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Abstract
In this paper, we model the insurance company’s surplus by a compound Poisson risk
model, where the surplus process can only be observed at random observation times.
It is assumed that the insurer observes its surplus level periodically to decide on
dividend payments and capital injection at the interobservation time having an
Erlang(n) distribution. If the observed surplus level is greater than zero but less than
injection line b1 > 0, the shareholders should immediately inject a certain amount of
capital to bring the surplus level back to the injection line b1. If the observed surplus
level is larger than dividend line b2 (b2 > b1), any excess of the surplus over b2 is
immediately paid out as dividends to the shareholders of the company. Ruin is
declared when the observed surplus level is negative. We derive the explicit
expressions of the Gerber–Shiu function, the expected discounted capital injection,
and the expected discounted dividend payments. Numerical illustrations are also
given to analyze the effect of random observation times on actuarial quantities.
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1 Introduction
Following the classical risk model introduced by Lundberg [1], we suppose that the sur-
plus process of an insurance company, denoted by {X(t)}t≥0, follows the classical Cramér-
Lundberg process,

X(t) = u + ct – S(t) = u + ct –
N(t)∑

k=1

Yk , t ≥ 0, (1)

where u ≥ 0 is an initial surplus, or capital, c > 0 is the constant premium income per
unit time. The aggregate insurance claim process S(t) =

∑N(t)
k=1 Yk is a compound Poisson

process, where N(t) is a Poisson process with intensity parameter λ, which represents the
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number of claims up to time t; {Yk}k≥1 is a sequence of positive, independent, and identi-
cally distributed random variables representing the claim amount. As usual, {N(t)}t≥0 and
{Yk}k≥1 are independent of each other.

At present, the classical insurance risk model and its extended forms, such as dividend
strategy, capital injection strategy, investment strategy, reinsurance strategy, etc., have
been studied by many scholars, interested readers may refer to Gerber and Shiu [2], Chi
and Lin [3], Yu [4], Yin et al. [5], Shen et al. [6], Yu et al. [7, 8], Zhou et al. [9, 10], Xu et al.
[11], Yin and Wen [12], Dong et al. [13], Li et al. [14], Peng and Wang [15], Yao et al. [16],
He and Liang [17], and Zhu and Yang [18]. It should be stressed in particular that the above
dividend and capital injection are all considered as continuous, but this is not consistent
with the actual situation. In the actual economic activities, the board of directors of the
company generally holds a meeting at certain periods of time, and then decides whether
to pay dividends to shareholders or inject capital into the insurance company, which result
in that dividend payments or capital injection occurs at some discrete time points rather
than at continuous time points, so the periodic dividend strategy or periodic capital in-
jection is more in line with the actual situation. Therefore, it is necessary to study this
kind of risk model with randomized observation. Albrecher et al. [19] study a modifica-
tion of the horizontal dividend barrier strategy by introducing random observation times
at which dividends can be paid and ruin can be observed. Avanzi et al. [20] study a peri-
odic dividend barrier strategy in the dual model with continuous monitoring of solvency.
Zhao et al. [21] investigate an optimal periodic dividend and capital injection problem for
spectrally positive Lévy processes, and both proportional and fixed transaction costs from
capital injection are considered. Zhang et al. [22] and Cheung and Zhang [23] study peri-
odic dividend threshold-type strategy under a compound Poisson risk model, in which the
observation interval follows the Erlang distribution. Peng et al. [24] consider a perturbed
compound Poisson model and suppose that the insurance company can only observe the
surplus process and decide whether to pay dividends at some discrete time points. Pérez
and Yamazaki [25] and Noba et al. [26] study the optimality of periodic barrier strategies
for a spectrally positive Lévy process and Lévy risk processes, respectively. Other relevant
literature can be found in Yang and Deng [27], Dong and Zhou [28], Dong and Zhao [29],
Yang et al. [30], Liu et al. [31], and Yu et al. [32].

In this paper, we assume that the insurance company can only observe the surplus pro-
cess at a series of discrete time points {Zk}∞k=1 (i.e., Zk is the kth observation time, with
Z0 = 0). Let Tk = Zk – Zk–1 (k = 1, 2, . . .)denote the kth interobservation time and assume
that {Tk}∞k=1 is an i.i.d. sequence distributed as a generic random variable T and indepen-
dent of {N(t)}t≥0 and {Yk}k≥1. Under the above discrete assumptions, we introduce the
periodic dividend strategy and capital injection strategy into the classic risk model (1).
At the time of observation Zk , if the current surplus u of the insurance company is less
than zero, ruin occurs immediately. If the current surplus u is greater than zero but less
than injection line b1 (b1 > 0), the shareholders should immediately inject capital b1 – u
to bring the surplus level back to the injection line b1. If the current surplus u exceeds
the dividend line b2 (b2 > b1), a lump sum dividend payments of size u – b2 will be paid
immediately. Ruin is declared when the observed surplus level is negative (see Fig. 1). In
addition, we assume that no matter what the level of surplus is, ruin, capital injection, div-
idend payments, and other acts will not happen outside the observation time point. With
the above-defined dividend and capital injection rules, denote the sequences of surplus
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Figure 1 Sample path of X
b2
b1
(k)

levels at the time points {Z–
k }∞k=1 and {Zk}∞k=1 by {Xb2

b1
(k)}∞k=0 and {W b2

b1
(k)}∞k=0, respectively,

i.e., {Xb2
b1

(k)}∞k=0 and {W b2
b1

(k)}∞k=0 are the surplus levels at the kth observation before (after,
respectively) potential dividend payments or capital injection. With initial surplus level
Xb2

b1
(0) = W b2

b1
(0) = u, that is, at time zero, neither capital injection nor dividend payments

are required, we then have the following surplus process of the modified risk model:

⎧
⎨

⎩
Xb2

b1
(k) = W b2

b1
(k – 1) + X(Zk) – X(Zk–1), k = 1, 2, . . . ,

W b2
b1

(k) = min[max(Xb2
b1

(k), b1), b2].
(2)

We then let τ
b2
b1

be the ruin time defined as τ
b2
b1

= Zk∗ , where k∗ = inf{k ≥ 1|Xb2
b1

(k) <
0}. In this paper, we are interested in studying the Gerber–Shiu function, the expected
discounted capital injection and the expected discounted dividend payments.

The Gerber–Shiu function is defined as follows:

�δ(u) = E
[
e–δτ

b2
b1 ω

(∣∣Xb2
b1

(
k∗)∣∣)I{τb2

b1
<∞}|X

b2
b1

(0) = u
]
, (3)

where δ is the force of interest, IA is the indicator function of the event A. The quantity ω(x)
is a nonnegative measurable function defined on [0,∞) that can be interpreted as a penalty
at the time of ruin for a deficit upon ruin of |Xb2

b1
(k∗)|. In particular, if the function ω(x) ≡ 1

and δ > 0, then �δ(u) = E[e–δτ
b2
b1 I{τb2

b1
<∞}|X

b2
b1

(0) = u] represents the Laplace transformation

of the ruin time. The relevant references of Gerber–Shiu function can be found in Gerber
and Shiu [33], Lin et al. [34], Willmot and Dickson [35], Li et al. [36], Huang et al. [37],
Zhang and Su [38], Preischl and Thonhauser [39], Zhang et al. [40], and Palmowski and
Vatamidou [41].

The expected discounted capital injection is described by

�(u) = E

[ ∞∑

k=1

e–δZk χ1
(
b1 – Xb2

b1
(k)

)
I{Zk <τ

b2
b1

}

∣∣∣Xb2
b1

(0) = u

]
, (4)

where the function χ1(x) is a nonnegative function of the amount of capital injection for
x ∈ (0, b1], and χ1(x) = 0 for x ≤ 0.



Yu et al. Advances in Difference Equations        (2021) 2021:220 Page 4 of 24

The expected discounted dividend payments are defined as follows:

φ(u) = E

[ ∞∑

k=1

e–δZk χ2
(
Xb2

b1
(k) – b2

)
I{Zk <τ

b2
b1

}
∣∣∣Xb2

b1
(0) = u

]
, (5)

where the function χ2(x) is a nonnegative function of the amount of dividends payment
for x > 0, and χ2(x) = 0 for x ≤ 0.

In order to facilitate the description of the formula, we preprocess the model as follows.
It is assumed that the interobservation time T follows the Erlang(n,γ ) distribution with
density

hT (t) =
γ ntn–1e–γ t

(n – 1)!
, t > 0,γ > 0, (6)

and the claim amount Y follows an arbitrary distribution on (0, +∞). The density function
of Y is fY (y), the corresponding Laplace transformation is

f̃Y (s) =
∫ ∞

0
e–syfY (y) dy, (7)

and assume that f̃Y (s) can be rewritten as follows:

f̃Y (s) =
Q2,r–1(s)
Q1,r(s)

, (8)

where Q1,r(s) is a polynomial in s of degree r, Q2,r–1(s) is a polynomial in s of degree at most
r – 1. We also suppose that Q1,r(s) and Q2,r–1(s) have no common zeros, and Q1,r(s) has
leading coefficient 1. According to Albrecher et al. [42], the pairs (Tk , Xb2

b1
(k – 1) – Xb2

b1
(k))

(k = 1, 2, . . .) form an i.i.d. sequence with generic distribution (T ,
∑N(t)

i=1 Yi – cT), and joint
Laplace transform

E
[
e–δT–s(

∑N(t)
i=1 Yi–cT)] = E

[
e–(δ–cs)T E

[
e–s

∑N(t)
i=1 Yi |T]]

= E
[
e–{(δ–cs)T+λ[1–f̃Y (s)]T}]

=
(

γ

γ + δ – cs + λ[1 – f̃Y (s)]

)n

. (9)

In addition, the above formula can be changed into the following form:

E
[
e–δT–s(

∑N(t)
i=1 Yi–cT)] =

∫ +∞

–∞
e–sygδ(y) dy, (10)

where gδ(y) is the discounted density function of the increment
∑N(t)

i=1 Yi – cT between
successive observation times. According to the variable y being positive or negative, we
can decompose gδ(y) as follows:

gδ(y) = gδ,–(–y)I{y<0} + gδ,+(y)I{y>0}, –∞ < y < +∞. (11)
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Albrecher et al. [42] prove that as long as the density function of the claim amount satisfies
f̃Y (s) = Q2,r–1(s)

Q1,r (s) , gδ,–(y) and gδ,+(y) in the above formula have the following expressions:

gδ,–(y) =
n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
, gδ,+(y) =

r∑

i=1

n∑

j=1

Bij
yj–1e–kiy

(j – 1)!
, (12)

where ργ is the only positive root of the equation cs – (λ + γ + δ) + λf̃Y (s) = 0, {–ki}r
i=1 is

the negative root of the equation, and

B∗
j = (–1)n–j

(
γ

c

)n 1
(n – j)!

dn–j

dsn–j
[Q1,r(s)]n

∏r
l=1(s + kl)n

∣∣∣∣
s=ργ

, j = 1, 2, . . . , n; (13)

Bij =
(

γ

c

)n 1
(n – j)!

dn–j

dsn–j
[Q1,r(s)]n

(ργ – s)n ∏r
l=1,l �=i(s + kl)n

∣∣∣∣
s=–ki

,

i = 1, 2, . . . , r; j = 1, 2, . . . , n. (14)

The layout of the paper is as follows: Sect. 2 presents the explicit expressions for the
Gerber–Shiu function. Similarly, the expected discounted capital injection and the ex-
pected discounted dividend payments are studied in Sects. 3 and 4, respectively. In Sect. 5
we present some examples to show the effect of relevant parameters on the actuarial func-
tion.

2 Gerber–Shiu function
According to the first observation whether ruin occurs, the Gerber–Shiu function of the
risk model with capital injection and barrier dividend strategy can be written as follows:

�δ(u) =
∫ ∞

0

[
�δ(u + y)I{u+y≤b2} + �δ(b2)I{u+y>b2}

]
gδ,–(y) dy

+
∫ u

0

[
�δ(u – y)I{u–y≥b1} + �δ(b1)I{u–y<b1}

]
gδ,+(y) dy

+
∫ ∞

u
w(y – u)gδ,+(y) dy. (15)

Taking the expression of gδ,–(y) into the first integral of Eq. (15), we have

∫ ∞

0

[
�δ(u + y)I{u+y≤b2} + �δ(b2)I{u+y>b2}

]
gδ,–(y) dy

=
∫ b2–u

0
�δ(u + y)gδ,–(y) dy +

∫ ∞

b2–u
�δ(b2)gδ,–(y) dy

=
∫ b2–u

0
�δ(u + y)

n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
dy

+
∫ ∞

b2–u
�δ(b2)

n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
dy. (16)
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For the expression
∫ b2–u

0 �δ(u + y)
∑n

j=1 B∗
j

yj–1e–ργ y

(j–1)! dy, let z = u + y. Then y = z – u, and thus
we get

∫ b2–u

0
�δ(u + y)

n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
dy

=
n∑

j=1

B∗
j

∫ b2–u

0
�δ(u + y)

yj–1

(j – 1)!
e–ργ y dy

=
n∑

j=1

B∗
j

∫ b2

u
�δ(z)

(z – u)j–1

(j – 1)!
e–ργ (z–u) dz. (17)

For
∫ ∞

b2–u �δ(b2)
∑n

j=1 B∗
j

yj–1e–ργ y

(j–1)! dy, we have

�δ(b2)
∫ ∞

b2–u

n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
dy

= �δ(b2)
n∑

j=1

B∗
j

∫ ∞

b2–u

yj–1e–ργ y

(j – 1)!
dy

= �δ(b2)
n∑

j=1

B∗
j

j∑

l=1

1
ρ

j+1–l
γ

(b2 – u)l–1

(l – 1)!
e–ργ (b2–u)

= �δ(b2)
n∑

j=1

B∗
j

j∑

l=1

1
ρ

j+1–l
γ

l∑

m=1

bl–m
2

(l – m)!
(–u)m–1

(m – 1)!
e–ργ b2 eργ u

= �δ(b2)
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
ρ

j+1–l
γ

bl–m
2 e–ργ b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u. (18)

Substituting the expression of gδ,+(y) into the second integral of Eq. (15), we have

∫ u

0

[
�δ(u – y)I{u–y≥b1} + �δ(b1)I{u–y<b1}

]
gδ,+(y) dy

=
∫ u–b1

0
�δ(u – y)gδ,+(y) dy + �δ(b1)

∫ u

u–b1

gδ,+(y) dy. (19)

For the expression
∫ u–b1

0 �δ(u – y)gδ,+(y) dy, let z = u – y. Then y = u – z, and thus

∫ u–b1

0
�δ(u – y)gδ,+(y) dy =

r∑

i=1

n∑

j=1

Bij

∫ u

b1

�δ(z)
(u – z)j–1

(j – 1)!
e–ki(u–z) dz. (20)

For �δ(b1)
∫ u

u–b1
gδ,+(y) dy, we have

�δ(b1)
∫ u

u–b1

gδ,+(y) dy

= �δ(b1)
[∫ u

0
gδ,+(y) dy –

∫ u–b1

0
gδ,+(y) dy

]
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= �δ(b1)

{ r∑

i=1

n∑

j=1

Bij

[
1
kj

i

–
j∑

l=1

1
kj+1–l

i

ul–1

(l – 1)!
e–kiu

]

–
r∑

i=1

n∑

j=1

Bij

[
1
kj

i

–
j∑

l=1

1
kj+1–l

i

(u – b1)l–1

(l – 1)!
e–ki(u–b1)

]}

= �δ(b1)
r∑

i=1

n∑

j=1

Bij

j∑

l=1

1
kj+1–l

i

[
(u – b1)l–1

(l – 1)!
e–ki(u–b1) –

ul–1

(l – 1)!
e–kiu

]

= �δ(b1)
r∑

i=1

n∑

j=1

Bij

j∑

l=1

1
kj+1–l

i

l∑

m=1

(–b1)l–m

(l – m)!
um–1

(m – 1)!
e–kiuekib1

– �δ(b1)
r∑

i=1

n∑

j=1

Bij

j∑

l=1

1
kj+1–l

i

ul–1

(l – 1)!
e–kiu

= �δ(b1)
r∑

i=1

n∑

m=1

n∑

i=m

n∑

j=l

Bij
1

kj+1–l
i

(–bl)l–m

(l – m)!
ekib1

um–1

(m – 1)!
e–kiu

– �δ(b1)
r∑

i=1

n∑

m=1

n∑

j=m

Bij
1

kj+1–m
i

um–1

(m – 1)!
e–kiu. (21)

Now we consider the third integral of Eq. (15). Let z = y – u, then y = z + u, and thus the
integral can be written as follows:

∫ ∞

u
w(y – u)gδ,+(y) dy

=
∫ ∞

0
w(z)gδ,+(u + z) dz

=
∫ ∞

0
w(z)

r∑

i=1

n∑

j=1

Bij
(u + z)j–1

(j – 1)!
e–ki(u+z) dz

=
r∑

i=1

n∑

j=1

Bij

∫ ∞

0
w(z)

j∑

m=1

zj–m

(j – m)!
um–1

(m – 1)!
e–ki(u+z) dz

=
r∑

i=1

n∑

m=1

n∑

j=m

Bij
um–1

(m – 1)!
e–kiu

∫ ∞

0
w(z)

zj–m

(j – m)!
e–kiz dz. (22)

Applying the operator ( d
du – ργ )n ∏r

i=1( d
du + ki)n simultaneously on both sides of Eq. (15),

the left-hand side is clearly zero. The corresponding right-hand side result depends on
the situation after the action of operators on the three right-hand side integrals. Due to
( d

du – ργ )m(um–1eργ x) = 0 and ( d
du + ki)l(ul–1e–kix) = 0, the results of the above operators

acting on (18), (21), and (22) are 0, and then we have

(
d

du
– ργ

)j ∫ b2

u
�δ(z)(–1)j–1 (u – z)j–1

(j – 1)!
eργ (u–z) dz = (–1)j�δ(u),

(
d

du
+ ki

)j ∫ u

b1

�δ(z)
(u – z)j–1

(j – 1)!
e–ki(u–z) dz = �δ(u).
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Therefore, the higher-order differential equation of �δ(u) can be obtained as

(
d

du
– ργ

)n r∏

i=1

(
d

du
+ ki

)n

�δ(u)

=
r∏

i=1

(
d

du
+ ki

)n( d
du

– ργ

)n–j( d
du

– ργ

)j n∑

j=1

B∗
j

∫ b2

u
�δ(z)

(z – u)j–1

(j – 1)!
e–ργ (z–u) dz

+
(

d
du

– ργ

)n r∏

i=1

(
d

du
+ ki

)n–j( d
du

+ ki

)j

×
r∑

i=1

n∑

j=1

Bij

∫ u

b1

�δ(z)
(u – z)j–1

(j – 1)!
e–ki(u–z) dz

=
n∑

j=1

(–1)jB∗
j

r∏

i=1

(
d

du
+ ki

)n( d
du

– ργ

)n–j

�δ(u)

+
r∑

i=1

n∑

j=1

Bij

(
d

du
– ργ

)n r∏

i=1

(
d

du
+ ki

)n–j

�δ(u). (23)

Solving the above equation, the general solution form of �δ(u) can be obtained as follows:

�δ(u) =
n(r+1)∑

z=1

Czeαzu, (24)

where αZ is the characteristic root corresponding to the above higher-order differ-
ential equation, and Albrecher et al. [42] proved that αZ is the root of the equation
E[e–δT–s(

∑N(t)
i=1 Yi–cT)] = 1 with respect to s. We now substitute formula (24) into Eq. (15),

and calculate the three integrals, which are recorded as H1, H2, H3, respectively. The first
integral is calculated as follows:

H1 =
∫ ∞

0

[
�δ(u + y)I{u+y≤b2} + �δ(b2)I{u+y>b2}

]
gδ,–(y) dy

=
∫ b2–u

0
�δ(u + y)gδ,–(y) dy + �δ(b2)

∫ ∞

b2–u
gδ,–(y) dy,

where

∫ b2–u

0
�δ(u + y)gδ,–(y) dy

=
∫ b2–u

0

n(r+1)∑

z=1

Czeαz(u+y)
n∑

j=1

B∗
j

yj–1e–ργ y

(j – 1)!
dy

=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

∫ b2–u

0

yj–1

(j – 1)!
e–(ργ –αz)y dy

=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

[
1

(ργ – αz)j –
j∑

i=1

1
(ργ – αz)j+1–l

(b2 – u)l–1

(l – 1)!
e–(ργ –αz)(b2–u)

]
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=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j –

n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

j∑

l=1

(b2 – u)l–1e–(ργ –αz)(b2–u)

(ργ – αz)j+1–l(l – 1)!

=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j –

n(r+1)∑

z=1

Cz

n∑

l=1

n∑

j=l

B∗
j

(b2 – u)l–1e–(ργ –αz)(b2–u)

(ργ – αz)j+1–l(l – 1)!

=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j

–
n(r+1)∑

z=1

Cz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
(ργ – αz)j+1–l

bl–m
2

(l – m)!
e(αz–ργ )b2

(–1)m–1um–1

(m – 1)!
eργ u,

and

�δ(b2)
∫ ∞

b2–u
gδ,–(y) dy

= �δ(b2)
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
ρ

j+1–l
γ

bl–m
2

(l – m)!
e–ργ b2 (–1)m–1 um–1

(m – 1)!
eργ u

=
n(r+1)∑

z=1

Cz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
ρ

j+1–l
γ

bl–m
2

(l – m)!
e(αz–ργ )b2 (–1)m–1 um–1

(m – 1)!
eργ u.

Thus, we have

H1 =
∫ ∞

0

[
�δ(u + y)I{u+y≤b2} + �δ(b2)I{u+y>b2}

]
gδ,–(y) dy

=
n(r+1)∑

z=1

Czeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j

+
n(r+1)∑

z=1

Cz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u. (25)

The second integral is calculated as follows:

H2 =
∫ u

0

[
�δ(u – y)I{u–y≥b1} + �δ(b1)I{u–y<b1}

]
gδ,+(y) dy

=
∫ u–b1

0
�δ(u – y)gδ,+(y) dy + �δ(b1)

∫ u

u–b1

gδ,+(y) dy,

where

∫ u–b1

0
�δ(u – y)gδ,+(y) dy

=
∫ u–b1

0

n(r+1)∑

z=1

Czeαz(u–y)
r∑

i=1

n∑

j=1

Bij
yj–1

(j – 1)!
e–kiy dy
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=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij

∫ u–b1

0

yj–1

(j – 1)!
e–(ki+αz)y dy

=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij

[
1

(ki + αz)j –
j∑

l=1

1
(ki + αz)j+1–l

(u – b1)l–1

(l – 1)!
e–(ki+αz)(u–b1)

]

=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

–
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij

j∑

l=1

1
(ki + αz)j+1–l

(u – b1)l–1

(l – 1)!
e–(ki+αz)ue(ki+αz)b1

=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

–
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

l=1

n∑

j=l

Bij
1

(ki + αz)j+1–l
(u – b1)l–1

(l – 1)!
e–kiue(ki+αz)b1

=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

–
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bij
1

(ki + αz)j+1–l
(–b1)l–m

(l – m)!
e(ki+αz)b1

um–1

(m – 1)!
e–kiu,

and

�δ(b1)
∫ u

u–b1

gδ,+(y) dy

= �δ(b1)
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bij
1

kj+1–l
i

(–b1)l–m

(l – m)!
ekib1

um–1

(m – 1)!
e–kiu

– �δ(b1)
r∑

i=1

n∑

m=1

n∑

j=m

Bij
1

kj+1–m
i

um–1

(m – 1)!
e–kiu

= �δ(b1)
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bij
1

kj+1–l
i

(–b1)l–m

(l – m)!
ekib1

um–1

(m – 1)!
e–kiu

– �δ(b1)
r∑

i=1

n∑

m=1

n∑

j=m

Bij
1

kj+1–m
i

um–1

(m – 1)!
e–kiu

=
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij
1

kj+1–l
i

e(ki+αz)b1
(–b1)l–m

(l – m)!
–

n∑

j=m

Bij
eαzb1

kj+1–m
i

]

× um–1

(m – 1)!
e–kiu.
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Thus, we have

H2 =
∫ u

0

[
�δ(u – y)I{u–y≥b1} + �δ(b1)I{u–y<b1}

]
gδ,+(y) dy

=
n(r+1)∑

z=1

Czeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

–
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bij
1

(ki + αz)j+1–l
(–b1)l–m

(l – m)!
e(ki+αz)b1

um–1

(m – 1)!
e–kiu

+
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij
e(ki+αz)b1

kj+1–l
i

(–b1)l–m

(l – m)!
–

n∑

j=m

Bij
1

kj+1–m
i

eαzb1

]

× um–1

(m – 1)!
e–kiu

=
n(r+1)∑

z=1

Czeαzx
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

+
n(r+1)∑

z=1

Cz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)
e(ki+αz)b1

(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–l
i

eαzb1

]
um–1

(m – 1)!
e–kiu. (26)

The third integral is calculated as follows:

H3 =
∫ ∞

u
w(y – u)gδ,+(y) dy =

r∑

i=1

n∑

j=1

Bij

∫ ∞

u
w(y – u)

yj–1e–kiy

(j – 1)!
dy. (27)

Plugging the integrals (25)–(27) into the Eq. (15), we have

�δ(u) =
n(r+1)∑

z=1

Czeαzu

[ n∑

j=1

B∗
j

1
(ργ – αz)j +

r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

]

+
n∑

m=1

n(r+1)∑

z=1

Cz

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
e–ργ u

+
r∑

i=1

n∑

m=1

[n(r+1)∑

z=1

Cz

n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)
e(ki+αz)b1

(–b1)l–m

(l – m)!

–
n(r+1)∑

z=1

Cz

n∑

j=m

Bij
1

kj+1–l
i

eαzb1

]
um–1

(m – 1)!
e–kiu

+
r∑

i=1

n∑

j=1

Bij

∫ ∞

u
w(y – u)

yj–1e–kiy

(j – 1)!
dy. (28)
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When the penalty function w(y – u) is determined, n(r + 1) equations with coefficients
Cz can be obtained from Eq. (28). Based on this, the parameters contained in �δ(u) =∑n(r+1)

z=1 Czeαzu can be obtained, and then the corresponding Gerber–Shiu function can be
obtained.

3 Expected discounted capital injection
Similar to solving for the Gerber–Shiu function, we can get the integral equation satisfied
by the expected discounted capital injection

�(u) =
∫ ∞

0

[
�(u + y)I{u+y≤b2} + �(b2)I{u+y>b2}

]
gδ,–(y) dy

+
∫ x

0

[
�(u – y)I{u–y≥b1} +

(
χ1

(
b1 – (u – y)

)
+ �(b1)

)
I{u–y<b1}

]

× gδ,+(y) dy. (29)

For the following integral

∫ u

0
χ1

(
b1 – (u – y)

)
I{u–y<b1}gδ,+(y) dy =

∫ u

u–b1

χ1
(
b1 – (u – y)

)
gδ,+(y) dy, (30)

let z = b1 – (u – y), and then y = z – b1 + u. After bringing gδ,+(y) into integral (30), the above
integral can be simplified as follows:

∫ u

0
χ1

(
b1 – (u – y)

)
I{u–y<b1}gδ,+(y) dy

=
∫ u

u–b1

χ1
(
b1 – (u – y)

)
gδ,+(y) dy

=
∫ b1

0
χ1(z)gδ,+(z – b1 + u) dz

=
r∑

i=1

n∑

j=1

Bije–ki(u–b1)
∫ b1

0
χ1(z)

(z + (x – b1))j–1

(j – 1)!
e–kiz dz

=
r∑

i=1

n∑

j=1

Bije–ki(u–b1)
∫ b1

0
χ1(z)

j∑

l=1

(x – b1)l–1zj–l

(l – 1)!(j – l)!
e–kiz dz

=
r∑

i=1

n∑

j=1

Bije–ki(u–b1)
j∑

l=1

(u – b1)l–1

(l – 1)!

∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz

=
r∑

i=1

n∑

j=1

Bije–ki(u–b1)
j∑

l=1

l∑

m=1

um–1(–b1)l–m

(m – 1)!(l – m)!

∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz

=
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bijekib1
(–b1)l–m

(l – m)!
um–1

(m – 1)!
e–kiu

∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz. (31)

The operation with other integrals is exactly the same as that of the related integral in
the Gerber–Shiu function. By applying the operator ( d

du –ργ )n ∏r
i=1( d

du + ki)n on both sides
of Eq. (29) at the same time, a higher-order differential equation for �(u) can be obtained.
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The general solution to this equation can be obtained as follows:

�(u) =
n(r+1)∑

z=1

Azeαzu, (32)

where αZ is also the characteristic root corresponding to the above higher-order differen-
tial equation. Now substitute formula (32) into Eq. (29), and calculate the two integrals on
the right. The first integral in Eq. (29) can be directly obtained by using the result for the
related integral in Eq. (15) as

∫ ∞

0

[
�(u + y)I{u+y≤b2} + �(b2)I{u+y>b2}

]
gδ,–(y) dy

=
∫ b2–u

0
�(u + y)gδ,–(y) dy + �(b2)

∫ ∞

b2–u
gδ,–(y) dy

=
n(r+1)∑

z=1

Azeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j

+
n(r+1)∑

z=1

Az

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u. (33)

By (31), the second integral of Eq. (29) is calculated as follows:
∫ u

0

[
�(u – y)I{u–y≥b1} +

[
χ1

(
b1 – (u – y)

)
+ �(b1)

]
I{u–y<b1}

]
gδ,+(y) dy

=
∫ u–b1

0
gδ,+(y)�(u – y) dy +

∫ u

u–b1

gδ,+(y)
[
χ1

(
b1 – (u – y)

)
+ �(b1)

]
dy

=
n(r+1)∑

z=1

Azeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

+
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bijekib1
(–b1)l–m

(l – m)!
um–1

(m – 1)!
e–kiu

∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz

+
n(r+1)∑

z=1

Az

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)
e(ki+αz)b1

(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–m
i

eαzb1

]
um–1

(m – 1)!
e–kiu. (34)

Substituting the two integrals (33) and (34) into Eq. (29), we have

�(u) =
n(r+1)∑

z=1

Azeαzu

=
n(r+1)∑

z=1

Azeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j



Yu et al. Advances in Difference Equations        (2021) 2021:220 Page 14 of 24

+
n(r+1)∑

z=1

Az

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n(r+1)∑

z=1

Azeαzu
r∑

i=1

n∑

j=l

Bij
1

(ki + αz)j

+
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bijekib1
(–b1)l–m

(l – m)!
um–1

(m – 1)!
e–kiu

∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz

+
n(r+1)∑

z=1

Az

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)

× e(ki+αz)b1
(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–m
i

eαzb1

]
um–1

(m – 1)!
e–kiu

=
n(r+1)∑

z=1

Azeαzu

[ n∑

j=1

B∗
j

1
(ργ – αz)j +

r∑

i=1

n∑

j=l

Bij
1

(ki + αz)j

]

+
n(r+1)∑

z=1

Az

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n(r+1)∑

z=1

Az

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)

× e(ki+αz)b1
(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–m
i

eαzb1

]
um–1

(m – 1)!
e–kiu

+
r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bijekib1
(–b1)l–m

(l – m)!
um–1

(m – 1)!
e–kiu

×
∫ b1

0
χ1(z)

zj–l

(j – l)!
e–kiz dz. (35)

The result of the above integral will depend on the form of the loss function χ1(x). When
the form of function χ1(x) is given, the specific result of the above integral can be calcu-
lated. It is consistent with the solution method for the Gerber–Shiu function. After com-
bining similar terms, the equation satisfied by n(r + 1) coefficients can be obtained accord-
ing to the above result. Therefore, all parameters contained in �(u) =

∑n(r+1)
z=1 Azeαzu can

be found, and then the expression of �(u) can be obtained.
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4 Expected discounted dividend payments
Similarly as for the Gerber–Shiu function, we can get the integral equation satisfied by the
expected discounted dividend payments

φ(u) =
∫ ∞

0

[
φ(u + y)I{u+y≤b2} +

(
χ2(u + y – b2)

)
+ φ(b2)I{u+y>b2}

]
gδ,–(y) dy

+
∫ u

0

[
φ(b1)I{u–y≤b1} + φ(x – y)I{u–y>b1}

]
gδ,+(y) dy. (36)

Consider the following integral:

∫ ∞

0
χ2(u + y – b2)I{u+y>b2}gδ,–(y) dy =

∫ ∞

b2–u
χ2(u + y – b2)gδ,–(y) dy, (37)

and let z = (u + y) – b2, then y = z + b2 – u. After bringing gδ,–(y) into (37), the above integral
can be simplified as follows:

∫ ∞

b2–u
χ2(u + y – b2)gδ,–(y) dy

=
∫ ∞

0
χ2(z)gδ,–(z + b2 – u) dz

=
n∑

j=1

B∗
j

∫ ∞

0
χ2(z)

(z + b2 – u)j–1

(j – 1)!
e–ργ (z+b2–u) dz

=
n∑

j=1

B∗
j eργ (u–b2)

∫ ∞

0
χ2(z)

(z + (b2 – u))j–1

(j – 1)!
e–ργ z dz

=
n∑

j=1

B∗
j eργ (u–b2)

∫ ∞

0
χ2(z)

j∑

l=1

(b2 – u)l–1zj–1

(l – 1)!(j – 1)!
e–ργ z dz

=
n∑

j=1

B∗
j eργ (u–b2)

j∑

l=1

(b2 – u)l–1

(l – 1)!

∫ ∞

0
χ2(z)

j∑

l=1

zj–l

(j – l)!
e–ργ z dz

=
n∑

j=1

B∗
j eργ (u–b2)

j∑

l=1

l∑

m=1

(–u)m–1bl–m
2

(m – 1)!(l – m)!

∫ ∞

0
χ2(z)

zj–l

(j – l)!
e–ργ z dz

=
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j e–ργ b2

bl–m
2

(l – m)!
(–1)m–1 um–1

(m – 1)!
eργ u

×
∫ ∞

0
χ2(z)

zj–l

(j – l)!
e–ργ z dz. (38)

The operations with the other integrals are exactly the same as that of the related integral
in the Gerber–Shiu function. By applying the operator ( d

du – ργ )n ∏r
i=1( d

du + ki)n on both
sides of Eq. (36) at the same time, a higher-order differential equation on ϕ(u) can be
obtained. The general solution to this equation can be obtained as follows:

φ(u) =
n(r+1)∑

z=1

Dzeαzu, (39)
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where αZ is also the characteristic root corresponding to the above higher-order differ-
ential equation. Substitute formula (39) into Eq. (36), and calculate the two integrals on
the right. The first integral in Eq. (36) can be directly obtained by using the result of the
related integral in Eq. (15)

∫ ∞

0

[
φ(u + y)I{x+y≤b2} +

(
φ(b2) + χ2(u + y – b2)

)
I{u+y>b2}

]
gδ,–(y) dy

=
∫ b2–u

0
φ(u + y)gδ,–(y) dy +

∫ ∞

b2–u

(
φ(b2) + χ2(u + y – b2)

)
gδ,–(y) dy

=
n(r+1)∑

z=1

Dzeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j

–
n(r+1)∑

z=1

Dz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
(ργ – αz)j+1–l

bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n(r+1)∑

z=1

Dz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

1
ρ

j+1–l
γ

bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j e–ργ b2

bl–m
2

(l – m)!
(–1)m–1um–1

(m – 1)!
e–ργ u

∫ ∞

0
χ2(z)

zj–l

(j – l)!
e–ργ z dz

=
n(r+1)∑

z=1

Dzeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j

+
n(r+1)∑

z=1

Dz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j e–ργ b2

bl–m
2

(l – m)!
(–1)m–1um–1

(m – 1)!
e–ργ u

×
∫ ∞

0
χ2(z)

zj–l

(j – l)!
e–ργ z dz. (40)

By Eq. (15), the second integral of Eq. (36) is calculated as follows:

∫ ∞

0

[
φ(b1)I{u–y≤b1} + φ(u – y)I{u–y>b1}

]
gδ,+(y) dy

=
∫ u

u–b1

φ(b1)gδ,+(y) dy +
∫ u–b1

0
φ(u – y)gδ,+(y) dy

+
n(r+1)∑

z=1

Dz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij
(–b1)l–me(ki+αz)b1

kj+1–l
i (l – m)!

–
n∑

j=m

Bij
eαzb1

kj+1–l
i

]
um–1

(m – 1)!
e–kiu

+
n(r+1)∑

z=1

Dzeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j
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–
n(r+1)∑

z=1

Dz

r∑

i=1

n∑

m=1

n∑

l=m

n∑

j=l

Bij
1

(ki + αz)j+1–l
(–b1)l–m

(l – m)!
e(ki+αz)b1

um–1

(m – 1)!
e–kiu

=
n(r+1)∑

z=1

Dzeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

+
n(r+1)∑

z=1

Dz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)
e(ki+αz)b1

(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–l
i

eαzb1

]
um–1

(m – 1)!
e–kiu. (41)

Substituting the two integrals (40) and (41) into formula (39), we have

φ(u) =
n(r+1)∑

z=1

Dzeαzu

=
n(r+1)∑

z=1

Dzeαzu
n∑

j=1

B∗
j

1
(ργ – αz)j +

∫ ∞

b2–x
χ2(u + y – b2)gδ,–(y) dy

+
n(r+1)∑

z=1

Dz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n(r+1)∑

z=1

Dz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)
e(ki+αz)b1

(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–l
i

eαzb1

]
um–1

(m – 1)!
e–kiu +

n(r+1)∑

z=1

Dzeαzu
r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

=
n(r+1)∑

z=1

Dzeαzu

[ n∑

j=1

B∗
j

1
(ργ – αz)j +

r∑

i=1

n∑

j=1

Bij
1

(ki + αz)j

]

+
n(r+1)∑

z=1

Dz

n∑

m=1

n∑

l=m

n∑

j=l

B∗
j

(
1

ρ
j+1–l
γ

–
1

(ργ – αz)j+1–l

)

× bl–m
2 e(αz–ργ )b2

(l – m)!
(–1)m–1um–1

(m – 1)!
eργ u

+
n(r+1)∑

z=1

Dz

r∑

i=1

n∑

m=1

[ n∑

l=m

n∑

j=l

Bij

(
1

kj+1–l
i

–
1

(ki + αz)j+1–l

)

× e(ki+αz)b1
(–b1)l–m

(l – m)!

–
n∑

j=m

Bij
1

kj+1–l
i

eαzb1

]
um–1

(m – 1)!
e–kiu
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+
n∑

m=1

n∑

l=m

n∑

j=l

B∗
j e–ργ b2

bl–m
2

(l – m)!
(–1)m–1 um–1

(m – 1)!
e–ργ u

×
∫ ∞

0
χ2(z)

zj–l

(j – l)!
e–ργ z dz. (42)

The result of the above integral will depend on the form of the loss function χ2(x). When
the form of function χ2(x) is given, the specific result of the above integral can be calcu-
lated. It is consistent with the solution method for the Gerber–Shiu function. After com-
bining similar terms, the equation satisfied by n(r + 1) coefficients can be obtained accord-
ing to the above result. Therefore, all parameters contained in φ(u) =

∑n(r+1)
z=1 Dzeαzu can

be found, and then the expression of φ(u) can be obtained.

5 Numerical illustrations
In this section, we give some examples of the Gerber–Shiu function, the expected dis-
counted capital injection, and the expected discounted dividend payments.

Example 1 It is assumed that the interobservation time is Erlang(2, 2)-distributed, the ar-
rival time of a claim and the amount of a single claim are exponentially distributed with
parameters λ = 1, v = 1, respectively. The premium charged per unit time is assumed to
be c = 2 and the penalty function is ω(x) = 1. Now we consider the influences of interest
force δ, injection line b1, dividend payments line b2 on the Laplace transformation of ruin
time, the expected discounted capital injection until ruin, and the expected discounted
dividend payments until ruin separately.

As can be seen in Fig. 2, the Laplace transformation of ruin time is a decreasing function
of initial surplus u, which is contrary to the conclusion of traditional actuarial model. This
shows that a higher initial surplus u leads to a smaller Laplace transformation of the ruin

time. This is because the function e–δτ
b2
b1 is a decreasing function of ruin time τ

b2
b1

. The
larger initial surplus u leads to a larger ruin time τ

b2
b1

, and a smaller Laplace transformation

of ruin time is obtained due to the decreasing function e–δτ
b2
b1 . Moreover, when the initial

surplus u is fixed, the Laplace transformation of ruin time is a decreasing function for
parameters δ, b1, and b2, respectively.

In Fig. 3, we see that the expected discounted capital injection until ruin is also a de-
creasing function of the initial surplus u. When the initial surplus u is fixed, the expected
discounted capital injection until ruin is a decreasing function of parameters δ and b2,
respectively, and an increasing function of b1.

In Fig. 4, we see that the expected discounted dividend payments until ruin is an in-
creasing function of the initial surplus u. When the initial surplus u is fixed, the expected
discounted dividend payments until ruin is a decreasing function of the parameters δ and
b2, respectively, and an increasing function of b1.

Next, we will analyze the influence on the Laplace transformation of ruin time, the ex-
pected discounted capital injection until ruin, and the expected discounted dividend pay-
ments until ruin when the single claim amount is subject to the following four distribu-
tions:

(1) Exponential distribution (Exp) fY (y) = e–y;
(2) Combined exponential distribution (Com-Exp) fY (y) = 2 × 1.5e–1.5y – 3e–3y;
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Figure 2 The Laplace transformation of ruin time

(3) Mixed exponential distribution (Mix-Exp) fY (y) = 1
3 × 2e–2y + 2

3 × 0.8e–0.8y;
(4) Erlang(2, 2) distribution fY (y) = 4ye–2y.

Example 2 It is assumed that the interobservation time is Erlang(2, 2)-distributed, the ar-
rival time of claim is exponentially distributed with parameters λ = 1. Let c = 1.5, δ = 0.01,
b1 = 5, and b2 = 10. We consider the influence of the above four probability distributions
of a single claim amount on the Laplace transformation of the ruin time.

As one can see in Fig. 5, the Laplace transformation of the ruin time is a decreasing
function of the initial surplus u, and it is easy to see that when the average value of claims
is equal, the Laplace transformation of the ruin time will increase with the increase of the
variance of the claim amount distribution.

Example 3 It is assumed that the interobservation time is Erlang(2, 2)-distributed, the ar-
rival time of claim is exponentially distributed with parameters λ = 1. Let c = 5, δ = 0.01,
b1 = 2, and b2 = 6. We consider the influence of the above four probability distributions of
a single claim amount on the expected discounted capital injection until ruin.

It can be concluded from Fig. 6 that the expected discounted capital injection until ruin
is no longer a strictly decreasing function of the initial surplus u, and its monotonicity will
change with the different distribution of claims. When the claim amount follows the expo-
nential distribution and mixed exponential distribution, the expected discounted capital
injection until ruin decreases strictly monotonically with respect to the initial surplus u.
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Figure 3 The expected discounted capital injection until ruin

When the claim amount follows the combined exponential distribution and Erlang dis-
tribution, the expected discounted capital injection function will first increase with the
increase of the initial surplus u, and then decrease with the increase of the initial surplus
u after passing a certain special value. And when the initial surplus u exceeds a special
value, the expected discounted capital injection function until ruin will increase with the
increase of the variance of the claim amount distribution.

Example 4 It is assumed that the interobservation time is Erlang(2, 2)-distributed, the
arrival time of a claim is exponentially distributed with parameters λ = 1. Let c = 5,
δ = 0.01, b1 = 2, and b2 = 6. We consider the influence of the above four probability dis-
tributions of a single claim amount on the expected discounted dividend payments until
ruin.

Here one can see from Fig. 7 that the expected discounted dividend payments until ruin
is an increasing function of the initial surplus u. And it is easy to see that when the av-
erage value of the claim amount distribution is equal, the expected discounted dividend
payments until ruin will decrease with the increase of the variance of the claim amount
distribution. When the claim amount distribution is Erlang, the expected discounted div-
idend payments until ruin is the largest, and when the claim amount distribution is a
mixed exponential distribution, the expected discounted dividend payments until ruin
are the smallest.
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Figure 4 The expected discounted dividend payments until ruin

Figure 5 The Laplace transformation of the ruin time

However, it is worth noting that the injection and dividend levels in the model are as-
sumed in advance, which are not necessarily the optimal injection and dividend levels. So
later, the topic can also focus on the selection of the optimal capital injection and dividend
levels.
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Figure 6 The expected discounted capital injection until ruin

Figure 7 The expected discounted dividend payments until ruin
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