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Abstract
This manuscript is involved in the study of stability of the solutions of functional
differential equations (FDEs) with random coefficients and/or stochastic terms. We
focus on the study of different types of stability of random/stochastic functional
systems, specifically, stochastic delay differential equations (SDDEs). Introducing
appropriate Lyapunov functionals enables us to investigate the necessary conditions
for stochastic stability, asymptotic stochastic stability, asymptotic mean square
stability, mean square exponential stability, global exponential mean square stability,
and practical uniform exponential stability. Some examples with numerical
simulations are presented to strengthen the theoretical results. Using our theoretical
study, important aspects of epidemiological and ecological mathematical models can
be revealed. In ecology, the dynamics of Nicholson’s blowflies equation is studied.
Conditions of stochastic stability and stochastic global exponential stability of the
equilibrium point at which the blowflies become extinct are investigated. In finance,
the dynamics of the Black–Scholes market model driven by a Brownian motion with
random variable coefficients and time delay is also studied.

Keywords: Stochastic delay models; Stochastic stability; Mean square stability;
Practical uniform stability; Exponential stability; Nicholson’s blowflies model;
Black–Scholes market model

1 Introduction
Many applications in many disciplines assume that the future state of the system is inde-
pendent of the past states and is only determined by the current state. This is known as
the causality principle which is only an approximation to the true situation of the system.
Consequently, it is practical to consider the past states of the system. A real system should
be modeled by differential equations involving delays in time [1, 2]. The past dependence
has been assumed in the differential equation through the state variable and not its deriva-
tive. Hence, this paper focuses on the retarded (delayed) differential equations (DDEs) in
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the form

dx(t)
dt

= μ
(
t, x(t), xt

)
. (1)

For h > 0, let C := C([–h, 0],Rn) denote a Banach space of continuous functions: [–h, 0] →
R

n with respect to the supremum norm ‖φ‖ := sups∈[–h,0] |φ(s)|. In (1), xt := x(t + s), –h ≤
s ≤ 0, and the initial history function is

x(t0) = φ, φ ∈ C
(
[–h, 0]

)
. (2)

Equation (1) with (2) is involved in many interesting mathematical problems. Different de-
lay differential equations are primarily taken from ecological and financial science litera-
ture. There are many disciplines such as, but not limited to, population dynamics, ecology,
economy, and neural networks [2, 3]. Many recent works dedicated to the delay differential
equations and the fractional differential equations can be found in [4–13]. Many numeri-
cal studies dedicated to fractional models in epidemiology can be found in [14–17].

The deterministic models do not preserve the natural uncertainty of the dynamics
of the system, whereas the random/stochastic systems preserve all types of the uncer-
tainty. Stochastic delay differential equations can be considered as DEs with random ele-
ments and/or stochastic terms with time delays. In this paper, we propose the uncertainty
through perturbing the system by the Brownian motion or through assuming that the co-
efficients, initial conditions, and forcing terms are random variables or stochastic terms.
We shall insert the stochastic term involving the Brownian motion, and this technique is
a kind of non-parametric stochastic perturbation, then (1)–(2) become

⎧
⎨

⎩
dx(t) = μ(t, xt) dt + σ (t, xt) dB(t), xt := x(t + s), –h < s ≤ t0,

x(t0) = φ, φ ∈ C([–h, 0]).
(3)

This system describes the real world problems in an effective way. SDDEs have been
applied in biology, finance, neural networks, ecology, etc. Many works can be found in
[18, 19]. The probabilistic behavior of x(t) in (3) is restricted to a specific pattern which is
Gaussian distribution as the source of randomness is the Wiener process. In (3), μ,σ are
continuous functionals defined on [t0,∞) ×C([–h, 0]) and are assumed to satisfy the local
Lipschitz condition, i.e., for L > 0, |μ1(t, xt) – μ1(t, x∗

t )| ≤ L|xt – x∗
t |, obviously, | ∂μ(t,xt )

∂x | < L,
and also for σ . The stochastic process B(t) : [t0,∞) → R is a one-dimensional Brownian
motion defined on the complete probability space (�,F ,FB

t ,P), where FB
t is the filtration

generated by it up to time t [20].
We will also discuss the random delay differential equations (RDDEs) with discrete delay

τ > 0 in the form

dx(t,ω) = μ
(
t,ω, x(t,ω), x(t – τ ,ω)

)
dt, (4)

where ω belongs to the underlying probability space (�,F ,P). Via the outcome ω, the un-
certainty is introduced. This is another way to introduce the uncertainty by assuming that
the inputs (coefficients, initial conditions, forcing terms, etc.) are random variables and/or
stochastic processes. In this case, we have a wider type of probability distributions such
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as Gaussian, gamma, beta, binomial, etc. And this provides a great flexibility in dealing
with the real life applications. Many applications regarding the RDDEs can be found in
[21–24].

Many authors have studied the existence and uniqueness of the stochastic delay differen-
tial equations, for more details, see [25]. The SDDE has a unique global solution x(t, t0,φ)
for any given initial history function x0 = φ ∈ C([–h, 0]). Our study assumes two important
assumptions as follows.

Assumption 1 Assume that the two functionals μ and σ satisfy the following conditions:

μ(t, 0) = 0, σ (t, 0) = 0.

Then system (3) admits the trivial solution, and hence stochastic stability, mean square
stability, and global mean square exponential stability have received very much attention.

If the origin is not the equilibrium point, then practical stability guarantees the stability
and boundedness of all paths in a certain ball of the center at the origin.

Assumption 2 For practical global uniform stability, if μ and σ satisfy

μ(t, 0) �= 0, σ (t, 0) �= 0,

then our study of stability of SDDE will be in a small neighborhood (ball Br) of the origin.

Constructing appropriate Lyapunov functions/functionals is an effective way in the
study of stability of deterministic and stochastic systems, more details can be found in
[18, 25, 26]. Introducing suitable Lyapunov functionals implies various types of stability
with different stability conditions. This manuscript uses the Lyapunov functionals to in-
vestigate the asymptotic stochastic stability, global mean square exponential stability of
the zero solution of (3). And practical stability of (3) is also studied when the origin is
not necessarily an equilibrium point. It is worthy to study the global exponential mean
square stability while many researchers did not. Regardless of the initial history function
of the system, global exponential stability makes any trajectory tend to the attractor of the
system. Moreover, the paper discusses the asymptotic mean square stability of (3) with
random coefficients. Many works regarding the stability of random/stochastic dynamical
systems are considered in [27–29].

With regard to the applications, the main application in our manuscript is Nicholson’s
blowflies equation perturbed by white noise. This model is one of the major problems in
ecology which describes the dynamics of the population of the Australian sheep blowfly,
Lucilia cuprina, which is known as Nicholson’s blowfly. The author in [30] introduced the
differential equation that models the population dynamics of this blowfly with delay in the
form

dx(t)
dt

= px(t – τ )e–ax(t–τ ) – δx(t), (5)

where x(t) is the population of the mature adults at time t. All parameters p, a, δ ∈ [0,∞),
where p represents the maximum daily production rate of eggs per capita, a–1 is the size
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at which the population reproduces at the maximum rate, δ is the adult death rate of per
capita daily, and τ > 0 is the delay in the production process.

Model (5) admits only the trivial solution (x = 0) if the basic reproduction ratio of the
system R0 < 1, where R0 = p

δ
. The species become extinct due to the global stability of the

zero solution of (5), see [31]. Many authors have studied the dynamics of this equation
[31–35], and stochastically [36–38].

We shall introduce the necessary and sufficient conditions for stochastic stability and
stochastic global exponential stability of the trivial equilibrium of (5) under the influence
of Brownian motion.

Moreover, we study the Black–Scholes delay market model driven by a Brownian motion
with random variable coefficients. This model has become the most known way to model
pricing options in financial markets. It was shown firstly in 1973 by [39]. Many authors
have studied the stochastic volatility of this model, see [40–42]. Generally, the stability of
a stochastic fractional Black–Scholes market model has been studied by [43], for example.

For the numerical simulation, this paper uses the algorithm of an Euler–Maruyama
scheme which was shown by [44]. The solution of (3) can be written in the integral form

x(t) = φ +
∫ t

t0

μ
(
s, x(s), xs

)
ds +

∫ t

t0

σ
(
s, x(s), xs

)
dB(s). (6)

The last integral is called an Itô stochastic integral. B(t) is discretized by dividing the inter-
val [0, T] into N sub-intervals, then 	t = T

N . And 	Bn = Btn+1 –Btn , where 	Bn ∼ N(0,	t).
Then the stochastic integral

∫ T
0 σ (s, x) dB(s) ≈ ∑N

n=0 σ (tn, xn)(Btn+1 – Btn ). The step size 	t
must be small enough for better numerical approximations. From solution (6),

∫ tn+1

tn

μ(s, x) ds ≈ μ(tn, xn)	t and
∫ tn+1

tn

σ (s, x) dB(s) ≈ σ (tn, xn)	Bn.

Then, the Euler–Maruyama scheme has the form

xn+1 = xn + μ(tn, xn)	t + σ (tn, xn)	Bn. (7)

x(tn) is the data required in the scheme and x(tn+1) is the resulting process at tn+1. The
EM scheme is strongly convergent with order 0.5, i.e., if we want to decrease the error 10
times, the step size should be smaller 100 times. 	t cannot be too small because of time
and the computational errors. [45] studied the convergence rate of this scheme. There are
alternative numerical schemes like the Milstein scheme (which is more accurate because
of the second order “correction” term added to the scheme), firstly shown by [46], and the
Runge–Kutta scheme. With order 1, these schemes are strongly convergent, i.e., by reduc-
ing the error 10 times, 	t must be smaller 10 times. The Runge–Kutta scheme requires
computing the derivatives, so we avoid it at present.

This manuscript is organized as follows. Section 2 is devoted to some important pre-
liminaries. A rigorous mathematical study of stability with proofs of some important the-
orems is presented in Sect. 3. Stability of the stochastic Nicholson’s blowflies model and
the Black–Scholes model with random coefficients is presented in Sect. 4. Some numeri-
cal examples with stability regions and computer simulations are shown in Sect. 5. Results
and discussions are presented in Sect. 6.
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2 Preliminaries
Notations ([20, 47–49])

1. Define Sh = {x ∈R
n,‖x‖ < h} and K as the family of all continuous nondecreasing

functions υ : R+ →R+ such that υ(x) > 0∀x > 0 and υ(0) = 0.
2. L2

Ft
{�;R} is the family of R-valued Ft-measurable random variables ζ such that

E|ζ |2 < ∞.
3. L2{[a, b];R} is the family of R-valued Ft-adapted square-integrable processes

{X(t)}a≤t≤b such that

∫ b

a

∣∣X(t)
∣∣2 dt < ∞, a.s.

4. Let M2([0, T],R) denote the family of processes in L2{[a, b];R} such that

E

(∫ b

a

∣∣X(t)
∣∣2 dt

)
< ∞.

Definition 2.1 ([26]) The Lyapunov function V(t, x) defined on [t0,∞) × Sh is positive
definite if V(t, 0) ≡ 0, and V(t, x) ≥ υ(x) for all (t, x) ∈ [0,∞) × Sh, where υ(x) ∈ K. The
Lyapunov function V(t, x) is negative definite if –V(t, x) is positive definite.

Definition 2.2 ([26]) The positive definite function υ(‖x(t)‖) is radially unbounded if
υ(‖x(t)‖) → ∞ as x → ∞. The Lyapunov functional V(t, xt) is positive definite and ra-
dially unbounded if there exists υ(‖x(t)‖) such that V(t, xt) ≥ υ(‖x(t)‖).

The zero-mean property of the stochastic integral in (6) is useful, so we state without
proof this property in the next theorem, and the proof is stated in [50].

Theorem 2.1 Let X(t) ∈M2([0, T],R), i.e., E
∫ b

a |X(s)|2 ds < ∞. Then, for 0 ≤ t0 ≤ t1 < T ,

E

(∫ t1

t0

X(s) dBs

)
= 0.

Define the differential operator L associated with (3) by

L =
∂

∂t
+

n∑

i=1

μi
∂

∂xi
+

1
2

n∑

i,j=1

[
σ T · σ ]

i,j
∂2

∂xi∂xj
.

This operator can be applied to the Lyapunov function V(t, xt) : [t0,∞) × Sh →R+, then

LV(t, xt) =
∂V
∂t

+ μT ∂V
∂x

+
1
2

Tr
[
σ T ∂2

∂x2 σ

]
, (8)

which is called an Itô formula, T is the transposition, and Tr is the trace of the matrix.

Definition 2.3 ([22]) Let X, Y be random variables, for real numbers n > 1, m > 1 with
1
n + 1

m = 1,

E
[|XY |] ≤ (

E
[
Xn]) 1

n
(
E

[
Y m]) 1

m , (9)
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which is called Hölder’s inequality. In particular, for n = m = 2, we have the Cauchy–
Schwarz inequality. For square-integrable functions f , g on [a, b],

∣
∣∣∣

∫ b

a
f (x)g(x) dx

∣
∣∣∣ ≤

(∫ b

a
f 2(x) dx

) 1
2
(∫ b

a
g2(x) dx

) 1
2

.

Lemma 2.1 ([51]) Let σ (t, xt) : [t0,∞) ×C[–h, 0] and let α,β , T be arbitrary positive num-
bers, then

P

[
sup

t0≤t≤T

[∫ t

t0

σ (s, xs) dB(s) –
α

2

∫ t

t0

σ 2(s, xs) ds
]

> β

]
≤ e–αβ , (10)

this is known as the exponential martingale inequality.

Definition 2.4 ([25, 52]) The zero solution of (3) is:
1. Stochastically stable (stable in probability) if for ε ∈ (0, 1),� > 0,∃δ = δ(ε,�) > 0 and

‖φ‖ < δ such that P[|x(t,φ)| < �] ≥ 1 – ε.
2. Stochastically asymptotically stable if it is stochastically stable and

P[limt→∞ x(t,φ) = 0] ≥ 1 – ε.
3. Stable in the large if it is stochastically stable and P[limt→∞ x(t,φ) = 0] = 1.
4. Uniformly stable if, for ε > 0,∃δ = δ(ε) which is independent of t0 and ‖φ‖ < δ such

that |x(t, t0,φ)| < ε.
5. Mean square stable if, for each ε > 0,∃δ > 0 and ‖φ‖2 < δ such that E|x(t,φ)|2 < ε.
6. Asymptotically mean square stable if it is mean square stable and

limt→∞ E|x(t,φ)|2 = 0.
7. Globally exponentially mean square stable if it is mean square stable and ∀δ > 0,

∃λ > 0, K(δ) > 0 such that E|x(t, t0,φ)|2 ≤ K(δ)e–λ(t–t0).

As we mentioned earlier, we will investigate the stability of the solutions with respect
to small neighborhood of the origin. Sometimes the state of a system is probably unstable
and then the system may oscillate near this state. It is more suitable to address another
notion of stability. Practical stability concepts have been introduced by [53–55]. Often,
the practical stability is referred to as ultimate roundness with a fixed bound.

Definition 2.5 The ball Br is stochastically practically uniformly stable if for each 0 < ε <
1, r ≥ 0, and k > r there exist δ = δ(ε, k) and ‖φ‖ < δ such that

P
[∣∣x(t)

∣∣ < k, t ≥ t0 ≥ 0
] ≤ 1 – ε.

Definition 2.6 System (3) is practically uniformly exponentially mean square stable if
there exists r > 0 such that the ball Br is practically uniformly exponentially stable a.s.,
i.e.,

lim
t→∞ sup

1
t

log
(∣∣x(t, t0,φ)

∣
∣2 – r

) ≤ 0.

Definition 2.7 System (3) is practically uniformly exponentially unstable if there exists
r > 0 such that the ball Br is practically uniformly exponentially unstable a.s., i.e.,

lim
t→∞ inf

1
t

log
(∣∣x(t, t0,φ)

∣
∣2 – r

) ≥ 0.
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3 Stability theory of random/ stochastic DDE
In this section, we show the proofs of stability theorems. Based on Assumption 1,
Sects. 3.1, 3.2, and 3.3 investigate theorems of asymptotic stochastic stability, global mean
square exponential stability of (3) under the influence of white noise, initial stochastic pro-
cess, and/or random variable coefficients. Based on Assumption 2, Sect. 3.4 investigates
the practical stability of the solution of (3).

3.1 Stochastic stability and asymptotic stochastic stability
Theorem 3.1 The zero solution of (3) is stochastically stable.

Proof The Lyapunov functional V(t, xt) ∈ C2,1(R+ × C[–h, 0],R+) is positive definite. As-
sume that 0 < ε < 1 and � > 0, one can find by the continuity and the boundedness ofV(t, xt)
at t0 that

sup
‖xt‖∈Qδ

V(t0,φ) ≤ ευ(�),

where Qδ = {u ∈ C[–h, 0] : ‖u‖ < δ}, then δ < �. Now, define κ = inf(t ≥ t0;‖x(t)‖ /∈ Q�),
then applying Itô formula (8) to the Lyapunov functional V(t, xt) implies

dV(κ ∧ t, xκ∧t) = LV(t, xt) dt + σ (t, xt)
∂V(t, xt)

∂x
dB(t),

V(κ ∧ t, xκ∧t) – V(t0,φ) =
∫ κ∧t

t0

LV(s, xs) ds +
∫ κ∧t

t0

σ (s, xs)
∂V(s, xs)

∂x
dB(s),

EV(κ ∧ t, xκ∧t) = EV(t0,φ) + E

∫ κ∧t

t0

LV(s, xs) ds.

Since V(t, xt) is a Lyapunov functional candidate with LV(t, xt) ≤ 0, then

EV(κ ∧ t, xκ∧t) ≤ V(t0,φ), (11)

and for κ < t we have

ευ(�) ≤ EV(κ , xκ ) ≤ V(t0,φ),

P(κ ≤ t)υ(�) ≤ EV(κ , xκ ) ≤ V(t0,φ).

We obtain P(κ ≤ t) ≤ ε, then P(κ < ∞) ≤ ε as t → ∞, then for t ≥ t0

P
(∣∣x(t,φ)

∣
∣ < �

)
= 1 – P(κ < ∞) ≥ 1 – ε. �

Theorem 3.2 The zero solution of (3) is stochastically asymptotically stable.

Proof Choosing 0 ≤ δ ≤ h
2 for h > 0 and 0 < ε < 1, from the previous theorem we have

P

(∣
∣x(t,φ)

∣
∣ <

h
2

)
≥ 1 –

ε

2
. (12)
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Define κα = inf(t ≥ 0;‖x(t)‖ ≤ α) and κh = inf(t ≥ 0;‖x(t)‖ ≥ h
2 ). By Itô’s formula, we have

dV(κα ∧ t ∧ κh, xκα∧t∧κh ) = LV(t, xt) dt + σ (t, xt)
∂V(t, xt)

∂x
dB(t),

V(κα ∧ t ∧ κh, xκα∧t∧κh ) – V(t0,φ)

=
∫ κα∧t∧κh

t0

LV(s, xs) ds +
∫ κα∧t∧κh

t0

σ (s, xs)
∂V(s, xs)

∂x
dB(s),

EV(κα ∧ t ∧ κh, xκα∧t∧κh ) = V(t0,φ) + E

∫ κα∧t∧κh

t0

LV(s, xs) ds.

Assume that V(t, xt) has infinitesimal upper bound with LV(t, xt) ≤ –υ(‖x(t)‖), then

0 ≤ EV(κα ∧ t ∧ κh, xκα∧t∧κh ) ≤ V(t0,φ) – E

[
υ(α)

∫ κα∧t∧κh

t0

ds
]

= V(t0,φ) – υ(α)E(κα ∧ t ∧ κh – t0)
(13)

implies υ(α)E(κα ∧ t ∧ κh – t0) ≤ V(t0,φ). From (12), P(κh < ∞) ≤ ε
2 , and as t → ∞,

P(κα ∧ κh < ∞) = 1 ≤ P(κα < ∞) + P(κh < ∞) ≤ P(κα < ∞) +
ε

2
.

Now, let 0 < α < β < h
2 (β is arbitrary), then P(|x(t,φ)| < β) ≥ 1 – ε

2 and

P

(
lim

t→∞
∣
∣x(t,φ)

∣
∣ ≤ β

)
≥ P

({κα < ∞} ∩ {∣∣x(t,φ)
∣
∣ ≤ β

})

= P(κα < ∞)P
(∣∣x(t,φ)

∣
∣ ≤ β | κα < ∞)

≥
(

1 –
ε

2

)(
1 –

ε

2

)
≥ 1 – ε.

Since β is arbitrary, thereforeP(limt→∞ |x(t,φ)| = 0) ≥ 1–ε, and this proves the asymptotic
stochastic stability. �

Theorem 3.3 The zero solution of (3) is stochastically asymptotically stable in the large.

Proof Let 0 < ε < 1, ‖φ‖ < δ, α be sufficiently large, and V(t, xt) be radially unbounded,
then

lim‖xt‖>α
V(t0,φ) ≤ ε

2
υ(δ) ≤ ε

2
V(t, xt). (14)

Define κ = inf(t ≥ 0;‖x(t)‖ ≥ α), then

EV(κ ∧ t, xκ∧t) = V(t0,φ) + E

∫ κ∧t

t0

LV(s, xs) ds ≤ V(t0,φ).

From (14), we have

EV(κ ∧ t, xκ∧t) ≥ 2
ε
V(t0,φ)P(κ < t).
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Hence, P(κ < t) ≤ ε
2 , i.e., P(κ < ∞) ≤ ε

2 as t → ∞. Therefore P(|x(t,φ)| < α) ≥ 1 – ε
2 and

we can show that P(|x(t,φ)| = 0) ≥ 1 – ε by following the same argument of the previous
theorem. �

3.2 Global exponential mean square stability
Theorem 3.4 The zero solution of (3) is globally exponentially mean square stable.

Proof Let ci > 0, i = 1, 2, . . . , choose a Lyapunov positive definite functional V(t, xt) ≥
c1[x(t)]2 with a negative definite functional LV(t, xt) ≤ –c2[x(t)]2 and V(t0,φ) ≤ c3‖φ‖2

which guarantees the boundedness of V(t, xt) at t = t0. The Lyapunov functional is mono-
tone nonincreasing, i.e.,

E
[
V(t, xt)

] ≤ E
[
V(t0,φ)

]
.

Then the zero solution is stable in mean square as

E
[
x(t)

]2 ≤ 1
c1
E

[
V(t, xt)

] ≤ 1
c1
E

[
V(t0,φ)

] ≤ c4‖φ‖2 < ∞.

And x(t) is a square-integrable stochastic process as

∫ t

t0

E
[
x(s)

]2 ds ≤ –1
c2

E
[
V(t, xt) – V(t0,φ)

] ≤ 1
c2
E

[
V(t0,φ)

] ≤ c5‖φ‖2 < ∞.

For mean square exponential stability, for λ > 0, we have V(t, xt) ≥ c1eλt[x(t)]2, so

E
[
x(t)

]2 ≤ 1
c1

e–λt
E

[
V(t, xt)

] ≤ 1
c1

e–λt
E

[
V(t0,φ)

] ≤ c4‖φ‖2.

For global stability, for t ≥ t0, choose a proper constant α ∈ [0, 1) such that

|α|eεh < 1. (15)

Now, define the Lyapunov functional

V(t, xt) =
(
1 + |α|)eεt[x(t)

]2 +
∫ t

t–h
eεsx2(s) ds,

which implies

V(t0,φ) ≤ (
1 + |α|)eεt0‖φ‖2 + heεt0‖φ‖2.

From Itô formula (8)

dV(t, xt) = LV(t, xt) dt + Vx(t, xt)σ (t, xt) dB(t),

we get

E
[
V(t, xt

]
– E

[
V(t0,φ)

]
= E

∫ t

t–h
LV(s, xs) ds + E

[∫ t

t–h
Vx(s, xs)σ (s, xs) dB(s)

]
.
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The last term vanishes by the zero-mean property of stochastic integral (Theorem 2.1).
Therefore,

E
[
V(t, xt

]
– E

[
V(t0,φ)

] ≤ 0.

Then

(
1 + |α|)eεt

E
[
x(t)

]2 ≤ E
[
V(t, xt)

] ≤ E
[
V(t0,φ)

] ≤ (
1 + |α|)eεt0‖φ‖2 + heεt0‖φ‖2.

Assume that M = (1 + |α| + h) ≥ 1, then

E
∣
∣x2(t)+

∣
∣α

∣
∣x2(t)

∣
∣ ≤ M‖φ‖2e–ε(t–t0).

Using the inequality |a + b| ≥ |a| – |b| implies

E
∣
∣x(t)

∣
∣2 ≤ |α|E[

x(t)
]2 + E

∣
∣x2(t)+

∣
∣α

∣
∣x2(t)

∣
∣

≤ |α|E[
x(t – h)

]2 + M‖φ‖2e–ε(t–t0).

Then, by the induction and (15), we have to prove the global stability by proving

E
∣
∣x(t)

∣
∣2 ≤ M‖φ‖2

1 – |α|eεh e–ε(t–t0), t ≥ t0. (16)

Firstly, for [t0, t0 + h),

E
∣∣x(t)

∣∣2 ≤ |α|E[
x(t – h)

]2 + M‖φ‖2e–ε(t–t0)

≤ ‖φ‖2[|α| + Me–ε(t–t0)]

≤ M‖φ‖2[|α| + e–ε(t–t0)]

≤ M‖φ‖2e–ε(t–t0)[1 + |α|eεh]

≤ M‖φ‖2

1 – |α|eεh e–ε(t–t0).

(17)

For [t0 + h, t0 + 2h) and using (17), we deduce

E
∣
∣x(t)

∣
∣2 ≤ |α|E[

x(t – h)
]2 + M‖φ‖2e–ε(t–t0)

≤ M‖φ‖2e–ε(t–t0) + |α|[M‖φ‖2e–ε(t–h–t0)(1 + |α|eεh)]

= M‖φ‖2e–ε(t–t0) + M‖φ‖2e–ε(t–t0)[|α|eεh + |α|2e2εh]

= M‖φ‖2e–ε(t–t0)[1 + |α|eεh + |α|2e2εh]

≤ M‖φ‖2

1 – |α|eεh e–ε(t–t0).

Similarly, for [t0 + nh, t0 + (n + 1)h), n = 1, 2, . . . , we get

E
∣∣x(t)

∣∣2 ≤ |α|E[
x(t – h)

]2 + M‖φ‖2e–ε(t–t0)
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≤ M‖φ‖2e–ε(t–t0)[1 + |α|eεh + |α|2e2εh + · · · + |α|n+1e(n+1)εh]

≤ M‖φ‖2

1 – |α|eεh e–ε(t–t0).

Then (16) holds. Consequently, the zero solution of (3) is globally exponentially mean
square stable. �

Theorem 3.5 Exponential mean square stability implies almost sure exponential stability
of the zero solution of (3).

Proof For ci > 0, assume that the Lyapunov functional V(t, xt) satisfies

V(t, xt) ≥ c1
∣∣x(t)

∣∣2,

LV(t, xt) ≤ c2V(t, xt),

[
V(t, xt)

]2 ≤ 1
c3

[
Vx(t, xt)σ (t, xt)

]2.

Then we have to prove that

lim sup
t→∞

log(x(t,φ))
t

≤ 2c2 – c3

for c3 > 2c2. From exponential mean square stability, E|x(t,φ)|2 ≤ c1e–λt , λ > 0, and x(t,φ)
is square-integrable satisfies the Lipschitz condition such that

∣∣E
[
x(t1,φ)

]2 – E
[
x(t2,φ)

]2∣∣ ≤ c2(t1 – t2).

Therefore, E|x(t1,φ)|2 ≤ e–λt2 + c2(t1 – t2). Applying Itô’s lemma to x2(t), from the
Burkholder–Davis–Gundy inequality [56] and the definition of exponential stability, one
gets

E

[
sup

t2≤t≤t2+1

∥∥x(t,φ)
∥∥2

]
≤ c3e–λt2 .

Then, for arbitrary 0 < ε < λ,

P

[
sup

t2≤t≤t2+1

∥
∥x(t,φ)

∥
∥2 > e–λt2+εt2

]
≤ c3e–εt2 .

From the Borel–Cantelli lemma [57], we have

sup
t2≤t≤t2+1

∥∥x(t,φ)
∥∥2 ≤ e–λt2+εt2 .

Therefore, lim supt→∞
1
t log‖x(t,φ)‖2 ≤ –(λ–ε)t2

t2+1 . For arbitrary ε, we deduce

lim sup
t→∞

1
t

log
∥
∥x(t,φ)

∥
∥2 ≤ –λ + ε. �
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3.3 DDE with random/stochastic inputs
Consider the Itô type DDE with discrete delay and an initial function as a stochastic pro-
cess:

⎧
⎨

⎩
dx(t,ω) = f (t, xt) dt + g(t, xt) dB(t), t ≥ t0,

x(t0,ω) = φ(t,ω).
(18)

The initial function is assumed to be a second-order stochastic process defined on the
probability space (�,F ,P) and x(t,ω) := x(t) is the solution stochastic process. The con-
tinuous functionals are assumed to satisfy the following conditions, for φ1(t),φ2(t) from
C[–h, t0]:

∣∣f1
(
t,φ1(t)

)
– f2

(
t,φ2(t)

)∣∣2 ≤
∫ ∞

0

∣∣φ1(–s) – φ2(–s)
∣∣2 dr1(s),

∣
∣g1

(
t,φ1(t)

)
– g2

(
t,φ2(t)

)∣∣2 ≤
∫ ∞

0

∣
∣φ1(–s) – φ2(–s)

∣
∣2 dr2(s),

(19)

with
∫ ∞

0 dri(s) < ∞, ri(t) for i = 1, 2 are nondecreasing bounded functions.

Theorem 3.6 The zero solution of (18) is asymptotically mean square stable.

Proof For convenience stochastic Lyapunov functional V(t, xt ,ω) := V(t, xt) which is pos-
itive definite, i.e., for ci > 0,∀i, V(t, xt) ≥ c1[x(t,ω)]2, and LV(t, xt) ≤ –c2[x(t,ω)]2. Then

E
[
V(t, xt) – V

(
t0,φ(t,ω)

)] ≤ –c2

∫ t

t0

E
∣
∣x(τ ,ω)

∣
∣2 dτ ,

and this implies EV(t, xt) ≤ EV(t0,φ(t,ω)). Together with guaranteeing the boundedness
of Lyapunov functional at t = t0,V(t0,φ(t,ω)) ≤ c3‖φ(t,ω)‖2, one gets

c1E
∣
∣x(t,ω)

∣
∣2 ≤ EV(t, xt) ≤ EV

(
t0,φ(t,ω)

) ≤ c3
∥
∥φ(t,ω)

∥
∥2.

Therefore, the trivial solution is mean square stable as

sup
t≥t0

E
∣∣x(t,ω)

∣∣2 ≤ c3

c1

∥∥φ(t,ω)
∥∥2, (20)

and the solution x(t,ω) is square-integrable as

∫ t

t0

E
∣
∣x(τ ,ω)

∣
∣2 dτ ≤ –1

c2
E

[
V(t, xt) – V

(
t0,φ(t,ω)

)]

≤ 1
c2
EV

(
t0,φ(t,ω)

)

≤ c3

c2

∥
∥φ(t,ω)

∥
∥2 < ∞.

Now, applying Itô formula (8) to the function x2(t,ω), one gets

d
[
x(t,ω)

]2 = L
[
x(t,ω)

]2 dt +
∂[x(t,ω)]2

∂x
g(t, xt) dB(t)
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=
[
2x(t,ω)f

(
t, x(t)

)
+ g2(t, x(t)

)]
dt + 2x(t,ω)g

(
t, x(t)

)
dB(t).

Then

E
[
x(t,ω)

]2 – E
[
x(t0,ω)

]2 =
∫ t

t0

E
[
2x(τ ,ω)f

(
τ , x(τ )

)
+ g2(τ , x(τ )

)]
dτ

+ 2
∫ t

t0

E
[
x(τ ,ω)g

(
τ , x(τ )

)]
dB(τ ).

From (19), (20), and for positive constants M1, M2,

2E
[
x(t,ω)f (t, xt)

] ≤ E
[[

x(t,ω)
]2 + f 2(t, xt)

]

≤ E
[
x(t,ω)

]2 + E

∫ ∞

0
x(t – s) dr1(s)

≤ M1,

and E[g2(t, xt)] ≤ E
∫ ∞

0 x(t – s) dr2(s) ≤ M2. Therefore, E[x(t,ω)]2 satisfies the Lipschitz
condition as

∣
∣E

[
x(t,ω)

]2 – E
[
x(t0,ω)

]2∣∣ ≤ M(t – t0)

for positive constant M. Hence, from (20), limt→∞ E|x(t,ω)|2 = 0, which completes the
proof. �

Consider the Itô type SDDE with random coefficients

⎧
⎨

⎩
dx(t,ω) = a(ω)f (t, xt) dt + b(ω)g(t, xt) dB(t), t ≥ t0

x(t0) = φ, φ ∈ C[–h, 0].
(21)

a(ω), b(ω) are assumed to be fourth-order random variables defined on the probability
space (�,F ,P) and φ(t) is an initial deterministic function.

Theorem 3.7 The zero solution of (21) is asymptotically mean square stable if
1. a(ω), b(ω) are fourth-order random variables.
2. x(t,ω) := x(t) is a fourth-integrable stochastic process.

Proof The zero solution is mean square stable and x(t,ω) is square-integrable as in the
previous theorem. For mean square asymptotic stability, applying Itô formula (8) to the
Lyapunov functional V(t, xt ,ω) = |x(t,ω)|2, one gets

d
∣
∣x(t,ω)

∣
∣2

= L
∣∣x(t,ω)

∣∣2 dt +
∂|x(t,ω)|2

∂x
b(ω)g(t, xt) dB(t)

=
[
2
∣
∣a(ω)x(t,ω)

∣
∣f

(
t, x(t)

)
+ b2(ω)g2(t, x(t)

)]
dt + 2

∣
∣b(ω)x(t,ω)

∣
∣g

(
t, x(t)

)
dB(t),

dE
[∣∣x(t,ω)

∣∣2]
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= E
[
2
∣∣a(ω)x(t,ω)

∣∣f
(
t, x(t)

)
+ b2(ω)g2(t, x(t)

)]
dt +

[
2
∣∣b(ω)x(t,ω)

∣∣g
(
t, x(t)

)]
dB(t),

∣∣E
∣∣x(t,ω)

∣∣2 – E
∣∣x(t0,ω)

∣∣2∣∣

=
∫ t

t0

E
[
2a(ω)

∣∣x(τ ,ω)
∣∣f

(
τ , x(τ )

)
+ b2(ω)g2(τ , x(τ )

)]
dτ

+ 2
∫ t

t0

E
[∣∣b(ω)x(τ ,ω)

∣
∣g

(
τ , x(τ )

)]
dB(τ ).

From (19), Cauchy–Schwarz inequality (9) and for positive constants M1, M2,

2E
[∣∣a(ω)x(t,ω)

∣
∣f (t, xt)

] ≤ E
[∣∣x(t,ω)

∣
∣2 + a2(ω)f 2(t, xt)

]

≤ E
∣∣x(t,ω)

∣∣2 +
[
E

(
a4(ω)

)] 1
2
[
E

(
f 4(t, xt)

)] 1
2

≤ E
∣∣x(t,ω)

∣∣2 +
[
E

(
a4(ω)

)] 1
2

[
E

(∫ ∞

0
x4(t – s) dr1(s)

)] 1
2

≤ M1.

Analogously,

E
[
b2(ω)g2(t, x(t)

)] ≤ [
E

(
b4(ω)

)] 1
2

[
E

(∫ ∞

0
x4(t – s) dr2(s)

)] 1
2 ≤ M2.

Therefore, E|x(t,ω)|2 satisfies the Lipschitz condition as

∣∣E
∣∣x(t,ω)

∣∣2 – E
∣∣x(t0,ω)

∣∣2∣∣ ≤ M(t – t0)

for positive constant M. Hence, from (20)

lim
t→∞E

∣∣x(t,ω)
∣∣2 = 0,

which completes the proof. �

3.4 Practical uniform stability and instability
This subsection is devoted to the study of stability of the SDDEs when the origin is not an
equilibrium point, we can study the stability of all solution paths in the neighborhood of
a ball that is centered at the origin. υ1,υ2,υ3, and V(t, ·) are required to be defined in the
neighborhood of the origin. Under Assumption 2, and the ball Br := {x ∈ R : ‖x(t)‖ ≤ r},
we state the following theorems.

Theorem 3.8 The solution of (3) is stochastically practically uniformly stable if
1. V(t, xt) has infinitesimal upper bound;
2. LV(t, xt) ≤ R(t) – υ3(‖x(t)‖), R(t) is integrable and nonnegative with limt→∞ R(t) = 0.

Proof To prove this, it is sufficient to prove that the ball Br is globally stochastically uni-
formly stable. Assume 0 < ε < 1 and 0 < r < l. Also, assume 0 < δ < 1 such that υ1(l) > M

ε
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for δ < l and M > 0. Easily we can see from uniform stability and the infinitesimal upper
bound property of V that

υ1
(∥∥x(t)

∥∥) ≤ V(t, xt) ≤ V(t0,φ) ≤ υ2
(‖φ‖) ≤ υ2(δ) ≤ υ1(l).

Therefore,

sup
φ∈Qδ

V(t0,φ) ≤ ευ1(l) – M.

Define κ = inf{t ≥ 0 : |x(t)| ≥ l}, and from Itô’s formula we get

dV(t ∧ κ , xt∧κ ) = LV(t, xt) + σ (t, xt)
∂V(t, xt)

∂x
dB(t),

V(t ∧ κ , xt∧κ ) – V(t0,φ) =
∫ t∧κ

t0

LV(s, xs) ds +
∫ t∧κ

t0

σ (s, xs)
∂V(s, xs)

∂x
dB(s),

E
[
V(t ∧ κ , xt∧κ )

]

= E
[
V(t0,φ)

]
+ E

[∫ t∧κ

t0

LV(s, xs) ds
]

+ E

[∫ t∧κ

t0

σ (s, xs)
∂V(s, xs)

∂x
dB(s)

]

≤ E
[
V(t0,φ)

]
+ E

[∫ t∧κ

t0

R(s) ds
]

– E

[∫ t∧κ

t0

ν3
(∣∣x(s)

∣
∣)ds

]

≤ E
[
V(t0,φ)

]
+ E

[∫ t∧κ

t0

R(s) ds
]

≤ E
[
V(t0,φ)

]
+ E

[∫ ∞

t0

R(s) ds
]

≤ E
[
V(t0,φ)

]
+ M.

For κ < t,

E
[
V(t ∧ κ , xt∧κ )

] ≥ P(κ < t)E
[
V(κ , xκ )

]

≥ P(κ < t)E
[
υ1(l)

]
,

and this implies

P(κ < t)E
[
υ1(l)

] ≤ E
[
V(t ∧ κ , xt∧κ )

] ≤ V(t0,φ) + M ≤ εE
[
υ1(l)

]
.

As t → ∞, P(κ < ∞) ≤ ε, therefore P(|x(t,φ)| < l) ≥ 1 – ε with ‖φ‖ < δ. The ball Br is
globally stochastically practically uniformly stable if we choose r small, 0 < r < δ with ‖φ‖ <
r, we deduce supt≥t0 |x(t,φ)| < l. �

Theorem 3.9 The solution of system (3) is practically uniformly exponentially stable in
mean square provided that

1. V(t, xt) ≥ ‖x(t)‖2;
2. |σ (t, xt) ∂V(t,xt )

∂x |2 ≥ c1V2(t, xt);
3. LV(t, xt) ≤ c2V(t, xt) + r,

where V(t, xt) ∈ C2,1(R+ × C[–h, 0],R+), r ≥ 1 and constants c1 ≥ 0, c2 ∈R.
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Proof Applying Itô’s lemma to logV(t, xt) yields

d logV(t, xt)

=
∂ logV(t, xt)

∂t
dt +

∂ logV(t, xt)
∂x

dx +
∂2 logV(t, xt)

∂x2 dx2

=
∂ logV(t, xt)

∂t
dt + μ(t, xt)

∂ logV(t, xt)
∂x

dt + σ (t, xt)
∂ logV(t, xt)

∂x
dB(t)

+
∂2 logV(t, xt)

∂x2 dx2

=
1

V(t, xt)
∂V(t, xt)

∂t
dt +

μ(t, xt)
V(t, xt)

∂V(t, xt)
∂x

dt +
σ (t, xt)
V(t, xt)

∂V(t, xt)
∂x

dB(t)

+
1
2
σ 2(t, xt)

[
1

V(t, xt)
∂2V(t, xt)

∂x2 –
1

V2(t, xt)

(
∂V(t, xt)

∂x

)2]
dB2(t)

=
1

V(t, xt)

[
∂V(t, xt)

∂t
+ μ(t, xt)

∂V(t, xt)
∂x

+
1
2
σ 2(t, xt)

∂2V(t, xt)
∂x2

]
dt

+
σ (t, xt)
V(t, xt)

∂V(t, xt)
∂x

dB(t) –
1
2

σ 2(t, xt)
V2(t, xt)

(
∂V(t, xt)

∂x

)2

dt

=
1

V(t, xt)
[
LV(t, xt)

]
dt –

1
2

(
σ (t, xt)
V(t, xt)

∂V(t, xt)
∂x

)2

+
σ (t, xt)
V(t, xt)

∂V(t, xt)
∂x

dB(t).

From condition 3, we have LV(t,xt )
V(t,xt ) ≤ c2 + r

V(t,xt ) , then

logV(t, xt)

≤ logV(t0,φ) +
∫ t

t0

c2 ds +
∫ t

t0

r
‖x(s)‖2 ds –

1
2

∫ t

t0

(
σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

)2

ds

+
∫ t

t0

σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

dB(s).

(22)

Choose 0 < ε < 1 and T arbitrary, then from the exponential martingale inequality (10),

P

{
sup

t0≤t≤T

[∫ t

t0

σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

dB(s) –
ε

2

∫ t

t0

∣∣∣
∣
σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

∣∣∣
∣

2

ds
]

>
2
ε

log T
}

≤ 1
T2 ,

and this means

∫ t

t0

σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

dB(s) ≤ 2
ε

log T +
ε

2

∫ t

t0

∣∣
∣∣
σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

∣∣
∣∣

2

ds. (23)

Let t0 = 0. Substituting into (22) by (23) and from condition 2, we have

logV(t, xt)

≤ logV(0,φ) + c2t + t –
1
2

∫ t

0
c1 ds +

2
ε

log T +
ε

2

∫ t

0
c1 ds
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= logV(0,φ) +
2
ε

log T –
1
2
(
(1 – ε)c1 – 2(c2 + 1)

)
t,

1
t

logV(t, xt) ≤ logV(0,φ) + 2
ε

log T
t

–
1
2
(
(1 – ε)c1 – 2(c2 + 1)

)
,

lim
t→∞

1
t

logV(t, xt) ≤ –
1
2
(
(1 – ε)c1 – 2(c2 + 1)

)
.

We have V(t, xt) ≥ ‖x(t)‖2 ≥ ‖x(t)‖2 – r. Hence, a.s.

lim
t→∞

1
t

log
(
E

∣∣x(t)
∣∣2 – r

) ≤ –
1
2
(
(1 – ε)c1 – 2(c2 + 1)

)

for (1 – ε)c1 > 2(c2 + 1). �

Theorem 3.10 The solution of system (3) is almost sure practically uniformly exponen-
tially unstable if we reverse the inequalities in the previous theorem.

Proof The same as in the previous theorem, one gets

logV(t, xt)

≥ logV(0,φ) +
∫ t

0
c2 ds +

∫ t

0

r
V(s, xs)

–
1
2

∫ t

0
c1 ds +

∫ t

0

σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

dB(s).

The quadratic variation of
∫ t

0
σ (s,xs)
V(s,xs)

∂V(s,xs)
∂x dB(s) is finite as

∫ t

0

(
σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

)2

ds ≤
∫ t

0
c1 ds = c1t,

with

lim
t→∞

1
t

∫ t

t0

σ (s, xs)
V(s, xs)

∂V(s, xs)
∂x

dB(s) → 0,

by the law of large numbers for martingales. Therefore,

logV(t, xt) ≥ logV(0,φ) +
1
2

(2c2 – c1)t.

Hence, for V(t, xt) ≤ ‖x(t)‖2 – r,

lim
t→∞ inf

1
t

log
(
E

∣∣x(t)
∣∣2 – r

) ≥ 1
2

(2c2 – c1),

and this proves the a.s. globally uniformly exponential instability in mean square for 2c2 ≥
c1. �

4 Applications
4.1 Stochastic Nicholson’s blowflies model
System (5) is exposed to stochastic perturbation in the form of white noise which is as-
sumed to be proportional to the deviation of the current state of the system from the zero
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solution. Therefore, the stochastic version of (5) will be in the form
⎧
⎨

⎩
dx(t) = (px(t – τ )e–ax(t–τ ) – δx(t)) dt + σx(t) dB(t),

x(s) = φ(s), s ∈ [–τ , 0],φ ∈ C([–τ , 0],R).
(24)

The parameter σ represents the intensity of the noise. Here, we will investigate the neces-
sary conditions of mean square stability of the zero solution of the corresponding linear
system which are the same conditions of stochastic stability of the nonlinear system (24).
Moreover, stochastic global exponential stability of the zero equilibrium is discussed.

Proposition 4.1 Assume p(1 + τ (p + δ)) ≤ δ – σ 2

2 , then the zero solution of (24) is stochas-
tically stable.

Proof Consider the linear part of (24) using e–ax(t–τ ) = 1–ax(t –τ )+O(x(t –τ )) and neglect
O(x(t – τ )), we get the corresponding process y(t)

dy(t) =
(
py(t – τ ) – δy(t)

)
dt + σy(t) dB(t). (25)

By introducing the Lyapunov functional V = V1 + V2, choose V1 in the form

V1(t, yt) =
(

y(t) + p
∫ t

t–τ

y(s) ds
)2

+ p2
∫ t

t–τ

ds
∫ t

s
y2(s) ds.

Itô lemma (8) implies

dV1(t, yt)

= 2
(

y(t) + p
∫ t

t–τ

Y (s) ds
)

(
py(t – τ ) – δy(t) + py(t) – py(t – τ )

)
dt

+ σ 2y2(t) dt + p2τy2(t) dt – p2
∫ t

t–τ

y2(s) ds + 2σy(t)
(

y(t) + p
∫ t

t–τ

y(s) ds
)

dB(t)

=
(
2p – 2δ + σ 2 + p2τ

)
y2(t) dt + 2p2y(t)

∫ t

t–τ

y(s) ds

– p2
∫ t

t–τ

y2(s) ds – 2pδy(t)
∫ t

t–τ

y(s) ds

+ 2σy(t)
(

y(t) + p
∫ t

t–τ

y(s) ds
)

dB(t).

Since

2p2Y (t)
∫ t

t–τ

y(s) ds ≤ p2τy2(t) + p2
∫ t

t–τ

y2(s) ds,

–2pδy(t)
∫ t

t–τ

y(s) ds ≤ pδτy2(t) + pδ

∫ t

t–τ

y2(s) ds.

Therefore,

dV1(t, yt) ≤ (
2p – 2δ + σ 2 + 2p2τ + pδτ

)
y2(t) dt + 2σy(t)

(
y(t) + p

∫ t

t–τ

y(s) ds
)

dB(t)
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+ pδ

∫ t

t–τ

y2(s) ds.

Choose V2 in the form

V2(t, yt) = pδ

∫ t

t–τ

ds
∫ t

s
y2(s) ds.

Then

dV(t, yt) = dV1 + dV2

≤ (
2p – 2δ + σ 2 + 2p2τ + pδτ

)
y2(t) dt + pδ

∫ t

t–τ

y2(s) ds + pδτy2(t) dt

– pδ

∫ t

t–τ

y2(s) ds + 2σy(t)
(

y(t) + p
∫ t

t–τ

y(s) ds
)

dB(t)

= 2
(

p
(
1 + τ (p + δ)

)
– δ +

σ 2

2

)
y2(t) dt + 2σy(t)

(
y(t) + p

∫ t

t–τ

y(s) ds
)

dB(t).

Taking the expectation and from the zero-mean property of the stochastic integral, we
have

dE[V(t, yt)]
dt

≤ 2
(

p
(
1 + τ (p + δ)

)
– δ +

σ 2

2

)
E

[
y2(t)

]
, (26)

which is negative definite if

p
(
1 + τ (p + δ)

) ≤ δ –
σ 2

2
. (27)

Then

E
[
V(t, yt) – V(t0,φ)

] ≤ 2
(

p
(
1 + τ (p + δ)

)
– δ +

σ 2

2

)∫ t

t0

E
[
y2(s)

]
ds.

From
∫ t

t0
E[y2(s)] ds < ∞ and condition (27), we arrive at

E
[
y2(t)

] ≤ E
[
V(t, yt)

] ≤ E
[
V(t0,φ)

] ≤ sup
s∈[–τ ,0]

E
[
φ2(s)

]
. (28)

Therefore, from (26) and (28), for M = 2(p(1 + τ (p + δ)) – δ + σ 2

2 ), we get

dE[V(t, yt)]
dt

≤ ME
[
V(t, yt))

]
.

So,

E
[
V(t, yt)

] ≤ eMt .

E[y2(t)] satisfies the Lipschitz condition with limt→∞ E[y2(t)] = 0. Therefore, criterion (27)
is necessary for the mean square asymptotic stability for the zero equilibrium of (25) and
the stochastic stability of (24). �
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Proposition 4.2 Assume p < δ, then the zero solution of (24) is stochastically globally ex-
ponentially stable if

p ≤ min

{
1
λ

e–ετ , 2δ –
1
λ

– ε – σ 2
}

, (29)

where λ = 1 + | p
δ
| ≥ 1.

Proof Choose a proper constant p
δ

∈ [0, 1) such that

∣∣
∣∣
p
δ

∣∣
∣∣e

ετ < 1. (30)

According to (25), define the Lyapunov functional

V(t, yt) =
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
eεt[y(t)

]2 +
∫ t

t–τ

eεsy2(t)(s) ds. (31)

Using (8), then

LV(t, yt)

= εeεt
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
y2(t) + 2eεt

(
1 +

∣∣
∣∣
p
δ

∣∣
∣∣

)
y(t)

[
py(t – τ ) – δy(t)

]

+ εeεt
(

1 +
∣
∣∣
∣
p
δ

∣
∣∣
∣

)
σ 2y2(t) + eεty2(t) – eε(t–τ )y2(t – τ )

≤ εeεt
(

1 +
∣
∣∣
∣
p
δ

∣
∣∣
∣

)
y2(t) + pεeεt

(
1 +

∣
∣∣
∣
p
δ

∣
∣∣
∣

)
[
y2(t) + y2(t – τ )

]

– 2δeεt
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
y2(t) + εeεt

(
1 +

∣∣
∣∣
p
δ

∣∣
∣∣

)
σ 2y2(t) + εeεty2(t) – εeε(t–τ )y2(t – τ )

= eεt
[((

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)[
ε + p – 2δ + σ 2] + 1

)
y2(t) +

(
p
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
– e–εt

)
y2(t – τ )

]
.

Taking the expectation implies

E
[
LV(t, yt)

] ≤ eεt
[((

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)[
ε + p – 2δ + σ 2] + 1

)
E

[
y2(t)

]

+
(

p
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
– e–εt

)
E

[
y2(t – τ )

]]
.

We can see that, for λ = 1 + | p
δ
| and p < δ, E[LV(t, yt)] ≤ 0 if

p + σ 2 + ε ≤ 2δ –
1
λ

,

p ≤ 1
λ

e–ετ .

These inequalities imply condition (29). Now, from Lyapunov functional (31), we have

(
1 +

∣∣
∣∣
p
δ

∣∣
∣∣

)
eεt

E
[
y(t)

]2 ≤ E
[
V(t, yt)

] ≤ E
[
V(t0,φ)

] ≤
(

1 +
∣∣
∣∣
p
δ

∣∣
∣∣

)
eεt0‖φ‖2 + τeεt0‖φ‖2.
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Assume that M = (1 + | p
δ
| + τ ) ≥ 1, therefore

E
∣
∣y(t)2+

∣
∣α

∣
∣y(t)2∣∣ ≤ M‖φ‖2e–ε(t–t0).

Then

E
∣
∣y(t)

∣
∣2 ≤

∣∣
∣∣
p
δ

∣∣
∣∣E

[
y(t)

]2 + E
∣
∣y2(t)+

∣
∣p
δ

∣
∣y2(t)

∣
∣

≤
∣
∣∣∣
p
δ

∣
∣∣∣E

[
y(t – h)

]2 + M‖φ‖2e–ε(t–t0).

Then, by the induction and (30), we have to prove the global stability by proving

E
∣
∣y(t)

∣
∣2 ≤ M‖φ‖2

1 – | p
δ
|eετ

e–ε(t–t0), t ≥ t0.

This can be done by following the same argument of Theorem 3.4 with |α| = | p
δ
|. Therefore,

the zero solution of (25) is globally exponentially mean square stable under condition (29)
which is the same condition of stochastic stability of the nonlinear system (24). �

4.2 The random delay Black–Scholes market model
Consider the stochastic Black–Scholes model driven by random variable coefficients in
the form

ẋ(t,ω) = –A(ω)x(t,ω) + σ (ω)x(t – h,ω)Ḃ(t), h > 0, (32)

this is a model of volatility in finance of the process of asset prices. The process {x(t), t ≥ 0}
is the price of a stock with a nonnegative random variable drift A(ω), the volatility random
variable σ (ω), and a Wiener process B(t).

Proposition 4.3 Equation (32) is:
1. Stable in probability if only A(ω) is a nonnegative random variable.
2. Asymptotically stable in probability if ‖A(ω)‖2 + σ‖σ (ω)‖2

4 < λh – 1, λ > 0.
3. Stable in the large.
4. Mean square exponentially stable if ‖A(ω)‖2 + σ‖σ (ω)‖2

4 < λh – 1, λ > 0.
5. Mean square stable if ‖σ (ω)‖2

4 < 2‖A(ω)‖2.
6. Almost sure practically uniformly exponentially stable if ‖A(ω)‖2 > 0.5.

Proof Consider the random Lyapunov function V(t, x(t,ω)) = x2(t,ω)e–λht with λ > 0.
Then

LV
(
t, x(t,ω)

)
= –λhx2(t,ω)e–λht – 2A(ω)x2(t,ω)e–λht + σ 2(ω)x2(t – h,ω)e–λht . (33)

For stochastic stability, the last term vanishes for sufficiently large λ in (33). Therefore,
according to inequality (11) of Theorem 3.1, LV(t, xt ,ω) ≤ 0 and equation (32) is stochas-
tically stable if only A(ω) is a nonnegative random variable. For asymptotic stochastic sta-
bility, consider the Lyapunov functional V(t, xt ,ω) = [x2(t,ω) + σ 2(ω)

∫ t
t–h x2(s,ω) ds]e–λht .
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It is enough to prove ELV ≤ –υ(‖x(t)‖), υ(‖x(t)‖) ∈K according to Theorem 3.2. It is easy
to verify the decrescent property of the considered Lyapunov functional as for M1, M2 > 0,
M1 ≤ e–λht ≤ M2, then V(t, xt ,ω) ≤ M2[x2(t,ω) + σ 2(ω)

∫ t
t–h x2(s,ω) ds].

ELV(t, xt ,ω) =
[
–λhE

[
x2(t,ω)

]
+ E

[(
1 + A2(ω) + σ 2(ω)

)
x2(t,ω)

]]
e–λht

≤ –
[
λh – 1 –

∥∥A(ω)
∥∥2

4 –
∥∥σ (ω)

∥∥2
4

]
E

[
x2(t,ω)

]
e–λht .

Then, according to Theorem 3.7, ‖A(ω)‖2 +σ‖σ (ω)‖2
4 < λh – 1 is a condition of the asymp-

totic stochastic stability which is the same condition of mean square exponential stabil-
ity according to Theorem 3.4. Now, from Theorem 3.3, we can see that V is radially un-
bounded as

lim‖xt‖→∞ inf
t≥0

V(t, xt ,ω) = ∞.

Therefore, (32) is stable in the large. For mean square stability, consider the Lyapunov
functional V(t, xt ,ω) = x2(t,ω) + σ 2(ω)

∫ t
t–h x2(s,ω) ds, which implies

ELV(t, xt ,ω) ≤ [
–2

∥
∥A(ω)

∥
∥

2 +
∥
∥σ (ω)

∥
∥2

4

]
E

[
x2(t,ω)

]
.

The condition of mean square stability is ‖σ (ω)‖2
4 < 2‖A(ω)‖2 according to Theorems 3.4,

3.7.
For practical stability, consider the Lyapunov functional V(t, xt ,ω) = x2(t,ω). Then

LV(t, xt ,ω) = –2A(ω)x2(t,ω) + σ 2(ω)x2(t – h,ω).

Hence,

V(t, xt ,ω) ≥ ∥∥x(t,ω)
∥∥2,

∣∣
∣∣σ (t, xt ,ω)

∂V(t, xt ,ω)
∂x

∣∣
∣∣

2

= 4σ 2(ω)x2(t,ω)x2(t – h,ω) ≥ 0.

And

ELV(t, xt ,ω) ≤ –2
∥
∥A(ω)

∥
∥

2E
[
x2(t,ω)

]
+

∥
∥σ (ω)

∥
∥2

4E
[
x2(t – h,ω)

]
+ 1.

According to the conditions of Theorem 3.9 and the conditions on the random variables
in Theorem 3.7, the constants c1 = 0 and c2 = –2‖A(ω)‖2. Then

c1 > 2(c2 + 1) = –4
∥
∥A(ω)

∥
∥

2 + 2.

Consequently, for

r =
∥
∥σ (ω)

∥
∥2

4E
[
x2(t – h,ω)

]
+ 1

and

∣∣x(t,ω)
∣∣ >

√∥∥σ (ω)
∥∥2

4E
[
x2(t – h,ω)

]
+ 1,
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Figure 1 (a) Stability regions. (b) Trajectories of the solution

i.e., if ‖A(ω)‖2 > 0.5, the solution of (32) is globally practically uniformly exponentially
stable. �

5 Illustrative examples
Example 1 Consider the stochastic delay differential equation with discrete delay h > 0

dx(t) =
(
–bx(t – h) + cx(t)

)
dt + σx(t) dB(t). (34)

By introducing the Lyapunov functional

V(t, xt) = |b|x2(t) + b2
∫ t

t–h
x2(s) ds,

the asymptotic mean square stability condition for (34) is σ 2

2 + |b|(|b| + c) < 0. The region
of stability in mean square for (34) for the zero equilibrium point is shown in Fig. 1(a) for
different values of c, (1) c = –1, (2) c = –2, (3) c = –3, (4) c = –4, and (5) c = –5. Numerical
simulation of the solution of (34) with x(t) = 0, h = 2 is shown in Fig. 1(b).

By introducing a different Lyapunov functional

V(t, xt) = x2(t) + b2h
∫ t

t–h
x2(s) ds + |b|h

∫ t

t–h
x2(s) ds,

a different stability condition is obtained in the form σ 2

2 + |b|( |b|h
2 + 1) + c < 0 which is

the delay-dependent condition. Regions of mean square stability when c = –4 for different
values of h, (1) h = 0.5, (2) h = 0.4, (3) h = 0.2, (4) h = 0.1 are shown in Fig. 2(a), and also
when c = –7 in Fig. 2(b). Better stability regions are obtained by decreasing c with the delay
h. Numerical simulation of the solution of (34) is shown in Fig. 3 for h = 2, all trajectories
of the solution are convergent to the zero solution.

Stochastic stability conditions can be investigated by introducing the Lyapunov func-
tional

V(t, xt) = x2(t)e–λb2t ,
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Figure 2 Regions of mean square stability of the zero solution of (34)

Figure 3 Numerical simulation of ten stable trajectories of the
solution x = 0 of (34)

Figure 4 Regions of stochastic stability of (34) for c = 1 in a (σ ,b)-space of parameters

which implies

LV(t, xt) = –λb2x2(t)e–λb2t + 2x(t)
(
–bx(t – h) + cx(t)

)
e–λb2t + σ 2x2(t)e–λb2t

=
(
–λb2 + 2c + σ 2)x2(t)e–λb2t – 2bx(t)x(t – h)e–λb2t .

For λ sufficiently large, the last term vanishes. Hence, we get a condition for stochastic
stability which is –λb2 + 2c + σ 2 < 0. Stochastic stability regions when c = 1 for different
λ, (a) λ = 1, (b) λ = 5, (c) λ = 15, (d) λ = 20 are shown in Fig. 4, and also when c = –1 are
shown in Fig. 5. For large values of λ, we get better stability regions.

For practical stability, suppose the Lyapunov functional V(t, xt) = x2(t), then

LV(t, xt) = –2bx(t)x(t – h) +
(
2c + σ 2)x2(t) ≤ (

2c + σ 2 + |b|)x2(t) + |b|x2(t – h).
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Figure 5 Regions of stochastic stability of (34) for c = –1 in a (σ ,b)-space of parameters

Figure 6 Regions of global practical uniform exponential stability of
(34) for (a) c = –5, (b) c = –8, (c) c = –11

Hence, V(t, xt) ≥ ‖x(t)‖2, |σ (t, xt) ∂V(t,xt )
∂x |2 = 4c2x4(t) = 4c2V2(t, xt) ≥ 0, and LV(t, xt) ≤

(2c + σ 2 + 2|b|)V(t, xt) + |b|x2(t – h) + 1. According to the conditions of Theorems 16, 18,
the constants c1 = 0 and c2 = 2c + σ 2 + 2|b|. Then c1 > 2(c2 + 1) = 4c + 2σ 2 + 4|b| + 2. Con-
sequently, for r = |b|x2(t – h) + 1 and |x| >

√|b|x2(t – h) + 1, i.e., 2c + σ 2 + |b| < –1, the so-
lution of (34) is globally uniformly exponentially stable. The regions of stability are shown
in Fig. 6.

Example 2 Consider the stochastic scalar equation with two discrete time delays h, τ > 0

dx(t) =
(
ax(t) + bx(t – h)

)
dt + σx(t – τ ) dB(t). (35)

The Lyapunov functional

V(t, xt) = x2(t) + |b|
∫ t

t–h
x2(s) ds + σ 2

∫ t

t–τ

x2(s) ds (36)

leads to a + |b| + σ 2

2 < 0 as a condition of the mean square asymptotic stability of the zero
solution. Stability regions are shown in Fig. 7(a) for different values of a, (1) a = –2, (2)
a = –3, (3) a = –5, (4) a = –10, and (5) a = –15, and the numerical simulation of the zero
solution is shown in Fig. 7(b).

Consider the random version of (35)

dx(t,ω) =
(
ax(t,ω) + A(ω)x(t – h,ω)

)
dt + σ (ω)x(t – τ ,ω) dB(t). (37)

By introducing the random version of Lyapunov functional (36)

V(t, xt ,ω) = x2(t,ω) + A(ω)
∫ t

t–h
x2(s,ω) ds + σ 2

∫ t

t–τ

x2(s,ω) ds.
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Figure 7 (a) Stability regions. (b) Trajectories of the solution

A(ω) is a nonnegative random variable. From Itô’s lemma, we get

LV(t, xt ,ω)

= 2x(t,ω)
[
ax(t,ω) + A(ω)x(t – h,ω)

]
+ σ 2(ω)x2(t – τ ,ω)

+ A(ω)
[
x2(t,ω) – x2(t – h,ω)

]
+ σ 2(ω)

[
x2(t,ω) – x2(t – τ ,ω)

]

≤ 2ax2(t,ω) + A(ω)
[
x2(t,ω) + x2(t – h,ω)

]
+ A(ω)

[
x2(t,ω) – x2(t – h,ω)

]

+ σ 2(ω)x2(t,ω),

E
[
LV(t, xt ,ω)

]

≤ 2aE
[
x2(t,ω)

]
+ 2E

[
A(ω)x2(t,ω)

]
+ E

[
σ 2(ω)x2(t,ω)

]

≤ 2aE
[
x2(t,ω)

]
+ 2

[
E

[
A2(t,ω)

]] 1
2 E

[
x2(t,ω)

]
+

[
E

[
σ 4(ω)

]] 1
2 E

[
x2(t,ω)

]

=
[
2a + 2

∥
∥A(ω)

∥
∥

2 +
∥
∥σ (ω)

∥
∥2

4

]
E

[
x2(t,ω)

]
.

Then ‖σ (ω)‖2
4 < –2(a + ‖A(ω)‖2) is the asymptotic mean square stability condition of the

zero solution of (37). And the condition of mean square stability in case of the indepen-
dence between A(ω),σ (ω), and x(t,ω) is ‖σ (ω)‖2

2 < –2(a +‖A(ω)‖). Numerical simulations
of the solution of (37) with x(t,ω) = 0 and a = –1 are shown in Figs. 8, 9 for different dis-
tributions of the random variables.

Example 3 Consider the two-dimensional system of stochastic delay differential equation

⎧
⎨

⎩
ẋ1(t) = ax1(t) + x2(t) + x1(t – h)Ḃ1(t),

ẋ2(t) = bx2(t) + x2(t – τ )Ḃ2(t)
(38)

B(t) = (B1(t), B2(t))T is a standard Wiener process, x(t) = (x1(t), x2(t))T is a two-dimensional
vector function where T is the transposition. The system in the matrix form

(
dx1(t)
dx2(t)

)

=

(
ax1(t) + x2(t)

bx2(t)

)

dt +

(
x1(t – h) dB1(t)
x2(t – τ ) dB2(t)

)

.
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Figure 8 Stable trajectories of the solution x = 0 of (37)

Figure 9 Unstable trajectories of the solution x = 0 of (37)

Figure 10 Region of mean square stability of the zero solution of (38)

The Lyapunov functional V(t, xt) = x2(t) +
∫ t

t–h x2
1(s) ds +

∫ t
t–τ

x2
2(s) ds implies

ELV(t, x) ≤ (2a + 2)E
[
x2

1(t)
]

+ (2b + 2)E
[
x2

2(t)
]
.

Hence, the zero solution of (38) is asymptotically mean square stable if a < –1, b < –1 for
arbitrary constants a, b. Fig. 10 gives the mean square stability region in a (a, b)-space of
parameters and the numerical simulation of the solution is shown in Fig. 11.

Consider the random system

(
dx1(t,ω)
dx2(t,ω)

)

=

(
ax1(t,ω) + A(ω)x2(t,ω)

bx2(t,ω)

)

dt +

(
B(ω)x1(t – h,ω) dW1(t)
C(ω)x2(t – τ ,ω) dW2(t)

)

. (39)

The Lyapunov functional

V(t, xt ,ω) = x2(t,ω) + B2(ω)
∫ t

t–h
x2

1(s,ω) ds + C2(ω)
∫ t

t–τ

x2
2(s,ω) ds
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Figure 11 Ten stable and unstable (unbounded) trajectories for each process x1(t) and x2(t) of the solution of
(38)

Figure 12 Ten stable solutions for each process x1(t) and x2(t) of (39)

Figure 13 Ten unstable solutions for each process x1(t) and x2(t)
of (39)

leads to the conditions of asymptotic mean square stability in the form 2a + ‖A(ω)‖2 +
‖B(ω)‖2

4 < 0 and 2b + ‖A(ω)‖2 + ‖C(ω)‖2
4 < 0, A(ω) is a nonnegative random variable.

Figs. 12, 13 give the numerical simulation of the solutions for different random probability
distributions.

Example 4 Consider a stochastic one-dimensional Nicholson’s blowflies equation (24)
with σ = 0.8 and φ(s) = 0.1 cos(s). In Fig. 14 and according to condition (27), the stochastic
stability regions are obtained for different values of the delay τ in a (p, δ)-space of parame-
ters. Numerical simulations of the solution are obtained in Fig. 15 for p = 0.5, δ = 1.2, and
τ = 0.1.
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Figure 14 Regions of stochastic stability of the zero solution of (24)

Figure 15 Numerical simulations of the solution of (24)

Figure 16 Practical uniform exponential solution of (32)

Example 5 Consider equation (32) with A(ω) ∼ Bin(1, 0.6), σ (ω) ∼ Bin(1, 0.001), and τ =
0.001. Fig. 16 shows that the trajectories are bounded and remain in a sufficiently small
neighborhood of the origin for small enough τ .

6 Results and discussions
1. Stability of the zero solution of a delay differential equation driven by a Brownian

motion and/or random variable coefficients has been studied through Theorems
3.1–3.7. Asymptotic stochastic stability and global mean square exponential stability
are investigated. Examples 1–4 support the theoretical results. Introducing more
Lyapunov functionals implies various types of stability with different stability
conditions. By Lyapunov functionals, we have obtained delay-dependent and
delay-independent conditions. Our study shows that the delay-dependent conditions
are very important and have a great effect on the regions of stability. SDDEs involving
random coefficients have been also discussed. Examples in one and two dimensions
are shown. Some computer simulations are carried out for various random
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probability distributions. These random variables provide various patterns to the
solution stochastic process and make the model more attractive. The main
application in this paper is Nicholson’s blowflies model. Propositions 4.1, 4.2 have
studied the stochastic stability and stochastic global exponential stability for the zero
solution, respectively. Regions of stability of the zero solution at which these blowflies
become extinct are shown. These regions become better for small values of delay τ .
Regarding the financial market application, Proposition 4.3 has studied the stability
of a stochastic Black–Scholes model with random variable coefficients.

2. Theorems 3.8, 3.9 have studied the practical stability of the solution when the origin
is not necessarily an equilibrium point. By these theorems, we have concluded that all
trajectories of the solution of the Black–Scholes model are practically uniformly
exponentially stable. According to Example 5, for small enough τ and ‖A(ω)‖2 ≥ 1

2 ,
almost all trajectories are bounded and remain in a sufficiently small neighborhood
of the origin.

By stochastic mathematical epidemiological and ecological models, we can reveal the
mechanisms that influence the transmission and control the disease. Stochastic models
are proposed to capture the uncertainty and variations in the transmission of the diseases.
Many recent works dedicated to stochastic epidemiological and ecological models can be
found in [37, 38, 40, 41, 50, 52, 58–61]. There is still considerable uncertainty with regard
to the study of stability, therefore we have addressed the stochastic global exponential
and practical stability. Mathematically, we have focused on the qualitative theory (stabil-
ity of equilibria) of stochastic/random systems in a rigorous way. From ecological point of
view, dynamics of stochastic Nicholson’s blowflies models is studied. We claim that our
approach can be extended to various biological, ecological, and economical models. This
approach will reveal some important aspects of these models.

7 Conclusion and further directions
In this paper, we have studied the stability of Nicholson’s blowflies model and Black–
Scholes market model based on some important proven theorems in asymptotic stochas-
tic stability, global exponential mean square stability, and practical uniform exponential
stability. Our results on Nicholson’s blowflies model can be extended to its general form
known as the stochastic neoclassical growth model, for γ > 0,γ �= 1

dx(t) =
(
pxγ (t – τ )e–ax(t–τ ) – δx(t)

)
dt + σx(t) dB(t).

Moreover, we hope that our findings will be useful for models driven by fractional Brow-
nian motion (FBM).
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