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Abstract
In this paper, the Hopf bifurcation and Turing instability for a mussel–algae model are
investigated. Through analysis of the corresponding kinetic system, the existence and
stability conditions of the equilibrium and the type of Hopf bifurcation are studied.
Via the center manifold and Hopf bifurcation theorem, sufficient conditions for Turing
instability in equilibrium and limit cycles are obtained, respectively. In addition, we
find that the strip patterns are mainly induced by Turing instability in equilibrium and
spot patterns are mainly induced by Turing instability in limit cycles by numerical
simulations. These provide a comprehension on the complex pattern formation of a
mussel–algae system.

Keywords: Hopf bifurcation; Turing instability; Spatial pattern; Mussel–algae model

1 Introduction
As early as 1952s, Turing [1] found that the pattern formation in biological systems can
be expressed by the coupled reaction-diffusion equations. Turing theory shows that pat-
tern formation is possible if two substances interact differently in their diffusion range.
Since then, the dynamics of pattern formation has attracted wide attention in biology [2–
4], chemistry [5], aquatic ecosystem [6, 7], embryogenesis [8–10], and so on. With the
application of spatial patterns in multifarious ecosystems systems, the stability of pattern
solutions [11, 12], the stability of the positive equilibrium solutions, the Hopf bifurca-
tion at the critical point, the Turing bifurcation in different reaction-diffusion systems,
and the dynamical properties in Turing–Hopf bifurcation point have been getting a sig-
nificant progress on the stability of pattern formation [13]. As well as implication of the
mussel–algae bed patterns, Van De Koppel [14] proposed a simple mathematical model
to illustrate the pattern formation process, and they investigated the influences of self-
organization on the emergent properties of nature systems. The reaction-diffusion equa-
tions for the original mussel–algae model with weakly nonlinear diffusive instability have
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the following form:

⎧
⎨

⎩

∂M(X,s)
∂s = ceAM – dM

kM
kM+M M + DM�M,

∂A(X,s)
∂s = (AUP – A)ρ – c

H AM – V ∂A
∂X + DA�A,

(1)

where M is the density of mussel, A is the density of algae, � = ∂2

∂X2 , c is the consumption
constant, e is a conversion constant relating ingested algae to mussel production, dM is the
maximal per capita mussel mortality rate, kM is the saturation rate of mussel, AUP describes
the concentration of algae in the upper water layer, ρ is the exchange rate between the
lower and upper water layers, H is the height of the lower water layer, V is the advection
constant, DM and DA are the diffusion coefficients of the mussel and algae, respectively.
Based on the dimensionless variables in literature [15] x = X

√
ckM
DAH , t = sdM , m = M

kM
, a =

A
AUP

, r = ecAUP
dM

, α = ρH
ckM

, γ = dMH
ckM

, ν = V
√

H
cKMDA

, and μ = DM
γ DA

, then system (1) becomes

⎧
⎨

⎩

∂m
∂t = ram – m

1+m + μ�m,
∂a
∂t = 1

γ
[α(1 – a) – ma] – ν

γ
∂a
∂x + 1

γ
�a.

(2)

Although algae are considered advection of tidal currents on a large scale, they are ac-
tually dispersed in the fluid in the form of Brownian particles on a small scale [13]. Nu-
merous laboratory results show that mussels can actively move both within and between
clusters, the influence of advection with tidal flow at a small-scale space on the mussel
bed is very small. These imply that advection and diffusion are two different ecological
processes; in real mussel bed ecosystems, these processes normally coexist and share the
same activator-inhibitor mechanism [13, 16]. Advection and diffusion are equivalent due
to the emergence of spatial self-organizing patterns. Therefore, we study system (2) with
self-diffusion and Neumann boundary conditions in one-dimensional space x, which has
the following form:

⎧
⎪⎪⎨

⎪⎪⎩

∂m
∂t = ram – m

1+m + μmxx,
∂a
∂t = 1

γ
[α(1 – a) – ma] + 1

γ
axx,

mx(0, t) = mx(π , t) = 0, ax(0, t) = ax(π , t) = 0.

(3)

Models (1)–(3) have been investigated by scholars. Wang et al. [17] derived the con-
ditions for differential-flow instability that causes the formation of spatial patterns, and
then systematically investigated the influence of parameters on pattern formation. Liu et
al. [16] verified that the dimensionless model is an extension of the original model and in
exact accordance with their laboratory experiment. Ghazaryan and Manukian [15] used
the geometric singular perturbation theory to study the nonlinear mechanisms of pattern
and wave formation. Sherratt and Mackenzie [18] considered the influence of advection
of algae for pattern formation. Song et al. [13] applied the normal form method to study
the Turing–Hopf bifurcation with Neumann boundary conditions. Based on the previous
research, it has been observed that (3) possesses a spatially homogeneous periodic solu-
tion for some parameter ranges, and the interaction between Hopf bifurcation and Turing
bifurcation may be the driving force for more complex spatiotemporal phenomena for (3)
[13].
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For the Hopf bifurcation of a reaction-diffusion system, Yi et al. [19] determined the
direction of Hopf bifurcation and the stability of bifurcating periodic solutions for a
reaction-diffusion Lengyel–Epstein model. Particularly, they showed the existence of mul-
tiple spatially non-homogeneous periodic orbits while the system parameters are all spa-
tially homogeneous. Early, Yi et al. [20, 21] considered a reaction-diffusion Lengyel–
Epstein system, they investigated the global asymptotic behavior and gave Turing insta-
bility conditions for the spatially homogeneous equilibrium solution and the spatially ho-
mogeneous periodic solution. Similarly, Liu and Yi et al. worked along this line and have
done the Gierer–Meinhardt model and the bimolecular model [22]. Recently, Wang and
Hou et al. [23, 24] developed this method and have done the Gierer–Meinhardt model
and the tussock wedge model. They showed sufficient conditions for Turing instability in
the spatially homogeneous equilibrium solution and the spatially homogeneous periodic
solution, respectively.

The purpose of this paper is to study the stability of the stable positive equilibrium as a
spatial homogeneous steady solution, and the stability of the periodic orbit as a spatial ho-
mogeneous periodic solution of the reaction-diffusion mussel–algae model. In this article,
we analyze the stability and Hopf bifurcation of the positive equilibrium in both ODE (the
corresponding ordinary differential equation model of system (3)) and PDE (the partial
differential equation system (3)) models and determine the conditions for the direction of
bifurcation and the stability of the bifurcating periodic solution. For PDE system (3), we
also derive the precise conditions on the parameters so that the spatially homogeneous
steady solution and the spatially homogeneous periodic solution become Turing unsta-
ble. By both theoretical analysis and numerical simulations, we show the coexistence of
an unstable equilibrium point and a stable limit cycle for ODE, and a Turing unstable pe-
riodic solution is attracted by a stable non-constant steady state for PDE. The discussion
of the pattern formation mechanism in equation (3) mainly concerns the dynamics of the
corresponding ODE system and the spatial diffusion system.

The paper is organized as follows: In Sect. 2, the existence and stability of the positive
equilibrium and Hopf bifurcation are analyzed. In Sect. 3, sufficient conditions for Turing
instability in equilibrium and spatial homogeneous periodic solutions are given theoret-
ically, respectively. In Sect. 4, some simulations are given to illustrate the theorems in
Sects. 2 and 3.

2 Local stability analysis and Hopf bifurcation for the ODE system
For the reaction-diffusion mussel–algae system (3), the local system is an ordinary differ-
ential equation, which has the following form:

⎧
⎨

⎩

dm
dt = ram – m

1+m ,
da
dt = 1

γ
[α(1 – a) – ma].

(4)

The dynamics of the ODE system mainly includes the stability of the equilibrium and Hopf
bifurcation. In the following, we analyze these dynamics in detail.
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2.1 Local stability analysis of the equilibria
The equilibria of system (4) satisfy the following equation:

⎧
⎨

⎩

ram – m
1+m = 0,

1
γ

[α(1 – a) – ma] = 0.

About the analysis of the equilibria of system (5), we have the following proposition.

Proposition 2.1
(1) The equilibrium (m0, a0) = (0, 1) always exists;
(2) There exists a unique positive equilibrium (m∗, a∗) = ( α(r–1)

1–αr , 1–αr
r(1–α) ) if (H1) or (H2)

holds, where

(H1) 0 <
1
α

< r < 1, (H2) 0 < α <
1
r

< 1.

The stability of the equilibria can be analyzed by the Jacobian matrix of (4). The Jacobian
matrix associated with (m∗, a∗) is

J =

( (1–r)α(rα–1)
(1–α)2

r(α–rα)
rα–1

rα–1
rγ (1–α)

r(1–α)α
(rα–1)γ

)

, (5)

and the corresponding characteristic equation of (5) is

λ2 + Tλ + D = 0, (6)

where

T =
γ (1 – rα)2(r – 1)α – αr(1 – α)3

γ (1 – rα)(α – 1)2 , D =
(r – 1)α(rα – 1)

(α – 1)γ
.

It is easy to verify that the characteristic equation (5) has two eigenvalues

λ1,2 =
1
2

[
γ (1 – rα)2(r – 1)α – αr(1 – α)3

γ (1 – rα)(α – 1)2

±
√

(
γ (1 – rα)2(r – 1)α – αr(1 – α)3

γ (1 – rα)(α – 1)2

)2

– 4
(r – 1)α(rα – 1)

(α – 1)γ

]

. (7)

We can easily verify that (m∗, a∗) is unstable when condition (H1) holds because D < 0.
If (H2) holds, D > 0. Thus equilibrium (m∗, a∗) is asymptotically stable when T < 0.

Theorem 2.1 The equilibrium (0, 1) is asymptotically stable if r < 1 holds. The positive
equilibrium (m∗, a∗) is asymptotically stable if (H3) holds and unstable if (H4) holds.

(H3) γ < γH , (H4) γ > γH .

Furthermore,
(i) (m∗, a∗) is a stable node if γ ≤ γ1,
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(ii) (m∗, a∗) is an unstable node if γ ≥ γ2,
(iii) (m∗, a∗) is a stable focus if γ1 < γ < γH ,
(iv) (m∗, a∗) is an unstable focus if γH < γ < γ2.

Here

γH =
r(1 – α)3

(r – 1)(rα – 1)2 , γ1 =
γH (

√
(1 – rα) – 1)2

αr
,

γ2 =
γH (

√
(1 – rα) + 1)2

αr
.

(8)

2.2 Hopf bifurcation analysis
From Theorem 2.1, we can find that the stable equilibrium (m∗, a∗) becomes unstable
when γ increases from the left to the right of γH . Hence, let γ be the main bifurcation
parameter, the direction and the stability of Hopf bifurcation will be investigated in the
following. Mathematically, this parameter shows an equal role to other parameters in sys-
tem (4), which can also be chosen to make similar demonstration. Firstly, we transform
equilibrium from (m∗, a∗) to (0, 0), namely let w = m – m∗ and z = a – a∗, then equation (4)
becomes

d
dt

(
w
z

)

=

( (r–1)α(1–rα)
(1–α)2

(r–1)rα
1–rα

1–rα
rγ (α–1)

r(1–α)α
(rα–1)γ

)(
w
z

)

+

(
f2(w, z,γ )
g2(w, z,γ )

)

, (9)

where

f2(w, z,γ ) =
(1 – rα)3

(1 – α)3 w2 + rwz –
(1 – rα)4

(1 – α)4 w3 + O(4),

g2(w, z,γ ) = –
1
γ

wz + O(4).

Based on [25, 26], the occurrence of Hopf bifurcation needs the nonzero transversality
condition d = d|Re(λ1,2)|

dγ
|γ =γH . Through computation, we have d = rα(1–r)2(rα–1)3

r(α–1)5 > 0. Next,
we study the stability and direction of the Hopf bifurcation near the critical value γ = γH .
When γ = γH , we obtain that λ1,2 = ±iω0, and ω0 = (r–1)

√
α(1–rα)3/2√

2r(α–1)2 > 0. Moreover, we can get

the eigenvector for iω0, i.e., ξ = (– αr2(α–1)2

(rα–1)2 + αr(r–1)
ω0

i, 1)T . The corresponding general eigen-

vectors of ±iω0 are ξ1 = ( αr(r–1)
ω0

, 0)T and ξ2 = (– αr2(α–1)2

(rα–1)2 , 1)T . Let (w, z)T = (ξ1, ξ2)(u, v)T ,
then system (9) will transform to the following form:

(
u̇
v̇

)

=

(
0 –ω0

ω0 0

)(
u
v

)

+

(
f3(u, v,γH )
g3(u, v,γH )

)

, (10)

where

f3(u, v,γH ) =
(1 – r)rα(rα – 1)3

(α – 1)3ω0
u2 +

(2rα – 1)r(1 – rα)
(α – 1)

uv

+ r3α(rα – 1)u3 +
3(1 – r)r3α2(1 – rα)2

(1 – α)2ω0
u2v + O(4),

g3(u, v,γH ) =
(r – 1)rα

1 – α
v2 +

(1 – r)2α(1 – rα)2

(1 – α)3ω0
uv + O(4).
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In order to determine the type of Hopf bifurcation at (m∗, a∗), we should determine the
sign of discriminatory quantity σ . According to [26, 27], σ has the following form:

σ =
1

16
(f3uuu + g3uuv + f3uvv + g3vvv)

+
1

16ω0

[
f3uv(f3uu + f3vv) – g3uv(g3uu + g3vv) – f3uug3uu + f3vvg3vv

]
.

By further computation, we have σ = αr2

8(1–rα) [(1 – r) + r(rα – 1)] < 0. Through the above
analysis, we can get the following theorem.

Theorem 2.2 System (4) undergoes Hopf bifurcation at (m∗, a∗) for γ = γH if (H2) holds.
The Hopf bifurcation is supercritical due to σ < 0 and the stable limit cycle will bifurcate
from (m∗, a∗) at the right of γH .

3 Turing instability analysis
In this section, we study the impact of diffusion term on the stability of (m∗, a∗) and the
limit cycle of system (3), respectively. It should be noted that the solution to system (4) is
also a solution of the reaction diffusion system (3) [28, 29].

3.1 Turing instability in equilibrium
System (4) possesses the constant equilibrium of (3) as a spatially homogeneous steady
state. If (m∗, a∗) is an unstable equilibrium of (4), then it is clearly also unstable for (3).
While if the constant equilibrium is stable for (4), it could be unstable for (3) because of
diffusion [30]. Firstly, we suppose that conditions (H2) and (H3) are established, so (m∗, a∗)
is a stable equilibrium for system (4). With Neumann boundary conditions, we consider
the reaction diffusion system (3) in the Banach space H2((0,π )) × H2((0,π )), where

H2((0,π )
)

=
{

w(·, t)
∣
∣
∣
∂ iw
∂xi (·, t) ∈ L2((0,π )

)
, i = 0, 1, 2

}

.

We can easily obtain that (m∗, a∗) is stable for system (3). The equilibrium (m∗, a∗) is
nonlinearly unstable for (3) if it is linearly unstable in H2((0,π )) × H2((0,π )).

Let u1 = m – m∗ and u2 = a – a∗, then system (3) is transformed into

(
∂u1
∂t

∂u2
∂t

)

=

( (1–r)α(rα–1)
(1–α)2 – μk2 r(α–rα)

rα–1
rα–1

rγ (1–α)
r(1–α)α
(rα–1)γ – γ k2

)(
u1

u2

)

�= L

(
u1

u2

)

, (11)

with the boundary conditions

∂u1

∂x
(0, t) =

∂u1

∂x
(π , t) = 0,

∂u2

∂x
(0, t) =

∂u2

∂x
(π , t) = 0. (12)

The solution of (11)–(12) in H2((0,π )) × H2((0,π )) has the following form [3, 4]:

(
∂u1(x,t)

∂t
∂u2(x,t)

∂t

)

=
∞∑

k=0

(
Mk

Ak

)

eλk t+ikx, (13)
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where λk ∈C is the temporal spectrum, k is the spatial spectrum, Mk and Ak are complex
numbers for k = 0, 1, 2, . . . . Substituting (13) into (11), then

∞∑

k=0

(
Mk

Ak

)

λkeλk t+ikx =
∞∑

k=0

( (1–r)α(rα–1)
(1–α)2 – μk2 r(α–rα)

rα–1
rα–1

rγ (1–α)
r(1–α)α
(rα–1)γ – γ k2

)(
Mk

Ak

)

eλk t+ikx.

Collecting items of the same powers about k, then

(λI – Jk)

(
Mk

Ak

)

=

(
0
0

)

, k = 0, 1, 2, . . . , (14)

where

Jk =

( (1–r)α(rα–1)
(1–α)2 – μk2 r(α–rα)

rα–1
rα–1

rγ (1–α)
r(1–α)α
(rα–1)γ – 1

γ
k2

)

. (15)

The characteristic equation of Jk is

λ2
k – Tr(Jk)λk + Det(Jk) = 0, k = 0, 1, 2, 3, . . . , (16)

where

Tr(Jk) = –k2
(

μ +
1
γ

)

+ T, k = 0, 1, 2, . . . ,

Det(Jk) = k2 1
γ

(

μk2 –
(r – 1)(1 – rα)α

(α – 1)2

)

+
r(1 – α)αμ

(1 – rα)γ
k2 + D.

If Tr(Jk) < 0 or Det(Jk) > 0 does not hold for some k, Turing instability will occur in equi-
librium [8, 31–33]. In the following, we give conditions for the occurrence of Turing in-
stability in (m∗, a∗). If Det(Jk) > 0 for all k = 0, 1, 2, . . . , (m∗, a∗) is stable for system (3), and
there are no Turing patterns occurring. If Det(Jk) < 0 for at least one k ∈ N , (m∗, a∗) is un-
stable for system (3), and Turing patterns occur. Through the above analysis, we can get
the following theorem.

Theorem 3.1 Assume that conditions (H2) and (H3) are satisfied. Let

Dm = min
1≤k≤m

(r – 1)α(1 – rα)2(–1 + α + k2)
k2(1 – α)2(r(1 – α)α + k2(1 – rα))

, m ∈ N+,

then (m∗, a∗) is asymptotically stable for system (3) if (H5) or (H6) holds. Otherwise unsta-
ble one if (H7) holds, where

(H5) μ ≥ (r–1)α(1–rα)
(α–1)2 ,

(H6) m2 < (r–1)α(1–rα)
(α–1)2μ

≤ (m + 1)2, μ > Dm,
(H7) m2 < (r–1)α(1–rα)

(α–1)2μ
≤ (m + 1)2, μ < Dm.

Proof If conditions (H2) and (H3) hold, Tr(Jk) < 0 for all k = 0, 1, 2, . . . , and Det(J0) =
D > 0. Note that Det(Jk) = k2

γ
(μk2 – (r–1)(1–rα)α

(α–1)2 ) + r(1–α)αμ

(1–rα)γ k2 + D, and we find that if
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μ ≥ (r–1)(1–rα)α
(α–1)2 > 0, then we have Det(Jk) ≥ D > 0 for k = 1, 2, . . . , in such a case the equilib-

rium (m∗, a∗) is asymptotically stable for system (3). If m2 < (r–1)α(1–rα)
μ(α–1)2 < (m + 1)2, m ∈ N+

and μ > Dm, then Det(Jk) > Det(J0) = D > 0 for k = 1, 2, . . . , and (m∗, a∗) is stable for (3).
However, if m2 < (r–1)α(1–rα)

μ(α–1)2 < (m + 1)2, m ∈ N+ and μ < Dm, then there exists at least one
of Det(J1), . . . , Det(Jm) to be negative, and (m∗, a∗) is unstable for (3). �

3.2 Turing instability of limit cycle
In this subsection, we investigate the stability of limit cycle with spatially heterogenous
perturbations. The reaction-diffusion system (3) possesses any periodic solution of system
(4) as a spatially homogeneous periodic solution, including the ones bifurcating from Hopf
bifurcation. We can also perform a Hopf bifurcation for system (3) at the same bifurcation
point in (4), and bifurcating spatially homogeneous periodic solutions exist near γ = γH

[28, 29]. But the stability of these periodic solutions with respect to (3) could be different
from that for (4). That is, if φ(t) is an unstable periodic solution of (4), then it is clearly also
unstable for (3). While if φ(t) is a stable periodic solution of (4), it could be unstable for (3)
because of diffusion. For example, if (m∗, a∗) is an unstable equilibrium solution of (4) but
stable for (3), then the nearby bifurcating periodic solutions through Hopf bifurcation are
also unstable, which illustrates the interaction of Hopf instability and Turing instability
[20].

Suppose that (H2) and (H3) are satisfied, so the supercritical Hopf bifurcation appears
at γ = γH . It can be confirmed that the limit cycle is stable under spatially homogeneous
perturbation.

We adopt the framework of [29]. We rewrite system (4) in the abstract form. According
to [28, 29], let u1 = m – m∗, u2 = a – a∗, γ = γH , and U = (u1, u2)T , then system (3) with
boundary condition (4) becomes

⎧
⎨

⎩

Ut = [J(γH ) + D]U + F(U ,γH ),

Ux(0, t) = Ux(π , t) = (0, 0)T ,
(17)

where

J(γH ) =

( (r–1)α(1–rα)
(1–α)2

αr(1–r)
rα–1

(r–1)(rα–1)3

r2(1–α)4
(r–1)α(rα–1)

(1–α)2

)

, D =

(
μ ∂2

∂x2 0
0 1

γH
∂2

∂x2

)

,

F(U ,γH ) =
(
f2(u1, u2,γH ), g2(u1, u2,γH )

)T .

As stated in [29], F(U ,γH ) has the following form:

F(U ,γH ) =
1
2

Q(U , U) +
1
6

C(U , U , U) + O
(|U|4),

where

Q(U , U) =
(
Q1(U , U), Q2(U , U)

)T ,

C(U , U , U) =
(
C1(U , U , U), C2(U , U , U)

)T ,
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and

Q1(U , V ) = f2uuu1v1 + f2uvu1v2 + f2vuu2v1 + f2vvu2v2

= ru2v1 + ru1v2 +
2u1v1(–1 + rα)3

(–1 + α)3 ,

Q2(U , V ) = g2uuu1v1 + g2uvu1v2 + g2vuu2v1 + g2vvu2v2

=
(–1 + rα)2(r – 1)(u2v1 + u1v2)

r(–1 + α)3 ,

C1(U , V , W ) = f2uuuu1v1w1 + f2uuvu1v1w2 + f2uvuu1v2w1 + f2uvvu1v2w2

+ f2vuuu2v1w1 + f2vuvu2v1w2 + f2vvuu2v2w1 + f2vvvu2v2w2

= –
6u1v1w1(–1 + rα)4

(–1 + α)4 ,

C2(U , V , W ) = g2uuuu1v1w1 + g2uuvu1v1w2 + g2uvuu1v2w1 + g2uvvu1v2w2

+ g2vuuu2v1w1 + g2vuvu2v1w2 + g2vvuu2v2w1 + g2vvvu2v2w2

= 0,

for any U = (u1, u2)T , V = (v1, v2)T , W = (w1, w2)T , and U , V , W ∈ H2((0,π )) × H2((0,π )).
The linear operator L defined in (11) for γ = γH is

LU =

[

J(γH ) + D

(
∂2

∂x2 0
0 ∂2

∂x2

)]

U .

Let L∗ be the conjugate adjoint operator of L defined in H2((0,π )) × H2((0,π )), then

L∗U =

[

J∗(γH ) + D

(
∂2

∂x2 0
0 ∂2

∂x2

)]

U ,

where J∗(γH ) is a conjugate transpose of J(γH ).
Let 〈·, ·〉 be the complex-valued L2 inner product on a Banach space, defined as

〈U , V 〉 =
1
π

∫ π

0
UT V dx =

1
π

∫ π

0
u1v1 + u2v2 dx

for any U , V ∈ H2((0,π )) × H2((0,π )). We can easily find that 〈L∗U , V 〉 = 〈U , LV 〉.
The linearized system of (17) at the equilibrium (0, 0) is

(
∂u1
∂t

∂u2
∂t

)

= L

(
u1

u2

)

, (18)

with the boundary conditions

Ux(0, t) = Ux(π , t) = (0, 0)T . (19)
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The solutions of (18) in H2((0,π )) × H2((0,π )) have the following form:

(
u1(x, t)
u2(x, t)

)

=
∞∑

k=0

(
mk

ak

)

eλ(k)t+ikx, (20)

where λ(k) ∈C is the temporal spectrum, k is the spatial spectrum, mk and ak are complex
numbers for k = 0, 1, 2, . . . . Plugging (μ1,μ2) into (18), then

∞∑

k=0

(
mk

ak

)

λ(k)eλkt+ikx =
∞∑

k=0

Lk

(
mk

ak

)

eλ(k)t+ikx.

Collecting terms with the same powers about k, we get

(
λ(k) – Lk

)
(

mk

ak

)

=

(
0
0

)

, k = 0, 1, 2, . . . , (21)

where

Lk =

( (r–1)α(1–rα)
(1–α)2 – μk2 αr(1–r)

rα–1
(r–1)(rα–1)3

r2(1–α)4
(r–1)α(rα–1)

(1–α)2 – 1
γH

k2

)

.

The corresponding characteristic equation of Lk has the following form:

λ(k)2 – Tr(Lk)λ(k) + Det(Lk) = 0, k = 0, 1, 2, 3, . . . , (22)

where

Tr(Lk) = –k2
(

(r – 1)(1 – rα)2

r(1 – α)3 + μ

)

,

Det(Lk) =
(k2μ(1 – α)2 – α(r – 1)(1 – rα))(r – 1)(1 – rα)2

r(1 – α)5 k2

+
k2(r – 1)α(1 – rα)μ

(1 – α)2 + ω2
0.

If conditions (H2) and γ = γH are established, we have Tr(L0) = 0, Det(L0) = ω2
0 > 0 and

Tr(Lk) < 0 for k = 1, 2, . . . . Then it follows that, for k = 0, L0 has eigenvalues with zero real
parts. We need to proceed to the center manifold reduction.

To begin with, if μ ≥ (r–1)α(1–rα)
(1–α)2 , we have Det(Lk) ≥ ω0

2 for k = 1, 2, 3, . . . . Next, if
m2 < (r–1)α(1–rα)

μ(1–α)2 ≤ (m + 1)2, m ∈ N+, and μ < Dm, we have Det(Lk) > 0 for k = 1, 2, . . . . Fur-
thermore, if m2 < (r–1)α(1–rα)

μ(1–α)2 ≤ (m + 1)2, m ∈ N+, and μ > Dm, then there exists one of

Det(L1), . . . , Det(Lm) to be negative, where Dm = min1≤k≤m
(r–1)α(α–1+k2)(1–rα)2

k2(1–α)2(r(1–α)α+k2(1–rα)) , m ∈ N+.

Let Lq = iω0q and L∗q∗ = –iω0q∗, then we have q∗ = – ω0
2rα(r–1) (i, αr(1–r)

ω0
+ r2(1–α)2α

(1–rα)

2
i)T and

q = (– αr2(1–α)2

(1–rα)2 – αr(r–1)
ω0

i, 1)T , respectively. According to the inner product defined in this
paper, we can easily confirm that 〈q∗, q〉 = 1 and 〈q∗, q̄〉 = 0.
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As stated in [29], we have U = zq + z̄q̄ + w, z = 〈q∗, U〉 and w = (w1, w2)T , i.e.,

(
u1

u2

)

=

(
– r2α(1–α)2

(1–rα)2 (z + z̄) – (r–1)αr
ω0

i(z – z̄) + w1

z + z̄ + w2

)

.

System (17) in (z, w) coordinates can be rewritten to the following:

⎧
⎨

⎩

dz
dt = iω0z + 〈q∗, f̃ 〉,
dw
dt = Lw + H(z, z̄, w),

(23)

where f̃ = F(zq + z̄q̄ + w,ω0), H(z, z̄, w) = f̃ – 〈q∗, f̃ 〉q – 〈q̄∗, f̃ 〉q̄, and

f̃ =
1
2

Q(q, q)z2 + Q(q, q)zz +
1
2

Q(q, q)z2 + O
(|z|3, |z||w|, |w|2),

〈q∗, f̃ 〉 =
1
2
〈
q∗, Q(q, q)

〉
z2 +

〈
q∗, Q(q, q)

〉
zz +

1
2
〈
q∗, Q(q, q)

〉
z2 + O

(|z|3, |z||w|, |w|2),

〈
q̄∗, f̃

〉
=

1
2
〈
q̄∗, Q(q, q)

〉
z2 +

〈
q̄∗, Q(q, q)

〉
zz +

1
2
〈
q̄∗, Q(q, q)

〉
z2 + O

(|z|3, |z||w|, |w|2).

So H(z, z̄, w) = 1
2 z2H20 + zzH11 + 1

2 z2H02 + O(|z|3, |z||w|, |w|2), where

⎧
⎪⎪⎨

⎪⎪⎩

H20 = Q(q, q) – 〈q∗, Q(q, q)〉q – 〈q∗, Q(q, q)〉q,

H11 = Q(q, q) – 〈q∗, Q(q, q)〉q – 〈q∗, Q(q, q)〉q,

H02 = Q(q, q) – 〈q∗, Q(q, q)〉q – 〈q∗, Q(q, q)〉q.

Further calculations show that

H20 =
(
Q1(q, q), Q2(q, q)

)T

+
ω0

2rα(r – 1)

[

–iQ1(q, q),
(

αr(1 – r)
ω0

–
αr2(1 – α)2

(1 – rα)
i
)

Q2(q, q)
]

×
(

–
αr2(1 – α)2

(1 – rα)2 –
αr(r – 1)

ω0
i, 1

)T

+
ω0

2rα(r – 1)

[

iQ1(q, q),
(

αr(1 – r)
ω0

+
αr2(1 – α)2

(1 – rα)
i
)

Q2(q, q)
]

×
(

–
αr2(1 – α)2

(1 – rα)2 +
αr(r – 1)

ω0
i, 1

)T

= (0, 0)T .

Similarly, we have H11 = H02 = (0, 0)T . So H(z, z̄, w) = O(|z|3, |z||w|, |w|2).
As stated in [29], system (23) has a center manifold in the following form:

w =
1
2

z2w20 + zzw11 +
1
2

z2w02 + O
(|z|3).
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Due to Lw + H(z, z̄, w) = ẇ = ∂w
∂z ż + ∂w

∂z
˙̄z, then

⎧
⎪⎪⎨

⎪⎪⎩

w20 = [2iω0 – L]–1H20 = [2iω0 – J(γH )]–1H20 = (0, 0)T ,

w11 = –L–1H11 = –J(γH )–1H11 = (0, 0)T ,

w02 = [–2iω0 – L]–1H02 = [–2iω0 – J(γH )]–1H02 = (0, 0)T ,

then w = O(|z|3).
Therefore, the reaction-diffusion system restricted to the center manifold is

ż = iω0z +
〈
q∗, f̃

〉
= iω0z +

∑

2≤i+j≤3

gij

i!j!
ziz̄j + O

(|z|4), (24)

where

g20 =
〈
q∗, Q(q, q)

〉
, g11 =

〈
q∗, Q(q, q̄)

〉
, g02 =

〈
q∗, Q(q̄, q̄)

〉
,

g21 = 2
〈
q∗, Q(w11, q)

〉
+

〈
q∗, Q(w20, q̄)

〉
+

〈
q∗, C(q, q, q̄)

〉
=

〈
q∗, C(q, q, q̄)

〉
.

The dynamics of (23) is determined by that of (24). Note that, as in page 28 of [29], gij = 0
for i = j + 1, hence the Pioncaré normal form can be rewritten as follows:

ż = iω0z +
〈
q∗, f̃

〉
= iω0z +

∑

j

cj(γ )z|z|2j + O
(|z|4). (25)

So we can write the Poincaré normal form of (17) in the following form:

ż = λz + z
M∑

j=1

cj(γ )(zz)j, (26)

where z ∈ C, λ = β(γ ) + iw(γ ), M ≥ 1, and cj(γ ) ∈ C are coefficients of (zz̄)j. Then from
page 47 of [29], we have

c1(γ ) =
g20g11[3β(γ ) + iw(γ )]

2[β2(γ ) + w2(γ )]
+

|g11|2
β(γ ) + iw(γ )

+
|g02|2

2[β(γ ) + i3w(γ )]
+

g21

2
.

Thus

c1(γH ) =
i

2ω0

(

g20g11 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2
,

because β(γH ) = 0 and ω(γH ) = ω0, then Re(c1(γ )) = Re[ g20g11
2ω0

i + g21
2 ].

By further computation, we obtain

g20 =
(1 – rα)2r + rα(1 – r2α)

(1 – α)
–

r(1 – α)ω0i
(1 – rα)

,

g11 =
(r – 1)rα

1 – α
,

g21 = –3r3α +
3r3α2(r – 1)(1 – rα)

(1 – α)2ω0
i,
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and Re[c1(γH )] = r2α(1–2r+αr2)
2(1–rα) < 0. Therefore, the supercritical Hopf bifurcation occurs at

γ = γH .

Theorem 3.2 When conditions (H2) and (H3) are established, the spatially homogeneous
periodic solution bifurcating from the equilibrium (m8, a∗) of system (5) is stable. Let

Dm = min
1≤k≤m

(r – 1)α(α – 1 + k2)(1 – rα)2

k2(1 – α)2(r(1 – α)α + k2(1 – rα))
, m ∈ N+, (27)

then the spatially homogeneous periodic solution for system (3) is stable if condition (H8)
or (H9) holds. The spatially homogeneous periodic solution for system (3) is unstable if
condition (H10) holds, where

(H8) μ ≥ (r–1)α(1–rα)
(1–α)2 ,

(H9) m2 < (r–1)α(1–rα)
(1–α)2μ

≤ (m + 1)2, μ > Dm,
(H10) m2 < (r–1)α(1–rα)

(1–α)2μ
≤ (m + 1)2, μ < Dm.

Remark 3.1 Theorem 3.2 shows that system (3) undergoes Turing instability if (H2), γ >
γH , m2 < (r–1)α(1–rα)

μ(1–α)2 ≤ (m + 1)2, and μ < Dm hold, which illustrates that the spot patterns
will occur. We show these results in the following section.

Remark 3.2 In [28, 29], authors considered the existence and stability of positive steady
state solutions and investigated asymptotic behavior of time-dependent solutions by uti-
lizing degree theory. They mainly investigated the direction of Hopf bifurcation and the
stability of the bifurcation periodic solution for a reaction-diffusion system. In this sub-
section, except for the research on direction and stability of Hopf bifurcation as stated
in [28, 29], we also derive the precise conditions on the parameters so that the spatially
homogeneous equilibrium solution and the spatially homogeneous periodic solution be-
come Turing unstable. Turing instability in a stable coexistence equilibrium is determined
by Tr(Jk) > 0 or Det(Jk) < 0, and Turing instability in a stable limit cycle is determined by
Tr(Lk) > 0 or Det(Lk) < 0.

Compared with the former research works, we find that system (3) with the Neumann
boundary condition can also induce very interesting dynamical behaviors. For example, (i)
system (3) can undergo supercritical Hopf bifurcation under certain parameter conditions.
There exists a stable limit cycle when γ is greater than γH slightly. (ii) Interestingly, we find
that Turing instability can occur in the equilibrium and stable limit cycle, respectively.

Compared with the research for reaction-diffusion in two-dimensional (x, y), the the-
oretical analyses for the stability of equilibria, the type of Hopf bifurcation, and the ho-
mogeneous periodic solutions for the corresponding ODE system are valid. However, the
theoretical analysis methods used in this paper are not enough for Turing instability in
equilibria or homogenous periodic solutions in two-dimensional (x, y). For example, Song
and Liu et al. [3, 6, 7, 31–34] used the amplitude equation and multi-scale analysis method
to analyze Turing instability in equilibrium. In the two-dimensional space (x, y), Turing
instability in equilibrium will induce more complex and rich dynamics than that in a one-
dimensional space x. For example, there may exist a hexagon pattern, a mixed pattern
(spot-stripe pattern), and a stripe pattern [3, 6, 7, 33]. Note that, in the one-dimensional
space x, we rigidly show how the stable homogeneous periodic solutions can become un-
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stable. But in the two-dimensional space (x, y), as far as we know, it needs more knowledge
and methods to analyze this dynamic behaviors.

4 Numerical simulations
In this section, we use numerical simulations to illustrate the results in Theorems 2.1–3.2.

Firstly, we show the critical surface for the occurrence of Hopf bifurcation in a parameter
space (α, r,γ ), as shown in Fig. 1(a). Particularly, taking α = 2

3 , the critical curve for the
occurrence of Hopf bifurcation is shown in Fig. 1(b). From Theorem 2.1, we know that
the equilibrium (m∗, a∗) is stable if (r,γ ) is above the blue curve, while unstable if (r,γ ) is
below the curve.

In the following, let α = 2
3 and r = 1.0901, we have γH = 6.00074 and (m∗, a∗) =

(0.2198, 0.7520). In order to show the dynamic behavior near the Hopf bifurcation points
γH , the bifurcation diagram in a three-dimensional space (γ , m, a) is shown in Fig. 2(a).
The bifurcation diagram shows the stable equilibrium, the unstable equilibrium, and
the limit cycles. The equilibrium is stable if γ < γH , which is represented by the black
curve. The stable equilibrium becomes unstable and stable limit cycles occur if γ > γH

slightly. Here the unstable equilibrium is represented by the red curve, and stable limit
cycles are represented by the blue surface. Particularly, let γ = 5.95 < γH , so condition
(H3) holds, we have that the equilibrium (m∗, a∗) is asymptotically stable. Set initial val-

Figure 1 (a) The critical surface of Hopf bifurcation in parameter space (α, r,γ ); (b) the critical curve of
supercritical Hopf bifurcation for α = 2

3

Figure 2 (a) The supercritical Hopf bifurcation diagram; (b) the stable equilibrium of system (4) under
condition (H3)
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ues (m0, a0) = (0.3198, 0.8520), we find that the orbit starting from (m0, a0) converges to
(m∗, a∗), which shows that (m∗, a∗) is asymptotically stable, as shown in Fig. 2(b).

The supercritical Hopf bifurcation occurs for γ = γH , and a stable limit cycle bifurcates
from (m∗, a∗) at the right side of γH . Let γ = 6.1 > γH , then condition (H4) holds, we have
that the equilibrium (m∗, a∗) is unstable. Set initial values (m0, a0) = (0.2298, 0.7620), we
find that the green orbit starting from (m0, a0) goes clockwise away from (m∗, a∗), which
shows that (m∗, a∗) is an unstable one, as shown in Fig. 3(a). Set initial value (m0, a0) =
(0.2498, 0.7820), the blue orbit starting from (m0, a0) goes clockwise inside, as shown in
Fig. 3(a). Since the blue orbit disjoints the green orbit, there exists a stable limit cycle. We
show the stable limit cycle in Fig. 3(b). The above analyses support Theorem 2.1.

Next, we show the effect of diffusion on the stability of equilibrium and limit cycles. In
this part, we perform the simulations to illustrate the results in Theorem 3.1. Fixed α = 2

3 ,
r = 1.0901, and γ = 5.8, then (r–1)α(1–rα)

(α–1)2 = 0.14473 and condition (H3) holds.
Particularly, taking μ = 5 > 0.144728, we have Det(Jk) = 1.60929 > 0 and condition (H5)

holds, so the stable equilibrium (m∗, a∗) of system (4) is still stable for system (3). Please
see Fig. 4(a) and Fig. 4(b). Taking μ = 0.06, then (r–1)α(1–rα)

(α–1)2μ
= 2.4621, we have Dm = 0.05221

Figure 3 The phase orbits starting from (0.3198, 0.8520) and (0.5198, 1.0520) both converge to the stable limit
cycle; (b) the stable limit cycle of (4) under condition (H4)

Figure 4 The equilibrium of system (3) is stable under conditions (H3) and (H5) for the diffusion coefficient
μ = 0.06. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and a(x, t)
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Figure 5 The equilibrium of system (3) is stable under conditions (H3) and (H6) for the diffusion coefficient
μ = 5. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and a(x, t)

Figure 6 The equilibrium of system (3) is unstable under conditions (H3) and (H7) for the diffusion
coefficient μ = 0.04. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and
a(x, t)

(m = 1), Det(Jk) = 0.00254 > 0 and condition (H6) holds, so the stable equilibrium (m∗, a∗)
is still stable for system (3). Please see Fig. 5(a) and Fig. 5(b).

Taking μ = 0.04, then (r–1)α(1–rα)
(α–1)2μ

= 3.6932, we have Dm = 0.05221 (m = 1), Det(Jk) =
–0.00400 < 0 and condition (H7) holds, so the stable equilibrium (m∗, a∗) of system (4)
becomes unstable for system (3). Please see Fig. 6(a) and Fig. 6(b), we can find the stripe
patterns, which is the spatially homogeneous periodic orbit [34–36].

Furthermore, we show the influence of diffusion on the stability of homogeneous peri-
odic solutions. In this part, we perform the simulations to illustrate the results in Theo-
rem 3.2. Fixed α = 2

3 , r = 1.0901, and γ = 6.2, we have (r–1)α(1–rα)
(α–1)2 = 0.14473 and condition

(H4) holds.
Taking μ = 10 > 0.14473, we have Det(Lk) = 3.12733 > 0 and condition (H8) holds,

so the stable limit cycle of system (4) is still stable for system (3). Please see Fig. 7(a)
and Fig. 7(b). Taking μ = 0.06, then (r–1)α(1–rα)

(α–1)2μ
= 2.4621, we have Dm = 0.05221 (m = 1),

Det(Lk) = 0.00245 > 0 and condition (H9) holds, so the stable limit cycle of system (4) is
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Figure 7 The limit cycle of system (3) is stable under conditions (H4) and (H8) for the diffusion coefficient
μ = 0.06. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and a(x, t)

Figure 8 The limit cycle of system (3) is stable under conditions (H4) and (H9) for the diffusion coefficient
μ = 10. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and a(x, t)

still stable for system (3). Please see Fig. 8(a) and Fig. 8(b). The patterns in Fig. 7 and Fig. 8
are the spatially homogeneous periodic orbit [34–36].

Taking μ = 0.05, then (r–1)α(1–rα)
(α–1)2μ

= 3.6932, we have Dm = 0.05221 (m = 1), Det(Lk) =
–0.00069 < 0 and condition (H10) holds, so the stable limit cycle of system (4) becomes
unstable for system (3). Please see Fig. 9(a) and Fig. 9(b). In order to observe the spot pat-
terns clearly, we amplitude Fig. 9(a) and Fig. 9(b) in Fig. 10(a) and Fig. 10(b), respectively.
These “dots” are the collision of the transverse spatially unstable inhomogeneous periodic
solution and the longitudinal spatially stable homogeneous periodic solution [34–36].

5 Discussion and conclusion
In this paper, we investigate the spatiotemporal dynamics for a diffusive mussel–algae
model. Spot and stripe patterns can be generated by a small disturbance on a homoge-
neous steady state. The results of pattern formation agree with many biological phenom-
ena [11, 12, 17].
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Figure 9 The stable limit cycle of system (3) is unstable under conditions (H4) and (H10) for the diffusion
coefficient μ = 0.05. Right: the spatiotemporal distribution ofm(x, t) and s(x, t); left: the project ofm(x, t) and
a(x, t)

Figure 10 The local enlargement of Fig. 9

In order to determine the sufficient conditions for Turing instability, we firstly analyze
the stability conditions for equilibrium and the critical parameter conditions for Hopf bi-
furcation. Then, using the center manifold theorem and normal form theory, we show suf-
ficient conditions for the occurrence of Turing instability in equilibrium and limit cycle,
respectively. Moreover, we illustrate the theoretic results by a series of numerical simula-
tions. We show abundant dynamical behavior, such as bifurcations, phase trajectory, and
patterns. Finally, we find that Turing instability in equilibrium will occur in a stripe pattern
and that in limit cycles will occur in a spot pattern.
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