral of the Laguerre wavelets.

Theorem 1 The fractional integral of the Laguerre wavelets on [0, 1] is given by

Iαψn,m(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < n–1
2k–1 ,

2
k
2


(α)
∑m

r=0
∑m

i=r
∑r

j=0 Ti–r,r
m,n,k

(–1)j

α+j Cj
rxr–j

× (x – n–1
2k–1 )α+j, n–1

2k–1 ≤ x ≤ n
2k–1 ,

2
k
2


(α)
∑m

r=0
∑m

i=r
∑r

j=0 Ti–r,r
m,n,k

(–1)j

α+j Cj
rxr–j

× ((x – n–1
2k–1 )α+j – (x – n

2k–1 )α+j), x > n
2k–1 ,

(8)

where Ti–r,r
m,n,k = (–1)2i–r 2rk (2n–1)i–r

(m–i)!(i–r)!i!r! and Cj
r = r!

j!(j–r)! .

Proof It is known that the Laguerre polynomials are given by

Ln(x) =
n∑

k=0

Ck
n

(–1)k

k!
xk ,

where Ck
n = n!

k!(n–k)! . Hence, for Laguerre wavelets, we have

Lm
(
2kx – 2n + 1

)
=

m∑

i=0

Ci
m

(–1)i

i!
(
2kx – 2n + 1

)i (9)

=
m∑

i=0

Ci
m

(–1)i

i!
2ki

(
x –

2n – 1
2k

)i

=
m∑

i=0

Ci
m

(–1)i

i!
2ki

i∑

r=0

i!
r!(i – r)!

xi–r
(

–
2n – 1

2k

)r

=
m∑

i=0

i∑

r=0

(–1)i+r m!2k(i–r)

i!r!(m – i)!(i – r)!
(2n – 1)rxi–r ,

and so

Lm
(
2kx – 2n + 1

)
=

m∑

r=0

m∑

i=r

(–1)2i–r2rk(2n – 1)i–rm!
i!r!(m – i)!(i – r)!

xr . (10)

If (T ′)i–r,r
m,n,k = m!(–1)2i–r 2rk (2n–1)i–r

(m–i)!(i–r)!i!r! , then

Lm
(
2kx – 2n + 1

)
=

m∑

r=0

m∑

i=r

(
T ′)i–r,r

m,n,kxr , (11)

and so

ψn,m(x) =

⎧
⎨

⎩

1
m! 2

k
2
∑m

r=0
∑m

i=r(T ′)i–r,r
m,n,kxr , n–1

2k–1 ≤ x < n
2k–1 ,

0, otherwise.
(12)
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On the other hand, by calculating the integrals, we get

I1 =
1


(α)

∫ x

n–1
2k–1

(x – t)α–1tr dt

and

I2 =
1


(α)

∫ n
2k–1

n–1
2k–1

(x – t)α–1tr dt.

If v = x – t, then

I1 =
1


(α)

∫ x

n–1
2k–1

(x – t)α–1tr dt

=
1


(α)

∫ x–( n–1
2k–1 )

0
vα–1(x – v)r dv

=
1


(α)

∫ x–( n–1
2k–1 )

0
vα–1

r∑

j=0

Cj
rxr–j(–v)j dv

=
1


(α)

r∑

j=0

(–1)jCj
rxr–j

∫ x–( n–1
2k–1 )

0
vj+α–1 dv

=
1


(α)

r∑

j=0

(–1)j

j + α
Cj

rxr–j
(

x –
n – 1
2k–1

)j+α

.

Similarly, we get

I2 =
1


(α)

∫ n
2k–1

n–1
2k–1

(x – t)α–1tr dt

=
1


(α)

∫ n
2k–1

n–1
2k–1

vα–1(x – v)r dv

=
1


(α)

r∑

j=0

(–1)j

j + α
Cj

rxr–j
((

x –
n – 1
2k–1

)j+α

–
(

x –
n

2k–1

)j+α)
.

Now, we apply Riemann–Liouville fractional integration of order α with respect to x for
the Laguerre wavelets. Thus, we obtain

Iαψn,m(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < n–1
2k–1 ,

1

(α)

∫ x
n–1

2k–1
(x – t)α–1ψn,m(t) dt, n–1

2k–1 ≤ x ≤ n
2k–1 ,

1

(α)

∫ n
2k–1
n–1

2k–1
(x – t)α–1ψn,m(t) dt, x > n

2k–1

(13)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, x < n–1
2k–1 ,

2
k
2

m!
(α)
∑m

r=0
∑m

i=r(T ′)i–r,r
m,n,k

∫ x
n–1

2k–1
(x – t)α–1tr dt, n–1

2k–1 ≤ x ≤ n
2k–1 ,

2
k
2

m!
(α)
∑m

r=0
∑m

i=r(T ′)i–r,r
m,n,k

∫ n
2k–1
n–1

2k–1
(x – t)α–1tr dt, x > n

2k–1

(14)
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=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < n–1
2k–1 ,

2
k
2


(α)
∑m

r=0
∑m

i=r Ti–r,r
m,n,k

∑r
j=0

(–1)j

j+α
Cj

r

× xr–j(x – n–1
2k–1 )j+α , n–1

2k–1 ≤ x ≤ n
2k–1 ,

2
k
2


(α)
∑m

r=0
∑m

i=r Ti–r,r
m,n,k

∑r
j=0

(–1)j

j+α
Cj

r

× xr–j((x – n–1
2k–1 )j+α – (x – n

2k–1 )j+α), x > n
2k–1 .

(15)

This completes the proof. �

For instance, for k = 2, M = 4, x = 0.6, α = 0.9, we obtain

I0.9�8×1(0.6) =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

1.0513
1.02266

0.585489
0.248884
0.261795
0.468475
0.37927

0.192481

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

,

where �8×1 = (ψ1,0(x),ψ1,1(x),ψ1,2(x),ψ1,3(x),ψ2,0(x),ψ2,1(x),ψ12,2(x),ψ2,3(x))T . Now, by
using the collocation points in (8), we can calculate the integration matrix Pα

m′×m′ =
Iαψn,m(x) as

Pα

2k–1M×2k–1M =

⎛

⎜⎜⎜
⎜
⎝

Iαψ1,0(x(1)) Iαψ1,0(x(2)) . . . Iαψ1,0(x(2k–1M))
Iαψ1,1(x(1)) Iαψ1,1(x(2)) . . . Iαψ1,1(x(2k–1M))

...
...

. . .
...

Iαψ2k–1,M(x(1)) Iαψ2k–1,M(x(2)) . . . Iαψ2k–1,M(x(2k–1M))

⎞

⎟⎟⎟
⎟
⎠

.

For k = 2, M = 4, and α = 0.9, we get

P0.9
8×8 =

⎛

⎜⎜
⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

0.17149 0.46095 0.73000 0.98819 1.0675 1.02329 0.99504 0.97397
0.32042 0.73996 0.97974 1.06621 1.03333 1.00222 0.97962 0.96181
0.26724 0.55727 0.66061 0.63869 0.58976 0.57631 0.56528 0.55615
0.13879 0.26809 0.29611 0.27235 0.25042 0.24540 0.24105 0.23737

0 0 0 0 0.17149 0.46095 0.73000 0.98819
0 0 0 0 0.32042 0.73996 0.97974 1.06621
0 0 0 0 0.26724 0.55727 0.66061 0.63869
0 0 0 0 0.13879 0.26809 0.29611 0.27235

⎞

⎟⎟
⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

.

Suppose that η > 0 and g : [0,η] → R is a continuous function. Put

g(x)Iαψn,m(η) = V α,η,g(x). (16)
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By using the collocation points xi = 2i–1
2k M for i = 1, 2, . . . , 2k–1M in (8), we get

V α,η,g(x)
2k–1M×2k–1M

=

⎛

⎜⎜
⎜⎜
⎝

g(x1)Iαψ1,0(η) g(x2)Iαψ1,0(η) . . . g(x2k–1M)Iαψ1,0(η)
g(x1)Iαψ1,1(η) g(x2)Iαψ1,1(η) . . . g(x2k–1M)Iαψ1,1(η)

...
...

. . .
...

g(x1)Iαψ2k–1,M–1(η) g(x2)Iαψ2k–1,M–1(η) . . . g(x2k–1M)Iαψ2k–1,M–1(η)

⎞

⎟⎟
⎟⎟
⎠

.

For η = 1, g(x) = x, α = 0.9, k = 2, and M = 4, we obtain

V 0.9,1,x
8×8 =

⎛

⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜
⎝

0.0603 0.1810 0.3016 0.4222 0.5429 0.6635 0.7842 0.9048
0.0596 0.1789 0.2982 0.4174 0.5367 0.6560 0.7752 0.8945
0.0345 0.1035 0.1725 0.2416 0.3106 0.3796 0.4486 0.5176
0.0147 0.0442 0.0737 0.1031 0.1326 0.1621 0.1915 0.2210
0.0696 0.2089 0.3482 0.4875 0.6268 0.7661 0.9054 1.0447
0.0660 0.1979 0.3299 0.4619 0.5938 0.7258 0.8578 0.9897
0.0372 0.1116 0.1860 0.2604 0.3348 0.4091 0.4835 0.5579
0.0157 0.0472 0.0787 0.1102 0.1417 0.1732 0.2046 0.2361

⎞

⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟
⎠

.

4 Method of solution
Now, we review the method for the partial fractional differential equation. The Adomian
polynomials are used to convert the nonlinear terms of the partial differential equation
into a set of polynomials. No linearization process is required for the suggested method.
We describe the procedure of implementation in more detail, which enables the readers to
understand the method more efficiently. Consider the partial fractional differential equa-
tion

CDα
t u(x, t) +

∂2u(x, t)
∂x2 + a(x)

∂u(x, t)
∂x

+ F
(
u(x, t)

)
= 0, 0 < α ≤ 1, (17)

with the boundary conditions

u(x, 0) = g(x), u(0, t) = y1(t), u(1, t) = y2(t),

where a(x) has singularity at the point x = 0 and F(u(x, t)) is the nonlinear term of the
problem. By applying the Adomian decomposition method, we can express the solution
of (17) as

u(x, t) =
∞∑

i=0

ui(x, t). (18)

We approximate the solution of (18) by using the truncated Adomian series as follows:

u(x, t) ≈
N∑

i=0

ui(x, t) (N ∈N). (19)
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Moreover, the nonlinear term F(u(x, t)) in (17) is decomposed in terms of Adomian poly-
nomials as

F
(
u(x, t)

) ≈
N–1∑

i=0

Ai
(
u0(x, t), u1(x, t), . . . , ui(x, t)

)
, (20)

where Ai = 1
i!

di

dpi [F(
∑i

j=0 pjuj(x, t)]p=0, i = 0, 1, 2, . . . , are the Adomian polynomials. By ap-
plying (19) and (20) in (17), we obtain

CDα
t

N∑

i=0

ui(x, t) +
∂2

∂x2

N∑

i=0

ui(x, t) + a(x)
∂

∂x

N∑

i=0

ui(x, t) +
N–1∑

i=0

Ai = 0, (21)

where 0 ≤ α < 1. Problem (17) can be decomposed into N +1 subproblems by the principle
of superposition as follows:

CDα
t u0(x, t) +

∂2

∂x2 u0(x, t) + a(x)
∂

∂x
u0(x, t) = 0, (22)

u0(x, 0) = g(x), u0(0, t) = y1(t), u0(1, t) = y2(t)

and

CDα
t ui(x, t) +

∂2

∂x2 ui(x, t) + a(x)
∂

∂x
ui(x, t) = –Ai–1, (23)

ui(x, 0) = 0, ui(0, t) = 0, ui(1, t) = 0,

where 0 ≤ α < 1 and i = 1, 2, . . . , N . By using the Laguerre wavelet method on (22), we
approximate it as

∂2

∂x2 u0(x, t) ≈
m′∑

i=1

m′∑

j=1

c0
i,jψi(x)ψj(t) = �T (x)C0�(t). (24)

Now, apply I2
x on (24) to obtain

u0(x, t) ≈ (
P2

x
)T C0�(t) + p(t)x + q(t), (25)

where p(t) and q(t) are some mappings of t, and we use the boundary conditions and (13)
and (16) to get

x = 0 : q(t) = y1(t), (26)

x = 1 : p(t) = –
((

P2
x(1)

)T C0�(t)
)

+ y2(t) – y1(t).

We can write (25) as

u0(x, t) ≈ (
P2

x
)T C0�(t) – x

((
P2

x(1)
)T C0�(t)

)
(27)

+ x
(
y2(t) – y1(t)

)
+ y1(t),
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and so

∂u0(x, t)
∂x

≈ (
P1

x
)T C0�(t) –

(
P2

x(1)
)T C0�(t) (28)

+
(
y2(t) – y1(t)

)
.

By substituting (28), (24) in (22), we obtain

∂αu0(x, t)
∂tα

≈ –�(x)T C0�(t) (29)

– a(x)
((

P1
x
)T C0�(t) –

(
P2

x(1)
)T C0�(t) + y2(t) – y1(t)

)
,

and by integrating, we get

u0(x, t) ≈ –�T (x)C0Pα
t – a(x)

((
P1

x
)T C0Pα

t (30)

–
(
P2

x(1)
)T C0Pα

t + Iα
t
(
y2(t) – Y1(t)

))
+ g(x).

Put K(x, t) = g(x) – x(y2(t) – y1(t)) – Iα
t (a(x)(y2(t) – y1(t))). From (30), (27), we have

(
P2

x
)T C0�(t) – x

((
P2

x(1)
)T C0�(t)

)
(31)

≈ �T (x)C0Pα
t

+ a(x)
((

P1
x
)T C0Pα

t –
(
P2

x(1)
)T C0Pα

t
)

+ K(x, t).

By using the collocation points and replacing ≈ with =, we obtain the matrix version of
(31) in a discrete form as follows:

(
P2

x
)T C0� – V 2,1,xC0� – �T C0Pα

t (32)

– a(x)
((

P1)T C0Pα
t –

(
P2

x(1)
)T C0Pα

t
)

– K = 0,

where � is the 2k–1M × 2k–1M Laguerre wavelets matrix, V 2,1,x = xP2
x(1) is the 2k–1M ×

2k–1M fractional matrix, and P2
x = I2

x �T , Pα
t = Iα

t � are 2k–1M × 2k–1M matrices of frac-
tional integration of the Laguerre wavelets. Now, put L := (�T +A((P1)T –(V 2,1)T )–1, where

A =

⎛

⎜
⎜⎜
⎜
⎝

a(x(1)) 0 . . . 0
0 a(x(2)) . . . 0
...

...
. . .

...
0 0 . . . a(x(2k–1M))

⎞

⎟
⎟⎟
⎟
⎠

.

Thus, relation (32) can be written as

L
(
P2

x – V 2,1,x)C0 – C0Pα
t �–1 = LK . (33)

If we solve (33) for C0 and substitute in (30) or (27), we obtain the solution u0 at the collo-
cation points. Similarly, we apply the Laguerre wavelet method on (23) by approximating
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higher order derivative by Laguerre wavelet series as follows:

∂2

∂x2 ui(x, t) ≈
m′∑

l=1

m′∑

j=1

ci
l,jψl(x)ψj(t) = �T (x)Ci�(t). (34)

Now, by integrating I2
x on (34), we get

ui(x, t) ≈ (
P2

x
)T Ci�(t) – x

(
P2

x(1)
)T Ci�(t), (35)

and so

∂ui(x, t)
∂x

≈ (
P1

x
)T Ci�(t) –

(
P2

x(1)
)T Ci�(t). (36)

By substituting (36), (34) in (23), we obtain

∂αui(x, t)
∂tα

≈ –�(x)T Ci�(t) (37)

– a(x)
((

P1
x
)T Ci�(t) –

(
P2

x(1)
)T Ci�(t)

)
– Ai–1.

By applying fractional integral operator Iα
t to (37) and using the initial condition, we get

ui(x, t) ≈ –�T (x)CiPα
t – a(x)(

(
P1

x
)T CiPα

t (38)

–
(
P2

x(1)
)T CiPα

t – Iα
t Ai–1.

From (38) and (35), we have

(
P2

x
)T Ci�(t) – x

((
P2

x(1)
)T Ci�(t)

)
(39)

≈ –�T (x)CiPα
t – a(x)

((
P1

x
)T CiPα

t –
(
P2

x(1)
)T CiPα

t
)

– Iα
t Ai–1.

By using the collocation points and replacing ≈ with =, we obtain the matrix form of
(39) as follows:

(
P2

x
)T Ci� – V 2,1,xCi� – �T C0Pα

t (40)

– a(x)
((

P1)T C0Pα
t –

(
P2

x(1)
)T C0Pα

t
)

= –Iα
t Ai–1,

where � is the Laguerre wavelets matrix, V 2,1,x = xP2
x(1) and P2

x = I2
x �T and Pα

t = Iα
t �

are 2k–1M × 2k–1M matrices of fractional integration of the Laguerre wavelets. Put L :=
(�T + A((P1)T – (V 2,1)T )–1, where

A =

⎛

⎜
⎜⎜
⎜
⎝

a(x(1)) 0 . . . 0
0 a(x(2)) . . . 0
...

...
. . .

...
0 0 . . . a(x(2k–1M))

⎞

⎟
⎟⎟
⎟
⎠

.
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Relation (32) can be written as

L
(
P2

x – V 2,1,x)Ci – CiPα
t �–1 = LIα

t Ai–1, (41)

which is the Sylvester equation. Fix i = 1 and use the obtained approximation u0(x, t) in the
calculation of Adomian’s polynomials A0. By solving (41) for C1 and replacing in Eq. (35),
we obtain an approximate solution of u1(x, t). This process is repeated by using the ap-
proximate solutions ui(x, t), i = 0, 1, . . . , k, in the calculation of Adomian’s polynomials Ak

and use it in Eq. (41) to get Ci, which is used in Eq. (35) to obtain an approximate solution
ui(x, t). In this way, we obtain a sequence of approximations {ui(x, t)}, i = 0, 1, . . . , N , where
N is an arbitrary natural number. Thus the approximate solution of (17) is obtained as
∑N

i=0 ui(x, t).

5 Error analysis
Here, we are going to review the error analysis of the method by expansion of a function
in terms of Laguerre wavelets.

Theorem 2 Assume that um,m′ (x, t) is the Laguerre wavelets expansion of a smooth func-
tion u(x, t) ∈ �. There are real numbers C1, C2, and C3 such that

∥∥u(x, t) – um,m′ (x, t)
∥∥

2

≤ +
C1

M!2(k+1)M–1 +
C2

M′!2(k′+1)M′–1 +
C3

M!2(k+1)M–1M′!2(k′+1)M′–1 .

Proof Consider

Vm,m′ = span
{
ψn,m1 (x)ψn′ ,m2 (t)

}
,

where n = 1, 2, . . . , 2k–1, n′ = 1, 2, . . . , 2k′–1, m1 = 0, 1, . . . , M – 1, m2 = 0, 1, . . . , M′ – 1, and
m = 2k–1M, m′ = 2k′–1M′. Let um,m′ (x, t) be the best approximation of u(x, t). In this case,
we have ‖u(x, t) – um,m′ (x, t)‖2 ≤ ‖u(x, t) – vm,m′ (x, t)‖2 for all vm,m′ (x, t) ∈ Vm,m′ . One can
check that the last inequality holds whenever vm,m′ (x, t) is an interpolating polynomial for
u(x, t). Let Pm,m′ (x, t) be the interpolating polynomial of u(x, t) on � and pm,m′ (x, t) is the
interpolating polynomial of u(x, t) at points (xi, tj), where xi, i = 0, 1, . . . , M –1, are the roots
of the M-degree shifted Chebyshev polynomial in [ n–1

2k–1 , n
2k–1 ) and tj, j = 0, 1, . . . , M′ – 1, are

the roots of the M′-degree shifted Chebyshev polynomial in [ n′–1
2k′–1 , n′

2k′–1 ). In this case,

u(x, t) – pm,m′ (x, t) =
∂Mu(ξ , t)
∂xMM!

M–1∏

i=0

(x – xi) +
∂M′u(x, ζ )
∂xM′M′!

M′–1∏

j=0

(t – tj)

+
∂M+M′u(ξ ′, ζ ′)
∂xM ∂tM′M′!M!

M–1∏

i=0

(x – xi)
M′–1∏

j=0

(t – tj),
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where ξ , ξ ′ ∈ Ik,n = [ n–1
2k–1 , n

2k–1 ) and ζ , ζ ′ ∈ In′ ,k′ = [ n′–1
2k′–1 , n′

2k′–1 ) (see [49]). Let � = In,k × In′ ,k′ ,
we get

∣∣u(x, t) – pm,m′ (x, t)
∣∣ ≤ max(x,t)∈�

∣
∣∣
∣
∂Mu(x, t)

∂xM

∣
∣∣
∣

∏M–1
i=0 |(x – xi)|

M!

+ max(x,t)∈�

∣∣
∣∣
∂M′u(x, t)

∂tM′

∣∣
∣∣

∏M′–1
j=0 |(t – tj)|

M′!

+ max(x,t)∈�

∣∣
∣∣
∂M+M′u(x, t)
∂xM ∂tM′

∣∣
∣∣

∏M–1
i=0 |(x – xi)|∏M′–1

j=0 |(t – tj)|
M!M′!

.

By using Theorem 2.2.3 in [50] for error of Chebyshev interpolation nodes, we obtain

∣
∣u(x, t) – pm,m′ (x, t)

∣
∣ ≤ max(x,t)∈�

∣∣
∣∣
∂Mu(x, t)

∂xM

∣∣
∣∣

1
M!2M(k+1)–1

+ max(x,t)∈�

∣
∣∣
∣
∂M′u(x, t)

∂tM′

∣
∣∣
∣

1
M′!2M′(k′+1)–1

+ max(x,t)∈�

∣∣
∣∣
∂M+M′u(x, t)
∂xM ∂tM′

∣∣
∣∣

1
M!M′!2M(k+1)–12M′(k′+1)–1 .

Since the interval [0, 1) is divided into 2k–1 (or 2k–1) subintervals [ n–1
2k–1 , n

2k–1 )
(or [ n′–1

2k′–1 , n′
2k′–1 )), the function u(x, t) is approximated on them by using the Laguerre

wavelets method as a polynomial of Mth (or Mth) degree at most with the least-square
property, we get

∥∥u(x, t) – um,m′ (x, t)
∥∥2

2 (42)

=
∫ 1

0

∫ 1

0

[
u(x, t) – um,m′ (x, t)

]2 dx dt

≤
∫ 1

0

∫ 1

0

[
u(x, t) – Pm,m′ (x, t)

]2 dx dt

≤
2k′–1∑

n′=1

2k–1∑

n=1

∫

In′ ,k′

∫

In,k

[
u(x, t) – pm,m′ (x, t)

]2 dx dt

≤
2k′–1∑

n′=1

2k–1∑

n=1

∫

In′ ,k′

∫

In,k

[
max(x,t)∈�

∣
∣∣∣
∂Mu(x, t)

∂xM

∣
∣∣∣

1
M!2M(k+1)–1

+ max(x,t)∈�

∣∣∣
∣
∂M′u(x, t)

∂tM′

∣∣∣
∣

1
M′!2M′(k′+1)–1

+ max(x,t)∈�

∣∣
∣∣
∂M+M′u(ξ ′, ζ ′)

∂xM ∂tM′

∣∣
∣∣

1
M!M′!2M(k+1)–12M′(k′+1)–1

]2

dx dt

≤
∫

In′ ,k′

∫

In,k

[
max(x,t)∈�

∣∣
∣∣
∂Mu(x, t)

∂xM

∣∣
∣∣

1
M!2M(k+1)–1

+ max(x,t)∈�

∣∣
∣∣
∂M′u(x, t)

∂tM′

∣∣
∣∣

1
M′!2M′(k′+1)–1
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+ max(x,t)∈�

∣
∣∣∣
∂M+M′u(x, t)
∂xM ∂tM′

∣
∣∣∣

1
M!M′!2M(k+1)–12M′(k′+1)–1

]2

dx dt.

Now, choose real numbers C1, C2, and C3 such that

max(x,t)∈�

∣
∣∣
∣
∂Mu(x, t)

∂xM

∣
∣∣
∣ ≤ C1, (43)

max(x,t)∈�

∣∣
∣∣
∂M′u(x, t)

∂tM′

∣∣
∣∣ ≤ C2, (44)

max(x,t)∈�

∣
∣∣
∣
∂M+M′u(x, t)
∂xM ∂tM′

∣
∣∣
∣ ≤ C3. (45)

By replacing (43), (44), and (45) in (42), we obtain

∥∥u(x, t) – um,m′ (x, t)
∥∥

2 (46)

≤ C1

M!2(k+1)M–1 +
C2

M′!2(k′+1)M′–1 +
C3

M!2(k+1)M–1M′!2(k′+1)M′–1 .

Relation (46) ensures the convergence of Laguerre wavelet approximation um,m′ (x, t) for
components of the Adomian series ui(x) at higher level of k and M, that is, when k and M
approach infinity. According to the convergence of the Adomian method [51],

∑N
i=0 ui(x, t)

converges to u(x, t) when N → ∞. According to this analysis, we conclude that the present
method converges to the exact solution of (42) whenever N and k, M approach infinity.
This completes the proof. �

For the special case M = M′ and k = k′, we have

∥∥u(x, t) – um,m′ (x, t)
∥∥

2 ≤ C′

M!2(k+1)M–1 +
C′

1
(M!)222M(k+1)–2 ,

where C′ = C1 + C2, C′
1 = C3, and um,m′ (x, t) is the best approximation of u(x, t).

6 Numerical examples
Now, using the method, we provide some illustrative examples. In the examples, exact so-
lutions are available and a comparison is made between the approximate Laguerre tech-
nique and the exact solutions to show the efficiency of the method.

Example 1 Consider the fractional Fisher equation

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 + 6u(x, t)
(
1 – u(x, t)

)
, 0 ≤ x, t ≤ 1, 0 < α ≤ 1, (47)

with boundary conditions

u(x, 0) =
1

(1 + ex)2 , u(0, t) =
1

(1 + e–5t)2 , u(1, t) =
1

(1 + e1–5t)2 .

For α = 1, the exact solution of (47) is u(x, t) = 1
(1+ex–5t )2 . By solving (47) for k = 3 and M = 5

by the Laguerre wavelet Adomian method (LWAM), the approximate solution obtained
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Figure 1 Absolute errors(AE) for different values of N, α = 1, k = 3, M = 5 in Example 1

Table 1 Absolute errors for N = 8, k = 3, M = 5, various values of α when it goes to α = 1, and
comparison of the absolute error with HPM [33] and MVIM [36] in Example 1

x = t ELWAM HPM MVIM

α = 0.35 α = 0.55 α = 0.75 α = 0.95 α = 1 α = 1 α = 1

0 2.5654e–07 7.7371e–07 1.3304e–06 2.4878e–06 2.0852e–08 0 0
0.1 3.0943e–03 2.5784e–03 1.8021e–03 4.2893e–04 1.0496e–06 6.4221e–04 1.0323e–04
0.2 5.0069e–05 1.4518e–04 5.8107e–04 1.5436e–04 1.2781e–06 9.8905e–03 1.9372e–03
0.3 6.0134e–03 4.7295e–03 2.9859e–03 5.8153e–04 2.6500e–06 4.7274e–02 1.3430e–02
0.4 9.8473e–03 7.7664e–03 4.9873e–03 1.1538e–03 9.4140e–06 1.3911e–01 4.2501e–02
0.5 9.3915e–03 7.2676e–03 4.6473e–03 1.1361e–03 2.0053e–05 3.1320e–01 9.4534e–02
0.6 6.2457e–03 4.6540e–03 2.8907e–03 7.0416e–04 1.9822e–05 5.9479e–01 1.7111e–01
0.7 2.8244e–03 1.9277e–03 1.1064e–03 2.1850e–04 4.4881e–05 1.0034e + 00 2.7047e–01
0.8 5.3751e–04 1.9959e–04 1.2624e–04 2.4006e–05 2.4770e–05 1.5504e + 00 3.8837e–01
0.9 3.1315e–04 3.5580e–04 2.9325e–04 6.4162e–05 2.3675e–05 2.2365e + 00 5.1885e–01
1 1.6365e–07 3.8611e–08 2.5677e–08 6.8794e–07 6.9133e–07 3.0511e + 00 6.5484e–01

by this method for N = 8 is uLWAM =
∑8

i=0 ui(x, t). We plotted in Fig. 1 the absolute errors
for various values of N = 1, 2, . . . , 8. As can be seen, by increasing the values of N absolute
errors are decreasing. Table 1 shows the comparison of absolute errors for different values
of α and the methods introduced in [33, 36]. Table 2 shows the comparison of absolute
errors for different values of M. Also, it says that by increasing of M absolute errors are
decreasing.

Example 2 Consider the fractional Fisher equation

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 + u(x, t)
(
1 – u(x, t)6), 0 ≤ x, t ≤ 1, 0 < α ≤ 1, (48)

with boundary conditions

u(x, 0) = 3

√
1

e 3x
2 + 1

, u(0, t) = 3

√
1

e –15t
4 + 1

, u(1, t) = 3

√
1

e –15t+6
4 + 1

.
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Table 2 Absolute errors for N = 8, different values of M, α = 1 in Example 1

x = t ELWAM

k = 2,M = 3 k = 2,M = 4 k = 2,M = 5 k = 2,M = 6

0 4.6930e–05 1.0559e–05 1.8124e–07 5.9985e–08
0.1 1.5318e–04 2.3859e–04 3.2965e–05 1.5931e–05
0.2 5.2275e–04 3.9222e–05 3.0829e–05 1.5770e–05
0.3 9.9374e–04 2.2407e–04 3.8803e–05 1.2037e–05
0.4 1.4868e–03 4.0119e–04 9.3107e–05 1.9967e–05
0.5 1.9331e–03 6.9119e–04 2.1975e–04 2.0484e–05
0.6 1.4577e–03 6.5306e–04 1.4629e–04 1.0167e–05
0.7 4.2596e–04 1.7905e–05 6.3265e–05 5.0338e–05
0.8 1.9582e–04 1.5374e–05 3.1038e–05 3.0724e–05
0.9 2.4997e–04 8.9176e–05 7.1429e–06 1.7008e–06
1 1.7706e–03 4.4301e–04 5.0532e–06 7.7092e–07

Figure 2 Absolute errors(AE) for different values of N, α = 1, k = 2, M = 8 in Example 2

For α = 1, the exact solution of (48) is u(x, t) = 3
√

1

e
–15t+6x

4 +1
. We solve (48) for k = 3 and

M = 5 by the LWAM. The approximate solution for N = 6 is uLWAM =
∑6

i=0 ui(x, t). We
plotted in Fig. 2 the absolute errors for various values of N = 1, 2, . . . , 6. One can check that
by increasing the values of N absolute errors are decreasing. Table 3 shows the comparison
of absolute errors for different values of α and the method introduced in [33, 36]. Table 4
shows the comparison of absolute errors for different values of k and M. Also it shows that
by increasing of k and M absolute errors are decreasing.

Example 3 Consider the following singular fractional time-dependent Emden–Fowler
equation (see [38]):

∂αu(x, t)
∂tα

=
∂2u(x, t)

∂x2 +
2
x

∂u(x, t)
∂x

– 2t
(
x2 – 3t

)
eu(x,t) – 4t4x2e2u(x,t) (0 < α ≤ 1), (49)

with boundary conditions

u(x, 0) = –ln(3), u(0, t) = –ln(3), u(1, t) = –ln
(
3 + t2) (0 < x, t ≤ 1).
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Table 3 Absolute errors for N = 6, k = 3, M = 5, when α goes to 1, and comparison with HPM [33]
and MVIM [36] in Example 2

x = t ELWAM MVIM HPM

α = 0.3 α = 0.5 α = 0.7 α = 0.9 α = 1 α = 1 α = 1

0 3.0971e–07 7.8336e–07 1.9749e–07 2.1290e–07 4.9380e–08 0 0
0.1 2.6629e–03 2.1378e–03 1.4414e–03 5.4346e–04 1.7958e–08 2.1033e–02 3.3842e–02
0.2 5.1413e–03 4.0180e–03 2.6911e–03 9.7438e–04 9.3708e–08 4.1746e–02 8.2808e–02
0.3 6.4672e–03 4.9687e–03 3.2217e–03 1.1902e–03 1.7236e–06 5.7486e–02 1.5791e–01
0.4 6.2466e–03 4.6376e–03 2.9121e–03 1.0360e–03 1.2635e–05 6.3948e–02 2.7260e–01
0.5 4.6054e–03 3.2695e–03 1.9703e–03 6.5305e–04 2.7198e–05 5.8513e–02 4.4153e–01
0.6 2.3633e–03 1.4515e–03 7.7456e–04 1.9034e–04 1.4013e–05 4.1063e–02 6.7895e–01
0.7 2.5723e–04 1.6945e–04 3.7950e–04 1.8025e–04 3.2969e–05 1.3997e–02 9.9730e–01
0.8 1.0251e–03 1.0588e–03 8.4048e–04 3.3244e–04 5.6001e–05 1.8477e–02 1.4059e+00
0.9 1.1122e–03 1.0186e–03 7.6367e–04 2.8646e–04 2.4918e–05 5.1444e–02 1.9104e+00
1 1.9387e–06 2.2032e–07 2.3431e–07 3.0510e–07 4.7726e–08 8.0369e–02 2.5119e+00

Table 4 Absolute errors for N = 6, different values of k, M, α = 1 in Example 2

x = t ELWAM

k = 2,M = 3 k = 3,M = 4 k = 4,M = 5

0 2.4316e–05 6.9503e–10 7.8160e–13
0.1 9.6999e–06 6.7663e–08 3.8961e–09
0.2 1.3778e–04 8.0884e–07 8.2865e–08
0.3 2.9538e–05 1.2498e–05 1.7223e–06
0.4 2.0527e–04 1.2532e–05 1.1628e–05
0.5 1.4936e–05 2.7802e–05 2.5275e–05
0.6 1.9831e–04 1.3978e–05 1.1878e–05
0.7 1.3270e–04 3.3504e–05 3.2985e–05
0.8 2.2554e–04 5.4850e–05 5.1029e–05
0.9 1.1613e–04 2.4786e–05 2.4947e–06
1 1.3348e–06 1.5250e–07 2.9396e–10

For α = 1, the exact solutions of (49) is u(x, t) = –ln(3 + (xt)2). We solve (49) for k = 2
and M = 6 by the LWAM. The approximate solution obtained by this method for N = 6
is uLWAM =

∑6
i=0 ui(x, t). We plotted in Fig. 3 the absolute errors for various values of N =

1, 2, . . . , 6. You can see that by increasing the values of N absolute errors are decreasing.
Table 5 shows the comparison of absolute errors for different values of α. For the case α = 1,
with the method introduced in [38]. In Figs. 4, 5 and 6, we plotted the Laguerre wavelet
Adomian approximate solution, the exact solution, and the absolute error for k = 2, M = 6,
α = 1, and N = 6.

7 Conclusion
By using the Laguerre wavelets and the Adomian decomposition method, we tried to pro-
vide appropriate numerical solutions for some partial fractional differential equations. We
compared our results with some other methods. Also, we gave some illustrative examples
which showed that the method is an effective tool to solve the time-fractional order Fisher
equations and the singular nonlinear Emden–Fowler equation. We summarize the advan-
tages of the present methods as follows.

1) Instead of operational derivative, we used the operational integral matrix with ini-
tial conditions taken into automatically, so we did not need to choose the base to satisfy
them.
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Figure 3 Absolute errors(AE) for different values of N, α = 1, k = 2, M = 6 in Example 3

Table 5 Absolute errors for N = 6, k = 2, M = 6, t = 0.5, different values of α going to α = 1, and
comparison with MHPM [38] in Example 3

x ELWAM MHPM

α = 0.35 α = 0.55 α = 0.75 α = 0.95 α = 1 α = 1

0 4.6662e–03 3.4950e–03 2.1218e–03 4.6913e–04 3.8159e–10 7.6700e–05
0.1 5.8458e–03 4.3789e–03 2.6579e–03 5.8746e–04 4.9973e–10 7.5500e–05
0.2 5.7294e–03 4.2927e–03 2.6040e–03 5.7483e–04 5.7220e–10 7.2100e–05
0.3 5.6445e–03 4.2305e–03 2.5638e–03 5.6477e–04 6.9755e–10 6.6600e–05
0.4 5.4712e–03 4.1021e–03 2.4826e–03 5.4528e–04 8.5924e–10 5.9100e–05
0.5 5.2732e–03 3.9547e–03 2.3895e–03 5.2296e–04 1.0573e–09 5.0200e–05
0.6 5.5037e–03 4.1274e–03 2.4911e–03 5.4372e–04 1.3137e–09 4.0100e–05
0.7 5.2611e–03 3.9447e–03 2.3779e–03 5.1743e–04 1.4914e–09 2.9500e–05
0.8 4.3288e–03 3.2448e–03 1.9531e–03 4.2336e–04 1.4557e–09 1.8900e–05
0.9 2.6220e–03 1.9646e–03 1.1806e–03 2.5472e–04 1.0271e–09 8.9000e–06
1 5.7437e–06 4.1966e–06 2.4787e–06 4.6029e–07 8.8132e–12 2.2200e–16

Figure 4 Approximate solution for k = 2, M = 6, α = 1,
N = 6 in Example 3

2) Instead of approximating the integral operation by the use of black-pulse functions
or any approximation, the fractional integral operation has been directly obtained to get
a better approximation.

3) With respect to the wavelet bases used and transforming the nonlinear problem into
the algebraic equations, we obtained good results by performing few calculations and res-
olution.
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Figure 5 Exact solution for k = 2, M = 6, α = 1, N = 6 in
Example 3

Figure 6 Absolute error for k = 2, M = 6, α = 1,
N = 6 in Example 3

4) Operational Laguerre wavelet matrix is sparse, so solving a system of algebraic equa-
tions obtained by using LWAM is simple and fast.
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