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1 Introduction

In 1978, the concept of fuzzy differential equations (FDEs) was originally introduced by
Kandel and Byatt [52]. FDEs play an important role within several areas; see [21, 61, 6366,
69]. First-order linear FDEs or systems according to various interpretations are searched
for in many papers [20, 27]. There are only a few works like [56, 59] in which fuzzy, intuitive
numbers are used in differential equations. Recently, several authors used numerical and
analytical methods for solving fuzzy differential and integral equations; for example, see
(3, 6, 18, 22, 24, 25, 35-37, 50, 60, 67, 71].

In the literature, the study of FDEs has several interpretations. First is based on the idea
of the Hukuhara derivative [33, 75, 84]. Fractal theory is the theoretical basis for the fractal
space-time [26, 47] El Naschieis E-infinity theory [31] and life science [85] also. Lately,
various authors have presented the fractal calculus [2, 34, 48, 49].

In 1986, the notion of differential transform method (DTM) was introduced for the first
time by Zhou in [89], this method adopts an analytical solution in the form of a polyno-
mial, which is different from the traditional higher-order Taylor formula method. Recently,
several researchers used DTM to solve FDEs; see [8, 32, 62, 70, 76].
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Keskin and Oturanc in [54] proposed the concept of the reduced differential transform
method (RDTM), defining a set of transformation rules to overcome the complicated com-
plex calculations of traditional DTM. Recently, some authors used the method to solve
many equations, for example, see [11, 23, 53, 73, 83, 88].

The Adomian decomposition method (ADM), which was primarily introduced by Ado-
mian [1], is a semi-numerical technique for solving linear-nonlinear differential equations
by generating a functional series solution in a very efficient manner. Several researchers
have already used this method in their work; see [4, 5, 19, 30, 71, 74].

The classical perturbation methods have different limitations and are strongly invalid
for nonlinear equations. To overcome the shortcomings, many new technologies have
appeared in the open literature; see [10, 16, 40, 42—44, 57]. The homotopy perturbation
method (HPM) is a new analytical method that was initially introduced by He [41, 45, 46]
to solve linear-nonlinear differential equations. Applications of homotopy theory have
recently appeared for different scientists, and the homotopy theory has become a pow-
erful mathematical tool when it is successfully combined with perturbation theory; see
[12, 51, 55, 68, 72, 77-79, 81, 82].

This paper is organized as follows. In Sect. 2, some basic definitions, remarks, and theo-
rems that will be used are given. In Sect. 3, we present an analytical solution for the fuzzy
(1 + n)-dimensional Burgers’ equation under gH-differentiability by using FDTM, FADM,
FHPM, and FRDTM. In Sect. 4, the applied fuzzy (1 + n)-dimensional Burgers’ equation
is developed, derived, and illustrated by four numerical examples. Finally, a conclusion is
drawn in Sect. 5.

2 Preliminaries
In this section, there are various definitions for the concept of fuzzy numbers, fuzzy-
valued functions, and fuzzy derivatives as follows.

Definition 2.1 ([28]) Fuzzy numbers are a fuzzy set like 1 : R — I = [0, 1] which satisfies
the requirements:
(a) u is upper semicontinuous,
(b) #(x) = 0 outside some interval [c,d],
(c) there are real numbers a, b such that c <a < b < d and
« 7(x) is monotonic increasing on [c,a],
« #i(x) is monotonic decreasing on [b,d],
e Ulx)=l,a<x<b.

Definition 2.2 ([33]) Let & € E' and [it]y = [u,, %] Then the following conditions are
satisfied:

(1) u, is a bounded left continuous nondecreasing function on (0,1].

(2) u, is a bounded left continuous nonincreasing function on (0,1].

(3) u, and u(x) are right continuous at & = 0.

(4) u; <up.
Conversely, if the pair of functions a(«) and b(«) satisfy conditions (1)—(4), then there
exists unique i, € E' such that [i], = [a(a), b(a)] for each « € [0, 1].

Define D: E' x E' — R, U {0} by

D(u,v) = sup max{lga =V, |, |t —17a|},
ael0,1]
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where [#t]q = (1, Ual, [V]e = [v,, Vo] D(i, V) is called the distance between fuzzy numbers
z and v. Using the results in [29], we know that

(a) (E',D)is a complete metric space;

(b) D(it + w, v+ w) = D(it, v);

(c) D(k- i1,k -v) = |k|.D(i1,7), k € R, where i, ¥, w € EL.

Definition 2.3 ([15]) As discussed above, fuzzy numbers may be transformed into an in-
terval through an «-level approach. So, for any arbitrary fuzzy number X = [x(«), x(t)], ¥ =
[¥(a), ¥(r)] and scalar k, we get the interval-based fuzzy arithmetic as follows:
"(a) & =7 ifand only if x(cr) = y(@) and %(ex) = y(at),
(b) x®y = [x(e) + y(e), %) + ¥(@)],
(©) *®y = [min(5), max(S)], where S = {x(a)y(a), x(c)y(er), ®(e)y (), X(et)y(e)},
) koi=| %ka‘c(a),kg(a)], k<0,

kx(a), kx(@)], k=0.

Remark 2.4 Let x,y be fuzzy numbers, and x > 0 (it means x(r) > 0 and x(r) > 0). Then
& ©F)(r) = [2(r)y(r), Z(r)y(r)].

Definition 2.5 ([86, 87]) For arbitrary fuzzy numbers i,V € E%, it = [u,, Uy ],V = [v,, Vo],
the quantity D(i, V) = sup,,c(o 1 max{|u, — v, |, |4y — Vu|} is the distance between # and ¥,
and also the following properties hold:

(a) (E!, D) is a complete metric space,

(b) D@ ® w,v @ w) =D(1,v), Vi, v, w € E,

(c) Dt ® v, w® &) < D(ir,w) + D(v, &), Vit, v, w, e € E,

(d) D(@® ¥,0) < D(&,0) + D(¥,0),Vit, v € EY,

(e) Dk © it,k © V) = |k|D(it, V), Vi1,V € EL k € R,

(f) D(ky © it,ky © i) = |k — ko|D(i1,0), Vit € EY, ky, ky € R, with ky - ky > 0.

Recall the definition of Hukuhara difference in [14]. Let iz, 7 € E'. The Hukuhara differ-
ence has been presented as a set w for which # ©v = w < & = v @ w. The H-difference
is unique, but it does not always exist (a necessary condition for # © v to exist is that &
contains a translate {c} @ VofV).

Definition 2.6 ([14, 87]) The generalized Hukuhara difference of two fuzzy numbers
71,7 € E! is defined as follows:

1

In terms of the a-levels, we get [ Ogyy V] = [min{u, —v,,, Uy — Vo), max{u, — v, sy — Vo }l,
and if the H-difference exists, then &z © V = &t ©g V; the conditions for existence of w =
ASPIRAS E! are:

) W, =u, —V, and Wy = Uy — Vo, Vo € [0, 1],
Case (i)
with w, increasing, w,, decreasing, w, < W,.

2)

B W, =Uy — Vg and Wy = 1, — v, Vo € [0,1],
Case (ii) (3)
with w, increasing, w,, decreasing, w, < Wj.
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It is easy to show that (i) and (ii) are both valid if and only if w is a crisp number.

Definition 2.7 ([13]) Let @(x,¢) : D — E* and (xo,t) € D. We say that # is strongly gen-
eralized Hukuhara differentiable on (xo, £) (gH-differentiable for short) if there exists an
element 2|, , € E* such that
(i) for all &> 0 sufficiently small, 3iz(xo + &, t) Ogrr (%0, t), (X0, £) Ogry tlxo — k1, £) and
the limits (in the metric D)

. Zl(xO + hr t) egH ’:t(xOJ t) . ﬁ(xm t) egH ﬁ(xO - hr t) al:l
lim = lim = - ,
h—0+ h h—0+ h aJCgH (x0.)
or
(ii) for all /2 > 0 sufficiently small, 3i(xo, ) Oqn (X0 + h, £), (X0 — h, t) Ogny (%0, £) and
the limits
 U(xo,t) Ogr th(xo + hyt) . (xo — I, t) g th(xo, ) ik
lim = lim = ,
h—0+ —h h—0+ -h 0x gH (x0,t)
or
(iii) for all % > 0 sufficiently small, 3i(xo + /1, ) Ognr t4(x0, £), (X0 — 11, t) Ogrr (0, t) and
the limits
. l:l(xO + h, t) egH Zl(XQ, t) . ﬁ(xo — h, t) egH I:l(XQ, t) 81:{
lim = lim == ,
h—0+ h h—0+ —h axgH )
or
(iv) for all /2> 0 sufficiently small, Jiz(xo, t) Sgrr (X0 + A, t), (X0, t) Srr (X0 — b, t) and
the limits
. ﬁ(xo, t) egH i;l(xO + h, t) . I:t(xOr t) egH ’:t(xO - h; t) 812
lim = lim = — .
h—0+ -h h—0+ h 0x gH (0.t)

Definition 2.8 ([36]) Let éi(x,t) : D — E! and (xo,t) € D. We define the nth-order deriva-
tive of u as follows: we say that u is strongly generalized Hukuhara differentiable of
the nth-order at (xo,t) (gH-differentiable for short) if there exist elements gs—xﬁ‘ o) € EL
Vs=1,2,...,n,
(i) for all /2 > 0 sufficiently small,
D (xg + h, ) O gy ™V (w0, 1), 15V (%0, £) Ogrr 51~V (0 — b, £) and the limits (in
the metric D)

.. u Xo t 11, H U X0,
(s—l)( h t) eg (s—l)( t)
lim
h—0+ h
. 15D (0, 1) Ogr 4 V(wo - b, t) 3%t
= lim = =

h—0+ h N %g]—[ (x0,0)

’

or
(ii) for all /2> 0 sufficiently small,
30D (x0, ) Sgry 1V (0 + b, 1), w4 (269 — 1, £) Sy 4 (x0, ) and the limits

. ﬁ(s_l)(xo’ t) egH ﬁ(s_l)(xo + hr t)
lim
h—0+ —h
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w5V (g — 1, t) O 1 V(xo, ) 3%k
h—0+ -h B angH

(x0,t)
or
(iii) for all & > 0 sufficiently small,
3 (o + 1, £) ©grt 15 (o, £), #) (g — b, £) © g ) (w0, £) and the limits

15D (o + h, ) Ogry 4V (wo, 1)
h—0+ h

l:t(s_l)(XQ — h, t) egH l:t(s_l)(X(), t) F’u
h—0+ -h B 9x5 gH (

)
x0,t)

or
(iv) for all &2 > 0 sufficiently small,
3 (o, 8) ©grt ™ (w0 + b, £), 1 (w0, £) Ogry 5 (w0 — 1, £) and the limits

55V (o, 1) Ogy 1V (%0 + b, t)
lim
h—0+ —h

i i1V (o, t) O V(o — h,t)  0%n
= lim _Z
h—0+ h 0XS g

(x0,8)

Definition 2.9 ([8]) Let i(x,t) : D — E! be a function and set i(x,t) = ((u(x, t)(a),

u(x, t)(a)) for each « € [0,1]. Then

(1) If u is gH-differentiable in the first form (i), then (u(x, £)(«) and u(x, t)(«) are differ-

entiable functions and

di]  [oulxt)@) il t)(a)
N

’

(2) If u is gH-differentiable in the second form (ii), then (u(x,)(«) and u(x,t)(«) are

differentiable functions and

dul [oulxt)(a) dulx t)(e)
[5}[ T O }

Assumption 2.10 We only discuss the case of &z > 0 satisfying % > 0. In order to simplify

our results presentation, we only consider the following case:

~@351 ou _ou
e —| =lu—=,u—| .
at |, |Tar ot ],

Definition 2.11 ([9, 87]) A fuzzy-number-valued function f : [a,b] — E! is said to be
continuous at g € [a, b] if, for each € > 0, there is § > 0 such that D(f (t),f(to)) < & whenever
|t — to| < 8. If f is continuous for each ¢ € [a, b], then we say that f is fuzzy continuous on

[a,b].

Definition 2.12 ([9]) A fuzzy-valued function j‘ : @, b] — E! is said to bounded iff there is
M > 0 such that D(f(t), 0)= I[f(u)ll <M for all ¢ € [a, b]. Equivalently we get x_u §f(x) <

XM,VJC € [ﬂ) b]

Page 5 of 51
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Definition 2.13 ([7]) A fuzzy-valued function f of two variables is a rule that assigns to
each ordered pair of real numbers (x, £) in a set D a unique fuzzy number denoted by f (%, ).
The set D is the domain of f , and its range is the set of values taken by f ,ie., {f (x, )| (x, t) €
Dj}.

The parametric representation of the fuzzy-valued function f : D — E' is expressed by
f(x, )= [):(x, t;a),_f(x, t;a)] forall (x,£) € D and « € [0,1].
Definition 2.14 ([80]) A fuzzy-valued function f : [a, b] — E! is said to satisfy the condi-
tion (gH) on [a, b] if, for any x1 < x, € [a, b], there exists i € E! such thatf(xz) :f(xl) + 1.
We call % the gH-difference of f (x2) and f (1), denoted by f (%2) Ogn f (x1).

3 Fuzzy (1 + n)-dimensional Burgers’ equation
In this section, we analyze fuzzy (1 + n)-dimensional Burgers’ equation under gH-
differentiability by using some methods. Let us take the following fuzzy (1 +n)-dimensional

Burgers equation:

L O B DA DR -
— =0 DU DU — DDA DPUO —,
at  toad T Paxd T oad " 92 dx1

with the initial condition
(X1, %2, %35 . . 1%, 0) = T (X1, %2, %35 . . , %), (8)
where of,i=1,2,3,4,...,n,and B are positive constants.

Example 3.1 We consider the following shows that &> does not always satisfy &> > 0.

(s+1), se[-1,0],

u(s)=1:(2-s), s<(0,2], 9)

1

2

0 otherwise,

and u(o) =« — 1, u(e) = 2 — 2« for any « € [0, 1]. Then
[#°](e) = [ © &) () = [( = 1)(2 - 200), (2 - 200)?],

[#%](ar) < O for any & € [0, 1].

3.1 Fuzzy differential transform method
Assume that D denotes a fuzzy DTM operator with D! the inverse fuzzy DTM operator.

Definition 3.1 ([82]) If u(X,,, t; ) = [u(Xyn, £ ), u(X,y,, £; )] is analytic in the domain W,

then its fuzzy (n + 1)-dimensional DTM can be obtained as follows:

1 a]m+/m+1
m ‘) T u(X, ;) » 0=a=l, (10)
]Wv]m+1- X, oPm+1 Xn=0,t=0

Q(]m»jm+13a) = <
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and

. 1 8]m+jm+1
u(]m»jmﬂ;a) = < ] ) J —U(X, ;) , 0<a<l, (11)
Jnme1! 09X, dfm+1 Xin=0,t=0

o o0 o0 o0 . . .
where ;70 =302 00 De0r Xm = X1, %0, -5 X, OT Jip = f11j2, - s then

uXms t; ) = Z Z Q(]mrjm+l;0[),
Jm=0jp+1=0
X{Z‘tjmﬂ = D_l [Q(]m:jm+1;a)]: (12)
and
E(Xm’t;a) = Z Z Q(]mrjm+l;a)y
Jm=0jp+1=0
X1 = D [T jeri)]. 13)

Definition 3.2 ([82]) If u(X,,t;a) = D_l[Q(]mrjm+l;a)»U(IMrjm+l§0[)]; V(X ) =
DYV s jms1;2), Vs jmer;@)], and ® denotes convolution, then the basic operations
of a fuzzy (n + 1)-dimensional DTM are represented as follows:

1.
D[Z Xm: t;a)K(XWn t;O{)]
= Q(]mrjm+l;a) ® K(Jm;jm+1;a)
Im Jn+1
= Z Z Q(]m _Amrjm+l _ﬂm+l;a)K(Am’am+l;a)y (14')
Am=0an11=0
and

D[u(Xy, t; )V Xy, ti0) |

= U(]mrjrrﬁl;a) ® ‘_/Um:jm+1;a)

Jm fn+1
= Z Z U(]m_Am;jm+l _am+1;a)‘_/(Am»am+l;a)r (15)

Am=0ap+1=0

where A,, = ay,as,as,...,a,.

D[a*ﬂ(xm’ t; (X) + ﬂZ(Xm: t;O[)] = G*Q(Jm,jn+1;01) + IBK(]m;jn+l;a),

D[(X*ﬁ me t; 05) + IB‘_/(XWU t;()l)] = a*U(]erHl;a) + IBVUm:jn+1;a)-

aRm+rm+l
gl

L ,t;a)]
axXRm g prua "

Page 7 of 51
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=i+ D1 +2)---(Gi+r)(a+1)
><(72+2)"'(iz+72)"'(im+1+1)(im+1 +2)"‘(jm+1+rm+l)

X Q(]l + rlrj2 + rZwH:jerl + rm+1)(a))

and

|: aRm“"WHl

/'S ,t;a)]
aXRmgpran "

=(jl+1)(jl+2)~~~(jl+r1)(jz+l)
X(j2+2)"'(jZ+r2)"'(im+1+1)(im+1+2)"'(jm+l+rm+l)

X U1 +11,j2 + 1255 et + Pa) (@),
where R, = r1,13,..., 1.

3.2 Fuzzy Adomian decomposition method

We propose the fuzzy linear operators with these inverse operators

2
L, =—, Ly = —,
LT ot T g2

t
ﬁt‘l:/(.)dr; xlxz // (Vdrdr, i=12,...,n
0

Taking these notations, equation (7) becomes

i=1,2,...,m

Lo(u) = (Za*ﬁxm(u)) + yu— (16)
L,(a) = (Za ﬁxm(u)) + yuaa—u (17)

i=1

Apply the inverse operators £;! to (16) and (17) with initial condition (8) as follows:

u(Xm t;) = |:20(Xm,t;a) + L1 (Z“*Emz X & a)))

+BL; ( a”)(a)} as)
8961
uXta) = |:go(Xm,t;a) + £;1( afﬁxm( X & a)))
i=1
LB ( i )(@} (19)
0x1

where X, = x1,%9,%3,...,%, for a € [0,1].

Page 8 of 51
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A fuzzy ADM consists of demonstrating a solution
(X, £0) = (X, £500), WX 50) ]

using a fuzzy decomposition series as follows:
oo
Z(Xm, t;C\!) = qu(Xm; t;Ot),
gq=0

o0
u( X, b)) = Zﬁq(Xm, t;a).
gq=0

Fuzzy nonlinear term

ou .
740 3_961 = [mln (S), max (S)],

where

0 ou 0 0
S={z(oz) f;‘f),g(m ;‘fc‘f),ﬁ(a) azi‘f),ma) .

u(a) }

appeared to use a series of the fuzzy Adomian polynomials as

du(e)
o) < - =;f_xqam,t;a),

() a—
u(a) P = ZAq(Xm, ta).
X1 70
Component

iy (X, tot) = [gq Xons t;00), g (X, ;1) ],

(20)

(21)

(22)

(23)

(24)

(25)

the solution #(X,,, t; &) is specified in an iterative manner. Substituting the fuzzy decom-

position string (20) — (25) for u(X,,, ¢; o) in equations (18) and (19), we get

00
Zq(Xm: t;O[) = ZO(XWH t;a)
q=0

+ EZI (Z &} L, (g(a)))
i=1
+ ﬁ‘ct_l (Zéq(){m, t5a)>

q=0

(26)

Page 9 of 51
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and

o0
> Uy (Ko ts) = g (X, 1)
q=0

c;! (Z o Lo (ﬁ(a))) (27)

i=1

+ﬁ£#<§:ZAxwua0.

q=0

Applying the fuzzy ADM to the zeroth component
110 (Xoms t; &) = [14(Xis £ ), o Koy 15.00) ]

the surviving components of %(X,,, t; @) = [u(Xy, t; ), u(X,m, t; )] are specified in such a

frequent way that
uy(Xom, @) = tg(Xom, £ 1), (28)
W X t50) = L7 (}:acwn )+ﬂ£1MJ(L j=0, (29)
and
Uo(Xyn, &) = Uuo(Xym, £ ), (30)
B (X 150) = (}:aﬁm, >+ﬂ£( D), j=0. (31)

The fuzzy Adomian polynomials for a fuzzy nonlinear term z © 337”1 = [min (S), max (S)],

where S = {u(a) aﬂ(“),g(a)w,ﬁ(a)aﬂ—w,ﬁ(a)%} is derived from the recursive formula

ax1 daxy dxy
as follows:
A 1 dj - i = i .
Al =57 ;A u(@) ¥A w@]| . j=0123,.., (32)
i= i= 2=0

Aj(e) = vdxl|:<zku(a)><ZAiﬁi(a)):| , j=0,1,2,3,.... (33)
i=0 r=0

The fuzzy Adomian polynomials are defined as follows:

Ag@) = 1, 3‘50(“),
A, (o) =, @) —oa;;(“)

9 d 1 9 (34)
&mﬁ%Z@fMMI%WM_ ty ()

8x1 =0 8%1
duy(a) ou, () duy(a) dus(a)

u +u + U + U s

%1 %1 0x1
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and
3”0(05)
Aola) =11
8.?61
— ou ou
A(@) =7 ZC9) o ul(a),
3961 Bxl
oup(a) _ duy(a) _ 0ux(a)
Az(Ol) = MQ + Uy + Ug »
8.?61 8x1 8.?61

— _ () _ () _ () _ dus(a)
As(a) =us3 +U +u +U .

3%, > om S " ox,

Applying (29) and (31) for fuzzy Adomian polynomials A,»(a) =

Zo(Xm: La)= Zo(va La),

(Xm;t O[ (Za Cx,x, L{O(O[ ) + V*C';l(éo)(a)r

Uy Xom t0) = L1 (Z of Lo, (zl(a))> +y LA (@),

i=1

ﬂg(Xm: La) = E;I (Z O‘;kﬁx,',xi (ﬂz(a))) + V‘C;l(éz)(a)r

i=1

and
o (Xoms ;) = Uo(Xom, £ 1),

ul(ert (X (Za »Cx,x, MO ) + Vﬁgl(ZO)(a)r
Uy (X, t; ) (Za Ly (1t )+7/£ (A1)(e),

(X 1) (Za Lo, m(a))) +y L (@) (@),

i=1

The qth term, iz () = [gq(a),ﬁq(a)] can be specified from

,_.

Xm,ta 1Xm,ta

q-
j=0

~.

q-1
uq(Xm: tta) - Z u}(Xm) t; a)'
j=0

(35)

Aj(a),zj((x)], we obtain

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

Page 11 of 51
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3.2.1 Convergence analysis of fuzzy ADM
According to [38, 39, 58], we present the convergence analysis of fuzzy ADM for the gen-
eral fuzzy operator equation given by

L, ta)) + R(ux ) + N (ax o) =g, ba), 0<a <1, (46)

where g(x,t;«) is given in H'. Suppose that 7 is an operator defined by Tu(x, ;&) =
—Ritlx, ;o) — Nialx, t; o).

We consider the Hilbert space H = L2((er*, 8*) x [0, T]) defined by the set of applications
as follows:

u(x, ko) : (a*,ﬂ*) x[0,7T]— R
with

/ i(x, &) dxdt < +00, (47)
(a*,8*)x[0,T1]

where u(x, t; ) = [u(x, t; @), u(x, t; «)].

Theorem 3.3 Assume that Tit(x, t;o) = —Rit(x, t; o) — Nia(x, t; ) is semi-continuous (i.e.,
the restriction of (=R — N)) to the segments of M is continuous, in H' weak) and satisfies
the hypotheses H1, Hy as follows:
o [Hil: (Talx, ta) = Tl t;a), a(x, ) — v(x, o) > Kl|ax, o) — vx, o)« >
0,V v e H.
o [H2]: VM > 0,3D(M) > Osuch that, for|u|| < M, |V|| <M, u,v € H, we obtain
= (Tulx, ;o) — v(x, t; ), wix, t; ) < DM) | ia(x, t; ) — V(x, ;) || | W(x, £ ) ||, Vv € H.
For every g(x, t;a) € H', the fuzzy nonlinear functional equation (46) admits a unique so-
lution u(x,t; ) € H. Furthermore, if the solution u(x,t; o) can be assimilated as a series
ulx, t;o) = Ziﬁo Uy(x, t; )N, then the fuzzy ADM diagram corresponding to the functional
equation under study converges strongly to u(x,t;a) € H, which is the unique solution to

the functional equation.

Proof The operator A defined by Au(x, t; o) = —Lulx, t; ) — T ia(x, t; ), where 2i(x, t; o) €
‘H, satisfies the conditions:

(H1)

(A, t) — AV(x, &), il @) — P, )
= (-L(i(x, t; ) — V(x, £ t))
+ (Tiulx, ;) - TV(x, ), Gy, o) - ¥(x, G)), 0<a <1
= (Aulx, t;0) - AV(x, o), iy, G o) — Vi, o))
= (=L (@, t;r) = ¥, ), (o, £ ) = Vo, .0)

+ (TIZ(x, ta)— Tv(x, t;a), u(x, ;o) — v(x, t;Ol)), 0<a<l.
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According to (H,),

(Ait(x, tya) — Av(x, t; o), ta(x, o) — V(x, £ a))
> |atx, ta) - v, 50) || + K |ix, .00) — 9, £50) |
=(1 +K)||it(x,t;a) —i(x,t;a)Hz, 0<a<l

= (Az}(x, tia) —Av(x, t; o), t(x, £ a) — v(x, t;Ol)) > C||it(x, ta)—v(x, to) >

where
C=1+k; C>O0.
(Ha)
(Ait(x, t;a) — Av(x, t; o), wix, t;a))
= (—L(ﬁ(x, ta) —v(x, t;Ol))
+ (Tzl(x, t;a) — Tv(x, t; o), w(x, t;a)), O<a<l
= (Az}(x, tia) —Av(x, t;a), wix, t; oz))

= (—L(it(x, t;a) — v(x, t; ), w(x, t; Ol))

+ (Tit(x, t;a) — Tv(x, t; a), w(x, t;a)), O<a<l.
According to Schwarz’s inequality and (), we obtain

(Ait(x, t;a) — Av(x, t;a), w(x, t;a)) ||Zt(x, ta) —v(x, t o) || || wix, t; o) ||
+ C(M) || u(x, tyo) = v(x, t;a) H || wix, t;a) ||

= || 1+ C(M) || || u(x, t;o) — v(x, ) H || w(x, t;a)

and therefore

(Ait(x, t;a) — Av(x, t; a), w(x, L‘;a)) < D(M) Hit(x, ta)—v(x, ko) || || w(x, t; o)

where
D(M) =1+ CM),
which completes the proof.

3.3 Fuzzy homotopy perturbation method
We establish the general nonlinear fuzzy differential equation as follows:

wheref(r;a) = [}i(r;a),]_‘(r;a)] € E', and we shall define:

Page 13 of 51
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« A(@) is a fuzzy differential operator, which means that A(u) and A(t) are differential
operators,
. @(a) =f(r;) and A () :j_’(r;oz) for any « € [0, 1],
with the boun&ary condition

A
B(ﬁ,—u>:0, reaw, (51)
or

where B is a boundary operator and W is boundary of the domain W. The fuzzy operator
A can be discordant into two parts £ and A, where £ is a fuzzy linear operator, while A/
is a fuzzy nonlinear operator. From equation (50), we obtain

Lw)(@) + N @)(@) —f(r,@) =0, (52)
L(@)(«) + N (@)(«) —f (r,@) = 0. (53)

We construct a fuzzy homotopy applying a fuzzy homotopy technique as follows:

v(r,p;a) = [g(r,p;a),?(r,p;a)] : ¥ x [0,1] - R, which satisfies
H(v(@),p) = 1 - p)[LO)(@) - L(uy(@))] + P[AW)(@) —Jj(r;on],]
H(Wa),p) = (1 - p)[LO)(@) - L(#(@))] + p[AW)(@) - f(r; )], ,

rewv,pelo0,1], (54)

or

H(7(@),p) = LO)(@) - L(#(@)) + pL(#(@)) + p[N #)(@) - f(r;2)],

reWv,pelo,1], (55)

H(v(@),p) = L0)(@)~L(uy(@)) + pL(1y(@)) + p[N W)(@) = f(r;)] ]

for p € [0,1] is the included parameter, izo(«) = [u,(@), %o(er)] is the initial approximation
of equation (50) that satisfies the boundary conditions. Clearly, looking (54) and (55), we
obtain

H(v(@),0) = [LW)() - L(uy())] =0,

- (56)
H(v(@),1) = [AW)(@) - f(r,0)] =0,

and

H(¥(@),0) = [LT)(@) - L(#())] =0,

_ _ N (57)

H(v(a),1) = [A()(@) = f(r,a)] = 0.
The process of changing p from zero to unit is that v(r, p; o) = [v(r, p; @), ¥(r, p; )] from
io(r;a) = [ug(r; ), uo(r;a)] to u(r;er) = [u(r;a), u(r;a)]. In topology, this is called disfig-
urement, £(7)(@) = [L(v)(e), L(V)()] and A(v)(er) - f (r; @), AV) (@) — (r; ) are called fuzzy
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homotopy. A fuzzy HPM uses the fuzzy homotopy parameter p as an extending parameter,

we get
ve) =Y p'v,(@), (58)
n=0
V(@)=Y p'un(). (59)
n=0

p — 1 produces the approximate solution of equation (50) as follows:

w(e) = lim v(@) = gzn(a), (60)
(o) = ;13 W) = ;Vn(a). 61)

Comparison of p similar powers gives various order solutions. We know that series (60)
and (61) represent convergence in most cases. Yet the convergence rate is dependent on
the fuzzy nonlinear operator N (7). We will also look at the same opinions in [46] about
N (#) in a fuzzy environment as follows:

« A second fuzzy derivative of () with respect to ¥ should be small as the parameter

p may be relatively large.

« Anorm of L7} % should be smaller than one so that the series converges.

Applying a fuzzy HPM to (7) and using a fuzzy HPM, we are building a fuzzy simple ho-

motopy as follows:

du(x) 9%2u(or) dul@)\ <
= -, — - = =0, 62
ot +p([ xz | TP (62)
du(a) 3%u(a) _ou(e)\ -
Wy - =0, 63
ot ”’([ xz | P (63)
P 2
where % = %, %,..., aaT%’X’” =X1,%2,...,%, for 0, = 01,%,...,0,.
Subject to
Z(er t;O[) = Z()(Xm» t;O{),
(X, 0)(at) = o (X)) (@),
let the solution be as follows:
U(Xoms t00) = g (X, 5 00) + puty (Xims 5 01) +p2g2(Xm, La)+---, (64)
u(Xom, t00) = g (X, 5 00) + puty (X, £ 01) +p2g2(Xm, La)+ .. (65)

Taking (65) into (62) with the terms equating and powers comparable to p, we obtain

PO : 8Z()(Ol)

=0, 66
o (66)
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u, (@) 9%u, (o) du,y (@)
1, 0le) |y 0o tyl)
P [ axz | TP
p22 822(“) = v, 8221(“) LB U, 821(“) v 82()(“) )
ot 8XV2” 3961 8x1
and
dup(a)  ~
0. =0,
Py
aﬁl(()[) 82%(01) _350(0[)
L. =|v _
P [ "o | TP
2, () [ 9t () 8|z oy (o) | Otio(t)
LA "X, L PR P

(67)

(68)

(69)

(70)

(71)

Using (66) into (71), we obtain the fuzzy-valued function i, 3, ty, i3, . . ., ,,. Conse-

quently, keeping (64) and (65) and allowing p = 1, we get the approximate solution of (7)

as follows:

UXom, t50) = Uy Xy t.00) + 1y (Ko, £00) + Uy Xy L) + -+,

ﬁ(met;a) = ﬁO(Xm» t;Ol) + El(Xm: t;O[) + ﬁZ(Xm»t;a) toee

3.3.1 Convergence analysis of fuzzy HPM
According to [17], we can write equation (55) in the following forms:

L([Vxta)]) = L([Uyex ta)]) + p[fra) - N([Vxsa)]) - LUy )],

L([Vxta)]) = L([Usx t;)]) +p[j_”(r;a) -N([Vxt;)]) - L[Uo )],

where « € [0, 1].
Applying the inverse operator £~ to both sides of (74) and (75), we get

[V t;0)] = [Uyx 50)] + p[ L7 (r50) = LN ([Vix 550)]) = [Uyx, 50)]],
[V, t0)] = [Uolx, t;e)] + p[ L7 (r;0) = LN ([Vx, t50)]) = [Uo( )]

Let

[e¢]
Vot =) p'Vxte),
i=0

o0
Vix,t;a) = Zpi\_/i(x, t;a),
i=0

substituting (78) and (79) into the right-hand side of (76) and (77), we obtain

[Vx t;a)]

(72)
(73)

(74)

(75)

(76)

(77)

(78)

(79)

Page 16 of 51



Osman et al. Advances in Difference Equations (2021) 2021:219 Page 17 of 51

= [Qo(x, t;a)] +p|:£_1j:(r;a) 1./\/' |:Zp V.(xt; oz):| Uy, t; a)]:|,
[\_/(x, t;a)]

= [Uo(x, ;)] +p|:£1f(r;a) - (L7'N) |:Zpi\_/i(x, t;oz)] - [Uox 55 oz)]:|.

i=0

If p — 1, the exact solution may be obtained by

U, t;a) = lirr} Vix t;a)
p—)

= L7 (f(r;)) = (L7'N) |:i v,(x, t;oz):|

i=0

= r,ot) |:Z 1./\/ v, 6 Ol):|

i=0

and

Ux, t;a) = lim Vix, t; )
=L (f(r;a)) = (L7'N) |:Z Vi, t;a):|
i=0

= L‘l(j_”(r;ot)) - [i(ﬁ_lj\/)l_/i(x, t;a):|.

Py
Theorenj 3.4 Let X(a) = [X(«),X(t)] and Y («) = [Y (), Y ()] be Banach spaces and N :
X(a) = Y(a) be a contractive nonlinear mapping, that is,
Vw(a), w* (@) € X(a);
INW) (@) - N (w*)(@)] <&|w)(e) - (w")
Yw(a), w" (o) € X(a);
[N (@) - N (@) (@) <&|@) (@) - (#)(@)|, 0<&<1lac(01]

0<¢&=<lac(01],

According to Banach’s fixed point theorem, N has a unique fixed point it(a) = [u(a), u(o)],
that is, N (u)(a) = (u)(@) and N (u)(a) = (@)(«). Assume that the sequence generated by
using fuzzy HPM can be written as follows:

n-1

W, (% t0) =N (W, (xta)), W, (xta) Z wix ta), n=1,23,...,
i=0
-1

Wt’l(x) t,Ol) :N(Wn—l(x; t;Ol)), n—l(x; t,Ol) = Zwl(x’t’a)’ n= 172; 31'“;
i=0

assume that

Wolr ) = wy(x 5 0) € B (wlx, ;a)),
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Wolx, t; o) = Wo(x, ;) € B, (Wi, ;)
where

B, (wlx, ;) = {w*x, o) € X ||| w'n, ) — wix, t00) < v},
B,(W(x, t;a)) = {W*(x, La)eX || wrx ;) — Wi, t;a) < r},
then we obtain
@) Wil ta) € B,(Wx, t;a)),
(b) 1M,y 00 Wy, ) = W(x, £ ).

Proof (a) By inductive approach, for n = 1, where « € [0, 1], we obtain

| W, (x, t500) = wlw, 550) || = | NV (W @) = N (wl, 550) |

<& wy, o) - wix, .00)

||W1(x, t;a) — w(x, t;Ot)“ = ||N(W0(x, t;a)) —N(W(x, t;a)) ||

<&|wolx, ;) - Wix, ;00) |
Assume that

|W, (x5 o) —wix, o) | < &7 |lwo(x, £500) — wix, £0)

’

||Wn—l(x¢ t;O{) - W(x’ t;Ol) H f %.n—l ||W0(xr t; 05) - W(x’ t;O{)

by induction hypothesis, then

|W, (%, ;0) = wx, ;) | = | N (W, (s, 550)) = N (wlx, ) |
<&|W,  (nta)-wx o)

’

< &"||wo(x, ) — wlx, )

W, & 00) = Wi, ) | = [N (Wooa (6,5 00)) = N (Wi, 500)) |
<E|Woanta) - W o) |

< &"||[Wolx, ) - Wx, ) .
Using (a), we get

|W,(x, t;0) = wi, t00) | < &7 |wolw, t500) — wi, o) | <E7r <7
= W, ta)eBwkta),
(W, t;0) = Wi, t;.0) | < € |Wolw, t50) = Wi, t00) | < E7r <7

= W, t;a) € Bwxt; ).
(b). Because of

’

|W, (%, ;) = wl, ;) | < E" | w15 0) — Wik, £5.0)
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||Wn(x, La)—wx, G o) || <& ||Wo(x, o) —wx, L a)

and
lim £" =0,
n— 00

lim || W, (x, ;) - wlx, o) | =0,

n—00

lim ||Wy,(x, t;a) — w(x, t;oz)H =0,
n— 00
that is,
lim W, (x, t;a) = wx, t; ),
n— 00

lim W,(x t; ) = wix, t; ). O
n— 00
3.4 Fuzzy reduced differential transform method
We present a fuzzy-valued function u(X,,ta) = [u(X, t;a), u(X,, ;)] of (n + 1)-
variables and assume that it can be represented as a product of (n + 1) single-variable
fuzzy-valued function

w(Xo, ) = [ Fi (%)E,,(0)] (@), (80)
WX, 0) = [F; () F(®)] (@), (81)
where

For(xi) = E;(x1)Ey(x2) -« - F, (%),
F (%) = Fr(x1)Fa(xa) - - - Fo().

Based on the one-dimensional fuzzy DTM properties, a fuzzy-valued function #(X,,, t; o)

as

(o] ) [o¢]
uXo ;0) = Fr G X (@) D F,(im)t" ()
Jm=0 Jm+1=0
[o.¢] [o¢]
= Z Z Q(]mvjﬂl;a)X{,Tt]”lr (82)

Jm=0jn+1=0

and

UXy, ;) = Z?j(]m)Xfi(a) Z Eojm) 0 (@)

Jm=0 Jm+1=0
o0 o0
= Z Z U(]mrjiﬂ; Ol)X,]m thlr (83)
Jm=0jm+1=0

where 37° =370 03 o 205 and

l:[(]ijjnﬁl;a) = [Q(]i)jm+1;a)7U(]irjm+l;a)])
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for

Q(]i:jm+l;a) = [El(ll) X Ez(jZ) X X En(in) X Em(jmﬂ)](a)r
U(]n:jrrﬁl;a) = [?1(/1) X fZ(j2) X X I_:n(jn) X Fm(im+1)](a):

recalled spectrum u(X,,, t; ).
Suppose that Rp, Ry denote a fuzzy RDTM operator and an inverse operator, respec-
tively.

Definition 3.5 ([11]) Ifi(X,,, ¢; ) is continuously differentiable with respect to space with
time in the domain of interest, then it is a fuzzy-valued function of the spectrum

1o
RD[E KXo t;Ol)] ~ Qj(Xm;a) =7 I:_»E(er t;Ol):| ’ (84)
JHLoY t=to
_ — 1[o_
Rp[a(Xp, ;)] 2 Uj(Xps @) = = | —a(Xp i) | (85)
oY t=to

A fuzzy reduced differential function of #(X,,, t; ). The lowercase #(X,,, ;&) assimilates
the original fuzzy-valued function, while the uppercase I:[,»(Xm;a) stands for the fuzzy
RDTM fuzzy-valued function.

Note that the relation shown in (84) and (85) is the Poisson series form of the input
term (X, t; @) with respect to the variables X, t, to request N, using variable weights
I:[,-(Xm;oz).

The fuzzy differential inverse reduced transform of

I:[](ern a) = [Qj(Xm;a))Ej(Xm;a)]

is given as follows:

R WX 0)] ~ X t50) = ) U (K )t~ £o), (86)

e 1l

R U(Xpws )| X (X t00) = Y Ui(Xos ) (£ — to) . (87)
j=0
Taking (87) into (84), we obtain
1T ,
X tor) = - —u(Xu, t; t-tyy, 88
UXo, ;1) Zﬂ[aﬂz( “)L( 4 (88)
j=0 0
1o ,
WXpmt;a) =Y = | —u(Xm & t—t). 89
W0 t50) = 35| S tic)| (et )
Jj=0 0

Definition 3.6 ([11]) If #i(X,, £; &) = RR [Uj(X,; )], ¥(Xoms ;) = R Vi(X,3 )] and the
convolution ® denotes the fuzzy (1 + 1)-dimensional RDTM version of multiplication,
then the basic operations of the fuzzy (n + 1)-dimensional RDTM are:
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RD [Z Xm’ t; a)Z(er t; Ol)]

= Q]’(Xmﬂx) ® K/(Xm;a)

j
=Y UXua)V, (K@),
=0

<

Rp[U(X, t; ) V(X t) |

=Ui(Xm t0) ® V(X )

U](Xm’ O[)Vj r(Xoms ).

o

<
Il
(=]

Rplo* u(Xom, t;00) £+ Bv(Xom, t500) ]
=" Uj(Xp; o) £ BV, (X @),

Rp| U(Xms @) £ V(X 100) ]
= 0T (X5 @) £ BV (Xos ).

9"
RD<_VE Xm: t;()l))
0x;

9"

= UXpa), i=1,23,....mr=1,234,...
oxl—/
9"

R (FuXm,t 0[))

9"

:a—L[(Xm,a) i=1,2,3,...,mr=1,2,34,...
X!

Rp ( o u(X,., t; Ol)) ={+D{+2)G+3)---(G+ r)L[W(Xm,a)

o
AL U, (Xuia), r=12,34,..
].
0" _ . . . .
Rp wu X t0) ) =G+ 1) +2)G+3) - G+ 1) Ujr X5 @)
U K@), r=1,23,4,...
]‘
aan+rm+1
RD[TZ(Xm,t;a)]
AXSm ggrmn

(90)

(91)

(92)

(93)

(94)

(95)

(96)

97)
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(j + rm+1)! aan'*'rerl

T W (i), (98)
m
8R;:n+rm+l
RD[Rig(Xm,t;m]
X" Ot'm+1
(G + Fyp1)! 0 Rom*7ms1
= j’!’” v U, Xua). (99)
m
6.
RD(anmtam) = anma(im — )
Xam’ im = a ’
_ A Jm = (100)
0 otherwise,

a a: a.
where X% = x{'x5%x5% - x%n, for RE, = ri,ra,..., Fy.

4 Numerical examples

In this section, we applying some numerical techniques for solving the fuzzy (1 + n)-
dimensional Burgersequation under gH-differentiability. In the ending, Four examples are
provided.

Example 4.1 We consider the following fuzzy (1 + 1)-dimensional Burgers’ equation:

an . dn  9*m
Menot 2" (101)
ot ox  0x2
with the initial condition
7(x,0) = fip(x) = K" © 2x, (102)

where 1 = u(x,t) is a fuzzy-valued function satisfying u(x, ) > 0. Above k" € E', n=
1,2,3,..., a fuzzy number is defined by

5(s—0.2), se[0.2,04],
k(s)= 15(0.6—s), se(0.4,0.6], (103)
0 s ¢[0.2,0.6],

and [F"](«) = (0.2 + 0.200)", [k"](@) = (0.6 — 0.2)".
The parametric form of (101) is

du  du du
—tu—=—,
ot ~ox  0x?
ou _odu 9%u
— tU—=—,
ot ox  0x?

(104)

(105)

for @ € [0, 1], where u stands for u(x, t; ), similar to u.

Page 22 of 51
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Case [A]. Fuzzy differential transform method:
Applying the FDTM to equations (104) and (105) yields

1 J2
(o + DUG1,j2 + 1) + Z Z(]l +1-a)U(i +1—-ay,a)U(as,jo — as)(c)

a1=0a3=0

= (1 + 2)(r + DU + 2,/2)(@) (106)
and
1 j

G2+ DUGrja+ D)+ Y Y (1 + 1= a)U(y + 1 - ay,a2)U(ar, jo - a2)(@)

a1=0ay=0

= (j1 + 2)(j1 + DU (1 + 2,/2) (). (107)

Using initial condition (102), we have

ujr, 0)(@) = > U, 0)(@)x = (0.2 +0.20)" - 24, (108)
j1=0
u(jr, 0)(e) = > U, 0)(@)x’* = (0.6 - 0.2a)" - 24, (109)
j1=0
where

202 +0.20)" ifj; =1,

U(j,0)(x) = (110)
0 otherwise,

— 2(0.6 — 0.2a)" ifj; =1,

U(j1,0)(a) = (111)
0 otherwise.

Taking (110) and (111) into equations (106) and (107), we have a fuzzy-valued function of

U v, o)) = (UG, jo) (@), U, j2)(@)]
as follows:

, ~4(0.2 +0.22)" ifj; =1,
U1, () = (112)
0 otherwise,

) 8(0.2 + 0.2a)" ifj; =1,
U1, 2)(@) = (113)
0 otherwise,
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and

— -4(0.6 — 0.2a)" ifj; =1,
U, 1)) =
0 otherwise,

_ 8(0.6—0.2a)" ifj; =1,
U(j1,2) () =
0 otherwise.

From (12) and (13), we obtain

u(x, t)(a) = Z ZQ(]'l;}'z)((%)xh'fj2 = Zﬂ(lrjz)(a)

j1=0 j2=0 j2=0

=(02+ O.2a)"[(2x) + (—4x)t + (8x)t% + (-16x)% + - - -

ue (@) =) Y UG j) @) ¢? =y UL jp)@),

j1=0 j2=0 j2=0

= (0.6 — 0.2)"[(2%) + (—4x)t + (8x)¢” + (~16W)° + - -

The exact solution is given as follows:

2
u(x, t)(a) = (0.2 + 0.2a)" ad ], provided x # 0,
1+2¢
_ 2x .
u(x, t)(a) = (0.6 — 0.2a)”[ ], provided x # 0.
1+2¢

Case [B]. Fuzzy Adomian decomposition method:
Applying (32) into (35), we obtain

(%, 1) (@) = (0.2 + 0.2)"2x,

u, (x,£) (@) = =(0.2 + 0.20) " dxt,
1, (%, 2) () = (0.2 + 0.2a)" 822,
(%, 2)(@) = —(0.2 + 0.2)" 162>,

u, (%, 2) () = (0.2 + 0.2a)"32¢*,
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and

wo(x, £) () = (0.6 — 0.20)"2x,

1 (x, £) () = —(0.6 — 0.20¢)"dxt,
(%, £) () = (0.6 — 0.2)"8xt?,
w3 (%, ) () = —(0.6 — 0.20)" 162>,

Ua(x, £)(0) = (0.6 — 0.200)"32¢%,

Using the fuzzy decomposition series, we have

ulo, (@) = Y (o, £)(@) = [ o6, £)(@) + 141 (3, £)(0) + 1y (6, £) () + - -

j=0

= (0.2 +0.20)"[(2%) + (=4)t + (8x)¢% + (—=16x)> + -+ ],

u(x, t) (o) = Zﬁ/(x, (o) = [ﬁo(x, )(a) + ur(x, t) (@) + ua(x, £) () + - - ]

Jj=0

= (0.6 — 0.20)"[(2x) + (—4)t + (8x)2> + (=16x)> + - - - .

The exact solution is given in a closed form as follows:
2x
u(x, t)(a) = (0.2 + 0.2a)" |:—], provided x # 0,
1+2¢
u(x, t)(a) = (0.6 — 0.2a)" L ided x #0
u(x,t)(«) = (0.6 — 0.2 ool provided x # 0.

Case [D]. Fuzzy homotopy perturbation method:
Applying the FHPM to equations (104) and (105), we get

du(e) Pule)  du(e)
[ ot +p(_ o2 % o ﬂ

ou(a) %u(e) _0u(x) _§
[ ot ””(_ o " ox )}_ '

Applying the fuzzy homotopy parameter to extend a solution, we have

0,

u(, t)(@) = [y + puy + pPuy + poug + -+ (@),

u(x, t)(e) = o + iy + p*Thy + Pz + -+ ().
Using p = 1 in (120) and (121), we get

u(x, t)(a) = [Eo tUy Uy Uzt - ),

u(x, t)(a) = [ug + uy + Uy + uz + -+ - ().

117)

(118)

(119)

(120)

121)

(122)
(123)
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Using (121) into (118), with the terminology equating and powers similar to p, we obtain

a series of fuzzy linear equations:

ou
0. =(g)=0, 124
P () (124)
du %u ou
pl : a;tl(a) = W_Zo(a) —goa;xo(a), (125)
ou 3%u ou ou
pz . a;tz(oc) = 8x_21 (o) - [uoa;xl + gla;xo:|(oe), (126)
and
9o
0. ——(a) =0, 127
Ly () (127)
ou 2y ou
P 3—;(a) - WO(“) - Moa—xo(a), (128)
du 9°u ouy, _ 0u
P a—;(a) = ale (@) - [”Oa_xl + ula—ﬂ(a). (129)

According to initial condition (102) and the solution of (124) and (127), we obtain

uy(x, o) = u(x,0) () = (0.2 + 0.200)" - 2x, (130)

To(x, &) = (%, 0) () = (0.6 — 0.2a)" - 2x. (131)

Substituting u,, %y from (130) and (131) in equations (125) and (128), we obtain the solu-
tion to (125) and (128) as follows:

! 3220 Iy n
u,(x, ) () = / (o) —uy— (@) ) dt = (0.2 + 0.2a)" (—2x)t, (132)
0 sz 3x
L/ o%u, ou,
(%, £)(ct) = / 0 )~ 70 22 (@) ) dit = (0.6 — 0.200)" (<220 (133)
o \ 0x? ox
From u,, %o and u,,%; in (126) and (129), we obtain the solution to (126) and (129) as
follows:
L%y [ 9%u _ 0%, ]
u, (%, ) (@) =/0 (W_zl(a) - _uoa—;l(a) + M1a—;’(d)_)dt
= (0.2 + 0.200)" (4x)1%, (134)
t 32— r 82— 82_ 7
(%, 1) (@) = / ( o) - | Ty (@) + =2 (@) )dr
o \ 92 | ox ox
= (0.6 — 0.2a)" (4x)t>. (135)

Applying (122) and (123), the approximate solution of (104) and (105), we get

u(x, t)(a) = (0.2 + O.2a)"[(2x) + (=2%)t + %)% + (=8x)t> + - - - ],

u(x, £)(e) = (0.6 — 0.20)"[(2x) + (=2%)¢ + (2x)£> + (=8x)¢> + -+ .
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The exact solution can be obtained as follows:
2x .
u(x, t)(o@) = (0.2 + 0.2a)"| ——— |, providedx#0,0<w <1,
1+2t
_ 2x .
u(x, t)(a) = (0.6 — 0.2a)" ool provided x #0,0 <« < 1.
+

Case [D]. Fuzzy reduced differential transform method:
Applying the fuzzy RDTM to equations (104) and (105), we get

(/+1>g,-+1(a):—VZQ, 3xu (a)+ U<a) (136)
o Lo 2
G+ 1)U () = - XS‘ Uy o~ Uj-r(e) + 55 Uj(e). (137)

Using initial condition (102), we obtain

Uy(a) =(0.2 + 0.20)" - 2x, (138)
Up(e) = (0.6 — 0.200)" - 2x. (139)

Taking (140) into (137), we obtain I:lj(oz) =U j(a),U/(a)] fuzzy-valued function respec-
tively:

U (@)= (02+02a)" (—4x),  U,(a)= (0.2 +0.20)"(8x), 10)
140
Us() = (0.2 +0.20)" (~16x), ...

Ui(er) = (0.6 — 0.2a)" (—4x), Uy () = (0.6 — 0.200)"(8x),

_ (141)
Us(e) = (0.6 — 0.20)"(~16x), ...

According to the fuzzy differential inverse transformation, we have
ulx,y,t)(a) = Zgjtj =(0.2 +0.2a)" [(2x) + (—4)t + (8x)t% + (=16)3 + - - ] (142)

j=0

uy t) (@) =Y Ujt = (0.6 - 0.20)"[(2x) + (—4w)t + (8x)£* + (-16)£° +---].  (143)
j=0

The exact solution is obtained as follows:
2x .
ulx, t,a) = (0.2 + 0.2a)" [m} provided x #0,0 <o <1,
+

2
u(x, t,a) = (0.6 — O.2a)"|:1—xzt], providedx #0,0 <& < 1.
+

Example 4.2 We consider the following fuzzy (1 + 2)-dimensional Burgers’ equation:

"o —, (144)

ou 0% ® 9%t oo
ot dx2  0y? dx
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subject to the initial condition
ii(x,9,0) = fto(x,) = K" © (x + ), (145)

where i = ii(x, , t) is a fuzzy-valued function satisfying i(x, y, ) > 0. Above k" € E!, n =
1,2,3,..., a fuzzy number is

10(s—0.1), se[0.1,0.2],
k(s)= 11003 -s), se(0.2,0.3], (146)
0, s¢[0.1,0.3],

and [F"](«) = (0.1 + 0.1)", [k"](@) = (0.3 — 0.1r)".
The parametric form of (144) is

du  ’u  d’u ou

ou 0’u d%u _0du
—=—+t—+Uu—, (148)
ot x> 9y? ox

(147)

for « € [0, 1], where u stands for u(x, y, t)(«), similar to u.
Case [A]. Fuzzy differential transform method
Applying the FDTM to (147) and (148), we obtain

(3 + DU, ja, j3 + 1)(e)
= (j1 + 2)(1 + DU + 2, /2, j3) () + (2 + 2)(j2 + 1)
a2 3 (149)
x U(f1,j2 + 2,j3)(0) + Z Z Z(h +1-a)U(ji +1-ai,as,as3)

a1=0a3=0a3=0

x U(ay, jo — ag,j3 — as)(a)
and

(3 + DU(1,j2,j3 + (@)
= (1 + 2)(1 + U1 + 2,j2,73)(@) + (2 + 2)(j2 + 1)

. 1.2 J3 . (150)
x U(ujo+2,j3)@) + Y D Y (i +1-a)U(y +1-a1,a5,as)
a1=0a2=0a3=0

x U(ay, jo — ag,j3 — az)(a),

Using initial condition (145), we get

u(x,y,0)(cr) = Y " Uy, o, 0)(@)/ 2 = (0.1 +0.1er)" (x +7), (151)
j1=0 jo=0
u(x,3,0)(cr) = Y U1, o, 0)(@) y? = (0.3 - 0.1a0)"(x + ), (152)

Jj1=0 j2=0
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where

0.1+0.1a)" ifj; =1,jp = 0,i #j%i,j* = 1,2,

U(j1,2,0)(ex) = (153)
otherwise,
— (03-0.1c)" ifj;=1,j» =0,i #%4,j* = 1,2,
U(]lr]Z;O)(a) = ! (154)
otherwise.
From (154) into (149), we get a fuzzy-valued function
[[(il’j2’j3)(a) = [Q(jl’jZ’jB)(a):U(jl’jZ’jS)(a)]’
as follows:
o 0.1+0.1a)" ifj; = 1,jp = 0,i £ i7" = 1,2,
Q(IIJZ: 1)(05) = ! (155)
otherwise,
o 0.1+0.1a)" ifji=1,jp = 0,i £j%i,j" = 1,2,
U(jr,jo,2) () = ! (156)
otherwise
and
.. ., (0.3-0.1a)" ifji=1,jx=0,i#j5i,j* =12,
U(j1,j2, 1) () = ! (157)
otherwise,
— (0.3-0.1)" ifj;=1,j+=0,i#j5i,j =12,
u(]l’]212)(a) = ! (158)

otherwise.

Taking (12) and (13), we get

[o ol e ollNe o}

u(x,y,t)(@) = Z Z X:Q(]‘l,]‘z,]‘g;)(Ol)?cjlyiztj3

J1=0 j2=0 j3=0

=(0.1+0.10)" [(x +9) + (+ )t + (x + P> +---],

oo o0 o0

w7 0@ =3, DD Uljojs)@)eye?

Jj1=0 j2=0 j3=0

=(0.3-0.1a)" [(x+9) + (x+ )t + (x+ )+ ].

The exact solution can be obtained as follows:

u(x,y,t)(a) = (0.1 + O.la)"|:91€—+)t/:| provided0 <t<l,xory#0,0<a <1,

ux,y,t) (o) = (0.3 - 0.10{)”[%], provided0 <t<l,xory#0,0<a <1.

Case [B]. Fuzzy Adomian decomposition method
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Applying equations (32) into (35), we obtain

uy(x, 5, t)(a) = (0.1 + 0.1a)" (x + ),

u, (%, 9, t)(a) = (0.1 + 0.1a)" (x + y)t,
Uy (%, 9, ) (o) = (0.1 + 0.1a)" (x +y)8%, (159)
us(%,9,8) () = (0.1 + 0.1a)" (x +y)8,

and

Uo(x, 9, t) (o) = (0.3 — 0.1e)" (x + 9),

u1(x, 5, t)(a) = (0.3 = 0.1c)"(x + ¥)t,
(%, y, t)() = (0.3 — 0.1a)" (x + y)£2, (160)
us(x,y,t)(a) = (0.3 = 0.1cx)"(x + y)tg,

Using the fuzzy decomposition series, we obtain

u(x,y,t)(a) = ZZ](%)’: t)(a) = [zo(x,y, £)(@) + uy (%9, 0)(@) + uy (%, 7, E) () + - - - ],
j=0
=(0.1+ O.la)"[(x +9)+ @+ )+ (x +y)t2 + (x +y)t,‘3 S ],
(w7, 8)(@) = YT 0)(@) =[G, (@) + (w5, )(@) + Ty, (@) + -]
j=0

= (O.3—0.1a)”[(x+y) +(x+Nt+(x+ N2+ + )+ ]

The exact solution is obtained as follows:

u(x,y,t)(a) = (0.1 + O.loz)”|if—+)t/:|, provided0 <t<1l,xory#0,0<a <1,

u(x,y,t) (o) = (0.3 - 0.1)" [%], provided0 <t<1l,xory#0,0<a <1.

Case [C]. Fuzzy homotopy perturbation method
Applying the fuzzy HPM, we structure the simple homotopy as follows:

du(ar) 822(01) ule)  du(w) ~
[ ot +p<_ Py a2 ox )]:0’ (161)

ou(a) %u(e) 0%ule) _9u(e) =
[ ot ””(_ o2 02 ox )}_0' (162)
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Let the solution have the following form:

u(x,y,t)(a) = [uy + puy + pu, + plug + -+ (@),

u(x,y,t)(a) = [to + ptiy + p*s + Ptz + -+ | ().

(163)

(164)

According to p = 1 in equations (163) and (164), we get the approximate solution as fol-

lows:

u(x,y, ) (@) = [y + Uy + Uy + ug +--- (),

E(x,y, t)(Ol) = [ﬁ() +ﬁ1 +ﬁ2 +ﬁ3 + - ](Ol)

(165)

(166)

Taking (163) and (164) into (161) and (162), and the terminology equating with powers

similar to p, we get

u
0 =0
:— () =0,
P (o)
ou %y 92u Ju
p: —3—; @==2 x—;’ @+ =2 y—;’ () +z0—a;° (),
1
u 0“u 0“u u ou
2, 94y 1 “y 1 )
Py ) o2 () 0y? (o) [Mo—a tuy o }(a),
and
9l
0
:— () =0,
Ay (o)
ou 9%u 9%u ou
P @)= 2 )+ 2 ) v o (a),
1
Aty 92U, 9%u 9,  _ dup
2, _
Iy (o) = o2 (o) + 02 (o) + [uo o T o (@)

Taking (145) and a solution of (167) and (170), we get

uy (%, 3, t)(a) = u(x,y,0)(a) = (0.1 + 0.1r)" (x + ),

up(x, 5, £) () = ulx, y,0) () = (0.3 - 0.1ct)" (x + ).

From the solution of (168) and (171), we have

tra? 92 d
gl(x,y,t)(a)z/o (8§0(a)+ 8}%0(a)+g0£(a)> dt = (0.1 +0.10)"(x + y)t,

t 2-
(39, D)) = fo (a % () +

0x2

927 o7
0 () + 710 222 (a) ) dt = (0.3 - 0.10)" (x + y)t.
9y? ox

We obtain the solution of (169) and (172) as follows:

tro2 0 0
(5,7, )(@t) = /0 < - f; @+ 5 [%%@ +g1§<a)}>dt

(167)

(168)

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)
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=(0.1+0.1a)"(x + )22, (177)

and

Loy 0%u ou 0
iy (x,y, D)) = /0 (W”;(a) - y”;l (o) + [uog(awlai;(a)})

= (0.3 -0.1a)"(x +y)t%, (178)

Using (165) and (166), the approximate solution of (147) and (148), we obtain

u(x,y,t)(a) = (0.1 + O.loz)”[(x )+ @+t + (x +y)t2 +- ~~], 0<a<l,
u(x,y,t)(a) = (0.3 - O.Ia)”[(x +Y) + @+ N+ (x+ P+ ], 0<ac<l
The exact solution is obtained as follows:
L x+y .
u(x,y,t)(@) = (0.1 +0.1) T¢I provided0 <t<1l,xory#0,0<a <1,

ux,y,t) (o) = (0.3 - 0.1a)”|:9%], provided0 <t<l,xory#0,0<a <1.

Case [D]. Fuzzy reduced differential transform method
Applying the fuzzy RDTM to equations (147) and (148) yields

92 92 L9
G+ DU, (@) = @Q/(a —2 Z o (179)
r=0
32 92 _ AN
G+ DUjs () = L[ (@) to L[ (o) + u,au,,,(a). (180)
=0
Using initial condition (145), we get
Uy(e) = (0.1 +0.1a)" (x + ), (181)
Up(a) = (0.3 - 0.1a)" (x + y). (182)

Taking (183) into (180), we get Uy() = [U, ol@), Uy(a)] fuzzy-valued function, respectively:

U (a)=(0.1+0.1a)"(x + ), 13
183
Uy(a)=(0.1+0.1a)"(x+9),...,U, () =(0.1+0.1c)"(x + y),

U, (x) = (0.3 -0.1a)"(x +9), (184
184
Us(a) = (0.3 -0.1a)"(x +y),..., U, (@) = (0.3 - 0.1a)"(x + ).
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Applying the differential inverse transformation, we have

ulr,y,t50) =Y U ot = (0.1+01a)" [(x+y) + @+ y)t+--+@+y)t"---],  (185)
j=0

ulx,y, ta) = Zﬁjzoti =(03-01a)" [(x+y) + (x+ )+ + @+ "] (186)
=0

The exact solution can be obtained as follows:

xX+Yy

Ly ta) = (0.1 +0.1a)" | —=
i) = 0.1+ 01| 1

i|, provided0 <t<1l,xory#0,0<a <1.

A(x,y, ) = (0.3 0.1a)" [x *y

ﬁ:|, provided0 <t<l,xory#0,0<a <1.

Example 4.3 We consider the following fuzzy (1 + 3)-dimensional Burgers’ equation:

ou  0%u ® ER7) ® 0% 0o il (187)
R iy Ny o R
at x> 9y* 972 ox
subject to the initial condition
#(%,9,2,0) = ig(x,7,2) = k" © (x +y + 2), (188)

where # = u(x,y,z,t) is a fuzzy-valued function satisfying #(x,y,z,£) > 0. Above k" € E1,

n=1,2,3,...,afuzzy number is defined by

10(s—0.4), se€[0.4,0.5],
ki(s) = 110(0.6 —s), s€(0.5,0.6], (189)
0, s ¢ [0.4,0.6],

and [/}_”] (o) = (0.4 +0.1x)", [ﬁ](a) = (0.6 - 0.1x)".
The parametric form of (187) is

du 3%u d*u ’u  du
E:@+a—y2+a—zz-}'23, (190)
du d*u u *u _ou
E:@+a—y2+a—zz+ug, (191)

for « € [0, 1], where u stands for u(x, y, z, £)(«), similar to u.
Case (A). Fuzzy differential transform method.:
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Applying the FDTM to equations (190) and (191), we get
(a + VU1, j2,J3,ja + 1)(e)
= [(]1 + 2)(]1 + 1)2(]1 + 21j21j3rj4)(a) + (72 + 2)(]2 + 1)

x U(jr,j2 + 2,j3,ja)(0) + (z + 2)(jz + 1)U (1, j2, j3 + 2, ja)(0t)

(192)
j1Jj2  J3  Jja
£ 2D > ivl-a)
a1=0a2=0,a3=0 as=0
x U(j1 + 1 —ay, az, as,as)(@)U(ar, jo — az,jz — as, ja — a4)(ot):|,
and
(j4 + 1)E(jlyj2:j3’j4 + 1)(“)
|:(11 +2)(1 + DUy + 2,2, j3,ja) () + (o + 2) (2 + 1)
x U(jr,jo +2,j3,ja) (@) + (3 + 2) (3 + 1)U (1, o, j3 + 2, ja) () (193)

2 3 Ja

+iZZZWhm

a1=0a2=0,a3=0a4=0

x U(jy + 1 - ay,ay, a3, as)(@)U(ar, ja — az,jz — as, ja — ﬂ4)(05)i|'

Using initial condition (188), we obtain
u(x,y,2,t,0)( Z Z Z (71,J2, 73, 0) (@)X 223 = (0.4 + 0.100)"[x + y + 2], (194)

u(x,y,z,t,0)( Z Z Z (1, j2, 73, 0)(@)¥/1 223 = (0.6 — 0.1t)"[x + y + 2], (195)

j1=0 0j2=0 j3=
where
o 04 +0.1a)" ifj; =10 = 0,i % i,j* = 1,2,3,
Q(]lr}Z;]&O)(a) = ' g (196)
0 otherwise,

0.6 -0.1a)" ifj; =1,jp = 0,i #j%i,j* = 1,2,3,

Uy, jayj3,0) (@) = (197)

otherwise.

Taking (196) and (197) into equations (192) and (193), we get

U v, jos s ja)(@) = [ UG fos o ja) (@), Ulr jasf3s ja) (@) ],
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as follows:

PR (0.4_'_0‘10[)71 lf]lzl’]* =0,i7!j*;i,j*:1,2,3,
U1, j2,j3, 1) () = j
otherwise,

L (04 +0.1e)" ifji = L,jp = 0,i #j%4,j* = 1,2,3,
U(1,)2,73,2) () = i j
otherwise,

PR (0.4_'_0‘10[)71 lf]lzl’]* =0,i7!j*;i,j*:1,2,3,
U1, j2,]3,3) (@) = j
otherwise

and

— 06-0.1a)" ifji = Ljr =0,i 70" = 1,2.3,
U(j1,j2,j3, D) = j
otherwise,

e o 0.6 -0.1c)" ifj;=1,j =0,i #j*4i,j* =1,2,3,
U(j1,j2,j3,2) () = j
otherwise,

_— (0.6-01a)" ifji=1jp =0,i#/5i)" =1,2,3,
U(jr,j2,73,3) () = j
otherwise.

Using (12) and (13), we obtain

[o olNNe Sl S lNe o]

ulxy,50)(@) = Z Z Z ZQ(il;jz,j3,j4)(o{)ggj1)/2213ti4

j1=0 j2=0 j3=0 j4=0

=(04+01)" [(x+y+2)+ (x+y+2)t+ (x+y+ 2+ -],

[ o oBENNe O lNe o]

ux,y,z,t) (o) = Z Z Z ZU(jl,j2,j3,j4)(a)xilyizzjst1‘4

J1=0 j2=0 j3=0 ja4=0

=(06-01)"[(x+y+2)+ (x+y+2)t+ (x+y+2)t> +--].

The exact solution can be obtained as follows:

u(x,y,2,0(@) = (0.4 + 0.1a)" %

provided0 <t<l,xoryorz#0,0<a <1,

u(x,y,z,t)(a) = (0.6 - 0.1a)" (x%:d

’

provided0 <t<1l,xoryorz#0,0<a <1.

Case (B). Fuzzy Adomian decomposition method:
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Applying equations (32) into (35), we obtain

uy(x%, 9,2, ) () = (0.4 + 0.1)"(x + y + 2),
u,(%,9,2,t)(a) = (0.4 + 0.1a)" (x + y + 2)t,
u,(%,9,2,t) () = (0.4 + 0.1a)" (x + y + 2)82,
us(%,9,2,t) () = (0.4 + 0.1)" (x + y + 2)83,

u, (%, 9,2, t) () = (0.4 + 0.1a)" (x + y + 2)th,

and

o(x,,2,t)(@) = (0.6 — 0.1a)"(x + y + 2),
w1 (x,,2,8)(@) = (0.6 - 0.1a)"(x + y + 2)t,
(%, 9,2, £) () = (0.6 — 0.1a)"(x + y + 2)£2,
u3(%, 9,2, t) () = (0.6 — 0.1a)" (x + y + 2)t°

(%, 9,2, t) () = (0.6 — 0.1a)"(x + y + 2)t%,

Taking the fuzzy decomposition series, we have

[e¢]

u(x,y,z,t) (o) = Z (%, 9,2, t) ()

j=0

= [y (% 3,2, (@) + 1, (%,,2,8) (@) + Uy (%, 9,2, £) (@) + -+

:(0.4+0.1c>¢)”[(x+y+z)+(x+y+z)t+(x+y+z)t2

+(x+y+z)t3+~~-],

[e¢]

Uy, zt)@) = Y w(x,,21)

j=0

[ﬁo(x,y, z,t) () + ur1(x, 9,2, t) () + Uz (x, 9,2, £) () +

= (0.6—0.1a)”[(x+y+z) +(x+y+2)t+ (x+y+2)t

+(x+y+z)t3+~~~].

The exact solution can be obtained as follows:

Uy, (@) = (0.4 +0.1a)" [x Y z}

1-t¢
provided0 <t<l,xoryorz#0,0<a <1,

u(x,y,z,t)(a) = (0.6 - 0.1)" [%]

]

(198)

(199)
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provided0 <t<1l,xoryorz#0,0<a <1.

Case (C). Fuzzy homotopy perturbation method:
Applying a fuzzy HPM, construct a simple homotopy as follows:

ou %y  %u  d’u ou (@) =0
—+pl-—-—-—-u—||[(@)=0,
ot P\ "9y a2 Yo

Assume that the solution contains the following:

u(%,y,2,6)(@) = [ug + puy + P’y + Pus + pluy + - (@),

u(x,y,2,t)(@) = [to + ptiy + p*tis + P + p*iis + - - |(@).
Using p = 1 in equations (202) and (203), we obtain

u(x,y,z,t)() = [ug + uy +uy + us +uy +---](@),

E(x,y,z,t)(a) = [ﬁo +ﬁl +ﬁz +ﬁ3 +ﬁ4, + - ](Ol)

(200)

(201)

(202)
(203)

(204)

(205)

Using (203) into (200) and the terminology equating with powers similar to p, we obtain

oy

0 =0

p i —\ =0,
Bt()

du 9%u 9%y 9%u u
1,98, | 071 Uy Uy Uy
P )= [ a2 o2 @)+ (a)+zoa(a)}

P %(a) ) [a;il @) + agyzzl (@) + 8;521 (o) + (uo%(a) +gl%(a)>],
and

P %(a) =0,

P ) - [8820 (@) + a;;‘) @+ a;Z" @+ fff (@) + Mo%(a)}

Ly %(a) _ [382;1 @)+ 382;1 @+ 382521 () + (uo%(a) +ﬁ188—ﬁxo(a)

Taking initial condition (188) and the solution of (206) and (209), we get

uy(%,9,2) () = ux,5,2,0)(a) = (0.4 + 0.1a)"(x + y + 2),

up(x,y,2) () = u(x,9,2,0) () = (0.6 — 0.1x)" (x + y + 2).

From the solution of (207) and (210), we get

82

Loty u 9%y, 9%y
zl(x,y,z,t)(oz)=/0 <ax_2°(a)+ ay_zo(oc)+ = =

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)
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=(04+0.1a)"(x + y + 2)t,

%2 022

(9,2 0)(@) = f t(a% @+ 25 gy T
0

dy?

=(0.6 - 0.1)"(x + y + 2)t.

We obtain the solution of (208) and (211) as follows:

t /92y 52y 52
w20 = / (a‘;(ah 3y;(oz)+ f;(a)

+ [zo%lm) +zl%(oz)D at

= (0.4 +0.1a)"(x + y + 2)t%,

and

_ Ym0
u2(x1yrz) t)(a) = ‘/(; ( axZ (a)+ ay2 (a) * 822 (a)

+ [ﬁo%(a) +ﬁ1%(a)i|) dt

= (0.6 -0.1)"(x +y + 2)t%,

Using (204) and (205), the approximate solution of (190) and (191) is

u(%3,2,0() = (04+0.1)"[(x+y+2) + K +y+2)t + (x +y +2)E* + -+

u(% 3,2, 0)(@) = (06 -0.1a)"[(x +y+2) + (k+y + )t + (x + y +2)E* + -+

The exact solution can be obtained as follows:

u(®,y,2,0)(@) = (0.4 +0.1a)"| = Iy : z

provided0 <t<l,xoryorz#0,0<a <1,

u(x,y,2,t)(@) = (0.6 - 0.1a)" %:Z ’

provided0 <t<l,xoryorz#0,0<ao <1.

Case [D]. Fuzzy reduced differential transform method
Taking a fuzzy RDTM to (190) and (191) yields

2

3 9? 9?
G+DUj,, () = U(a) Yoy —SUa) + ﬁg,(aﬂ

j

r=0

—r ox —j+r(

a),
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(214)

(215)

(216)

(217)
]

(218)
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o 82 o 32 o 82 o J o
G+ 1)U () = @U,(a) + a—yzu,»(a) + a_zzuf(“) + XS‘ u,

e

Using initial condition (188), we obtain

Uy(a)=(04+0.1a)" (x +y + 2),

Up(a) = (0.6 — 0.1)"(x + y + 2).

According to (222) into (219), we have I:[j(oz) fuzzy-valued function, respectively:

U () =(04+0.1a)"(x +y +2), Uy(a)=(04+0.1a)" (x+y+2),...

U, (a) =(04+01a)"(x+y+2),

Ui(a) = (0.6 —0.1)"(x +y + 2), Uy(a) = (0.6 —0.1)" (x +y +2), ...

U, (o) = (0.6 - 0.1)"(x + y + 2).

Applying the fuzzy differential inverse transformation, we have

ulx,y,z,0) () = YUY

=(04+0.1a)"[(x+y+2) + (x+y +2)t

+(x+y+z)t2+--~+(x+y+z)t"+-~~],

ux,y,z,t) () = Ejt/

oL

T
=)

=(0.6-0.1a)" [(x+y+2) + (x +y +2)t

(YD) (xry+2)" + ]
The exact solution is obtained as follows:

u(x, 9,2 t)(@) = (0.4 +0.1)" [%}

provided0 <t<l,xoryorz#0,0<a <1

(%, 9,2, 8)(@) = (0.6 — 0.1a)" |:x +y+ z]’

1-¢

provided0 <t<l,xoryorz#0,0 <o <1.

_/'+r(a)'

(219)

(220)

(221)

(222)

(223)

(224)

(225)

Example 4.4 We consider the following fuzzy (1 + n)-dimensional Burgers’ equation:

du [0*m 9% 0@ 9%t dii
at Lo T dxd T a2 ox2

with the initial condition

ﬁ(x17x21x37 ey Xy 0) = ﬁo(xbe;xS; e ;xn)

(226)
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=KD (X + %+ X3+ e+ Ky) (227)

for i = tu(x1,%2,%3,...,%,,t) is a fuzzy-valued function satisfying u(x;, %, x3,...,%,,t) > 0.
Above k" € E', n = 1,2,3,..., a fuzzy number is

10(s—0.4), se[0.4,0.5],
ki(s) = 10(0.6 —s), se(0.5,0.6], (228)
0, s ¢ [0.4,0.6],

and [F"](«) = (0.4 + 0.10)", [k"](@) = (0.6 — 0.1cx)".
The parametric form of (226) is

ou [0%u 0’u 0%u %u ou
—=|—=+—=+—++—|+u—, (229)
at [ oxt  0xF  0x3 ax2 9%
ou [d%u d%u 0%u ul _ou
=l iatiotaat ot |t (230)
ot ox7  0Ox;  Oxj ox; 0x1
for a € [0,1], where u stands for u(x1,x2,%3,...,%,, t)(c), similar to .
Case (A). Fuzzy differential transform method:
Applying the FDTM to (229) and (230), we get
(in+1 + 1)Q(jl»j2»-«~yjn’jn+l +1)()
= (1 +2)(1 + VUG + 2, /2,35 o jue1) (@) + (2 + 2) (2 + 1)
X Q(jler + 2’j3’--'!jn+l) +eeet (jn + 2)(]" + 1)Q(]’1!]‘2,]‘3;~~;j}1 + 2!jﬂ+l)(a)
Jj1 J2 Jn Jn+l
YN D il a)Uy + 1 a1, a0,as,. ., Gy i) (@)
a1=0a2=0 ap=0a,,1=0
X Q(aler - aZ;j3 —asz... ;jn - an:jrul - Lln+1)((¥), (231)
and
(jn+1 + I)U(il»jZ» “ee ,jn’in+1 + 1)(05)
= (1 + 2)(1 + DU+ 2,520j35 -+ o jus1) (@) + (2 + 2)(j + 1)
X U(il»jZ + 2’j3,~-~:jn+1) L (jn + 2)(]n + 1)U(i]1j21j31~")jn + 2:jn+1)(0[)
Jj1 J2 Jn Jn+l o
+ Z Z e Z Z (jl +1 _al)u(jl +1 _alra21a31---7ﬂn1an+l)(a)
a1=0a2=0 ap=0a,,1=0
X U(“lrj2 - ﬂZ:j?» —as,... :jn - an:jn+1 - an+1)(a)~ (232)

Using initial condition (227), we get

Z(xl’xz’ cees Xy 0)(“) = |:Z Z e Zg(jl,jZ’jB’ .. ':jn’ 0)(“):|,

j1=0 j2=0  jn=0
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(acﬁlx’éz e xn) (@) = (0.4 +0.10)" + (1 + % + x5 + -+

and

ﬁ(xl,xz, N

(2021) 2021:219

+xn);

» Xy 0)(0[) = |:Z Z T ZEUIJZJ& .. ':jn: 0)(0[):|;

j1=0/2=0  jn=0

(x’fxéz o) (@) = (0.6 — 0.100)" + (%1 + X + X3 + -+ + %),

where

Q(jl!jZ!jBy

0

U(jler;j{i;

0

(0.4 +0.1a)" +1

0.6 -0.1a)" + 1

csJins 0)(@)

otherwise,

eerjmr 0)(@)

otherwise.

Taking (235) into (236), we get

ifj; = 1jp = 0,i #j%0,j* = 1,2,...,1,

if ji= 1,3 = 0,i #j%0,j* = 1,2,...,1,

i[(jlrj% o :jn;jn+1)(a) = [Q(jl)jb oo ’jnrjn+1)(a))ﬁ(jl:j2: o rjn)jn+1)(a)]y

as follows:

Q(jlrjbj& oo

U1, j2sj3s -

Q(jlrj21j31 oo

U1, j2:j3s -

and

U(jler:jBy o

U(jlrj21j31 e

) (04 +0.1x)" +1
)]Vl’l)(a) =

(0.4 +0.1x)" +1
0

;jm 2)(0[) =

(04 +0.1a)"+1

2 3)(a) =
0

) (0.4 +0.1a)" +1
,]y,,}’l)(Ol) =

. (0.6 -0.1x)" +1
s Jns 1)(0[) =

) (0.6 -0.1x)" +1
i 2)(a) =

ifji=1,jx =0,i #j%i,j"=1,2,...

otherwise,

if ji = 1,jp = 0,i #j%4,/" = 1,2,...

otherwise,

ifji=1,jx =0,i #j%i,j" = 1,2,...

otherwise,

ifi;= 1,0 =0,i #%55* =1,2,...

otherwise

ifji=1,j =0,i #j%i,j* =1,2,...

otherwise,

ifjl'z 1,}1* ZO,Z}/]*,l,]* = 1,2’._'

otherwise,

(233)

(234)

(235)

(236)
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U(jl:jZ:jB!"wjn!S)(a) = .
otherwise,

U(jl?j21j31'~~)jn!n)(a) = .
otherwise.

According to (12) and (13), we obtain

ﬂ(xlxxb”wxm l’)(O[) = |:Z Z e Z Z Q(jl’jZ:~"»jn’jn+l)(a)j|:

j1=0 j2=0  jn=0j,41=0
(lelxlzzx/?? ) (o)
= (0.4 +0.1a)" + [(¥1 + %2 + &3 + -+ + %)
+ (0 +x0 + w3+ -0+ x,)E
+ (o) + X0 + X3+ -+ 2,82

+ (%1 +x2+x3+~~~+x,,)t3+---],

and

ﬁ(xlvx%---:xm t)(()[) = [ZZ : Z Z E(il:jZ:"'rjn)jn+1)(a):|:

j1=0 j2=0  j3n=0,41=0
(g i frot) (@)
= (0.6 — 0.1a)" + [(1 + %2 + X3 + - - + %)
+ (0 + X0 + w3+ -0 +x,)E
2

+ (X +xp + w3+ +x,)E

+ (X1 w3 w)E ]

The exact solution can be obtained as follows:

(01 +op + 23 + -+ +x,) ]
u(x1,%,%3, ..., %, £) () = (0.4 + 0.1a)" + (o1 + % lst ) ,

provided0<t<1,0<a <1

[ + @2 + %3 + -+ +x,) ]
(1, %2, %3, ., % £)(@) = (0.6 — 0.1a)" + (o1 + %5 13t ) ,

provided0<t<1,0<a <1.

Case (B). Fuzzy Adomian decomposition method:

0.6 -0.1a)" +1 ifji=1,jp =0,i #j%i,j* =1,2,...

0.6—-0.1a)" +1 ifji=1,jp =0,i £j%i,j*=1,2,...
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Applying (32) into (35), we obtain

Uo (X1, %2, %3, X, ) (@) = (0.4 + 0.100)" + (1 + X + %3 + - -+ +Xy),

Uy (X1, %0, %3, X, ) (@) = (0.4 + 0.100)" + (1 + X + 23 + -+ - + X)L,

Uy (1, %2,%3, ..., X, £) (@) = (0.4 + 0.100)" + (%1 + X2 + 23 + -+ - + x,)82, (237)
Us (01, %2,%3, ..., X, £)(@) = (0.4 + 0.100)" + (%1 + X2 + 23 + -+ - + x,)E5,

(1, %2,%3, .., X, £) (@) = (0.4 + 0.100)" + (%1 + X2 + 23 + -+ - + x,)2%,

and
Uo(x1,%0,%3, ..., %y, £)(@) = (0.6 — 0.1c0)” + (X7 + X9 + X3 + -+ +&y,),
uy(x1,%0,%3, ..., %, £)(@) = (0.6 — 0.10)” + (X1 + %3 + %3 + -+ + &)L,
U (1, %2,%3, .. ., %, D) (@) = (0.6 — 0.10)" + (X1 + X0 + X3 + - - - + %,) 12, (238)
U3 (X1, %0, %3, . %, £) (@) = (0.6 — 0.100)" + (%1 + X + %3 + - - - +%,)E5,
Ua(X1, %0, %3, % 1) (@) = (0.6 — 0.10)" + (1 + X + X3 + - - - + %)%

Using the fuzzy decomposition series, we have

Z(xl’xZ)x&'u,xn,t)(a)
[o¢]
= [Zﬂj(xhxz,xs,...,xn,t)(a):|
j=0
= [t (%1, %2, %3, .., X, £)(00) + 2y (%1, 22, %3, .., X, E) () + -+ |
=(0.4+0.1a)" + [(xl,xz,xg dooee )+ (0 F X X34+ x)E

+ (%1 +x2+x3+---+xn)t2+(x1+x2+x3+--~+xn)t3+---],
and

E(xI’xZ’xS; ey t)(a)
o0
= |:Z ﬁj(xlynyxlS» ) t)(a):|
=0
= [ﬁO(xbe:xS;~~yxn;t)(a) + Uy (X1, %2, %3, ..., X, D) (@) + - - ]
= (0.6 — 0.1c)" + [ (%1, %0,%3 + - - + %) + (X1 + X3 + X3 + -+ + X)t

+ (1 + %0+ X3 A X)E (K1 Xy X3 X)E ]

The exact solution is obtained as follows:

(%1 + 22+ 23+ +2,) ]
u(x1,%2,%3,...,%, ) () = (0.4 + 0.1a)" + (o1 + % 13t ) ,

provided0 <t<1,0<a <1,

(1 + g + w3 + -+ +x,) ]
u(x1,%2,%3, ..., %, £) () = (0.6 — 0.1cx)” + Ge1 + 25 lst ) ,

provided0<t<1,0<a <1.
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Case (C). Fuzzy homotopy perturbation method:
According to the fuzzy HPM equations (229) and (230), we get

0, (239)

[82(01) +p((_ Pule) ul@) Pul@) 82(()!)) ~

at 0x? 9x3 dx’ 0,

|:3ﬁ(o:) +p<<_ 8%u(a) ~ 8%u(a) ~ 3%7u(e) o aﬁ(a)) ~

ot dx? dx3 dx3 0%y

Bz(a))]

u

3961

uaﬁ(“)ﬂ _5.
8x1

Taking a fuzzy HPM with the fuzzy homotopy parameter p extends the solution as follows:

(240)

u(x1,%2,%3, ..., %, ) () = [ﬂo +puy +ng2 +p?’g3 o ](Ol), (241)

(242)

U(%1, %2, %3, ..., %, 1) t) = [To + pihy + Pl + PPTUz + -+ | ().

Applying p = 1 in equations (241) and (242) with the approximate solution as follows:

Z(xl,xZ,x?n ceer Ky t)(a) = [EO +u;+uyt+ ﬁ?) L ](0[), (243)

U(X1,X2,%3, ..., X, £) (@) = [tho + U1 + Uy + Uz + - -+ (). (244)

Taking (242) into (239), with the terminology equating and powers similar to p, we get

oy
0 (a) =0, 245
Py () (245)
du, 0%u, 0%u, A,
Pltﬁ(aﬁ[ () + (Ot)+ ™ 2 2 (@) + - +a—x;24(06) _oa—xl(a), (246)
du 0%u 32 0%u
2, OUy L5}
p 'W(a)_[a 5 () + 9.2 ") + 92 = S o2 (a)]
ouy oy,
— [—— , 247
+ [zo om (o) +uy 37, (a)} (247)
and
U,
O ﬂ(a) 0, (248)
Uy BRI BRI S 0%u, _ 9y
1, —
p -W(a)— [ 02 () + 92 () + 92 (@) ++--+ a—xi(a) +u°8_x1(a)’ (249)
0ty 021, 0%u, 0%u,
2, —
p .—( )= [a 5 (o) + 9.2 () + 02 (a)+---+a—x}%(a)
ouy Uy
+ uo—(a)+u1—(a) (250)
0x; dx1
Applying the solution to (245) and (248) with initial condition (227) gives
Zo(xlrxbx?n oo ’xn)(a) = Z(xl’xZ’x?n .o ';xmo)(a)
=(0.4+0.1a)" + (X1 + X3 + X3 + X4, ..., %), (251)
ﬁo(xl,xz,x&n . vxn)(a) = ﬁ(xberxSv cesX 0)(“)
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=(0.6 —0.100)" + (X1 + Xy + X3 + Xa,...,%5).

The solution to (246) and (249) is as follows:

t azuo 82M0 ”0
) ) )"‘,xVI?t = = + = + —
(%1, %2, %3 @) /o |:( o2 o) 022 (@) 922 (o)
9%y, ‘u
+o 4 8xn0 (a)) + Uy Bxll (a)] dt

=(0.4+0.1a)" + (x1 + Xy + x3 + - -+ + x,)E,

_ T 0%ug 0%, 8%

) ) 1) Vl’t =
ul(xl X2,X3 X )(Ol) A |:( 396% (Ol) + ax% (Ot)+ axg (Ol)
%u 9%u
b 20 )+ Ty () | it
0xy, 0x1

=(0.6 —0.10)" + (X1 + % + X3+ - - - + x,)L.

We obtain the solution to (247) and (250) as

LT d%u 3’u 0%u
22(x11x21x31'--’xn7t)(a) = \/0‘ ([ 896_21 ((X) + ax_%l (C() + a;{ (a)

0x

=(04+0.1a)" + (%1 +x0 +x3 + -+ - +xn)t2’

and

_ LT 8%, 9%, 9%u;
) ) Yoo n,t = + + +
(51, %2 %31 2226, 1) 1) fo([ @ G @

ou ou,
" [uoa—:(a) %a—iﬁm])

=(0.6—0.100)" + (X1 + X + X3 + - - - + x,) %,
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2
0wy (oz)] + [Mo Oty (@) + 1 Oty (oz)D
x5, 1 0x1

(252)
(253)
(254)
(255)
0°u
= ax; (a)]
(256)

Applying (243) and (244), the approximate solution of (229) and (230), we have

u(xy +xo +x3+---+xn)(a)=(0.4+0.1a)”+[(x1 + Xy + X3+ +Xy)

+ (X +xp X3+ Xyt

+ (X %0 +2x3 4 +x,)12

+ (1 + X+ X3+ A X)) E ]

(257)
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and

u(xy +x; +x3+---+x,,)(a)=(0.6—0.1(x)”+[(x1+x2 +X3+ e+ Xy)
+ X+ X3+ X
+ (X + X+ X3+ )

+ (X1 + X+ X3+ X)) ] (258)

The exact solution is obtained as follows:

(001 + 2y +x3+~~+x,,)}
b

u(x1,%2,%3,...,%, ) () = (0.4 + 0.1a)" + [ -

provided0<t<1,0<a <1,

X1+ X2+ X3+ e+ Xy)
)
1-¢

u(x1,%2,%3,...,%,,)(a) = (0.6 —0.1)" + |:(

provided0 <¢<1,0 <o <1.

Case [D]. Fuzzy reduced differential transform method
Applying the fuzzy RDTM to (229) and (230) yields

9?2 9?2 9?2
G+ 1)Q/+1(a) = B—x%Qj(a) + a—xggi(a) + @U/(a)
92 AN
ot aa Ua) + ZO U U, (o), (259)
. 2 2 _ 52 _
G+ DU () = B_x%Uj(a) + 3_x§uj(a) + 8—96%%'(0!)
9% _ Lo
P @uj(a) + XO: U =l (@) (260)
Using initial condition (227), we get
Uy(a) = (04 +0.1a)” + (1 + %3 + - - + %), (261)
Up(e) = (0.6 — 0.10)" + (X1 + X + - - - + %) (262)

According to (262) into (259), we can get [lj(a) fuzzy-valued function, respectively:

U (o) = (04 +0.1a)"” + (%1 + %3 + X3 + - -+ + %),

Uy(a) = (0.4 + 0.1a)” + (%1 + %3 + X3 + - -+ + %),

U, (a) =(04+0.10)" + (1 + X0 + X3 + -+ - + %),
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and

U () = (0.6 = 0.100)" + (X1 + X + X5 + + - - + %),

Us(a) = (0.6 — 0.10)" + (%1 + xg + X3 + « -+ + %),

Up(e) = (0.6 = 0.1a)" + (X1 + %o + X3 + - - + Xy).
Taking the fuzzy differential inverse transformation, we have

E(x17x27x3; ces X t)(a)

o0
= U
j=0

=(0.4+0.1a)"+[(x1+x2+x3+---+x,,)+(x1 + Xy + X3+

+ (1 + X0 + X3+ A X)) ]

U(X1,%2,%3, ..., %, £) ()
S
=Y U
j=0

:(0.6—0.1a)”+[(x1 + X X3+ -+ X)) + (X + X + a3+

+(x1+x2+x3+~~~+xn)t2+---].

The exact solutions can be obtained as follows:

X1 +Xo + X3+ -
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+ X))t

(263)

cee X))t

(264)

u(x1,%2,%3, ..., %, t) () = (0.4 + 0.1a)" + [( s

provided 0 < ¢ < 1,x1,%2,%3,...,%, #0,

(x1+x2+x3+-~~

+x,,):|

u(x1,%2,%3, o, %, £) () = (0.6 — 0.1cx)” + |: 1

provided 0 < £ < 1,x1,%3,%3,...,%, #0.

5 Conclusions

+x,,)]

In this paper, we studied the comparison of fuzzy differential transform method (FDTM),
fuzzy Adomian decomposition method (FADM), fuzzy homotopy perturbation method
(FHPM), and fuzzy reduced differential transform method (FRDTM), which have been

successfully applied to the solutions of fuzzy (1 + 7)-dimensiona

1 Burgers’ equation under

gH-differentiability. We have investigated many new results to solve the mentioned prob-

lem and applied the methods. The results obtained show that t

he methods are powerful

mathematical tools for solving fuzzy (1 + n)-dimensional Burgers’ equation. Finally, we

presented some numerical examples and figures to illustrate the results of this work.
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1 * 1 L3

0.9 o * 0.9 o ¥ (4) Eluv:aeerr

0.8 o * 0.8 (o] *

0.7 ) * 0.7 o *

06 [e) * 06 [e] *

0.5 o] * 05 o] *

0.4 (] * 04r o *

0.3 o * 0.3 o *

0.2 (o] * 02F © *

01 [¢] * 0110 *

g 01 0.015 0.02 0.025 0.03 0.035 0:04 501 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0. :)9 01

(a) (b)

1 1 #

os o 2 e o L e

0.8 o X 0.8 o *

0.7 o * 0.7 ] *

06 [¢] * 06 o *

05 o * 0.5 (o] *

0.4 (o] #* 0.4 (o] #*

0.3 o X 0.3 (e} X

0.2 (o) * 0.2 e} *

01 o * 1 01 o *

[?00’:1 0(;06 00‘08 02)1 0(;12 0(;1: 0.016 2,52 - 554 5.56 5.58 56 5.62 5.64

(c) (d)

Figure 1 (a) Example 4.1, Case (A), (B), (C),and (D) x=0.1,t =1,n=1, (b) Example 4.2, Case (A), (B), (C), and (D)
x=0001,y=1,t=0,n=2, (c) Example 4.3, Case (A), (B), (C), and (D) x=0.02,y =0,z=0,t =0.7,n =3, (d)
Example 4.4, Case (A), (B), (C), and (D) (Let x; =0, x, =0.1,x3 =0.2, x4 =0.3,
X5 =04,%x5 =0.5,x7 =06,x3 =0.7,x9 =0.8,x10 =0.9,x11 = 1), t =0.0002, n =4
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