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Abstract
Linear differential equations usually arise from mathematical modeling of physical
experiments and real-world problems. In most applications these equations are
linked to initial or boundary conditions. But sometimes the solution under
consideration is characterized by its asymptotic behavior, which leads to the question
how to infer from the asymptotic growth of a solution to its initial values. In this paper
we show that under some mild conditions the initial values of the desired solution
can be computed by means of a continuous-time analogue of a modified matrix
continued fraction. For numerical applications we develop forward and backward
algorithms which behave well in most situations. The topic is closely related to the
theory of special functions and its extension to higher-dimensional problems. Our
investigations result in a powerful tool for solving some classical mathematical
problems. To demonstrate the efficiency of our method we apply it to Poincaré type
and Kneser’s differential equation.
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1 Introduction
A huge variety of real-world problems is modelled by means of linear differential equa-
tions. Although questions of existence and uniqueness of solutions are easy to answer for
linear differential equations, explicit solutions are rare, in particular for differential equa-
tions of order > 2, so that numerical procedures are needed. But most of these procedures
are restricted to initial and boundary value problems.

However, in some applications we do not have initial or boundary conditions. In prob-
ability theory for example, densities of probability distribution functions, stationary mea-
sures of stochastic processes or certain functionals defined on diffusion processes are char-
acterized by ordinary differential equations and are often uniquely determined by a single
regularity or integrability condition (see [1]).
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Another area of possible applications concerns linear differential equations with almost
constant coefficients. Following Levinson‘s seminal paper [2], a relatively rich theory con-
cerning the asymptotic behavior of their solutions has been developed. Here, it is obvious
to ask which initial values correspond to which asymptotic behavior, and how to com-
pute these solutions numerically. Since the mathematical theory of differential equations
is primarily qualitatively oriented, there is only little literature addressing this problem
(see [3]). An exception is the class of second-order linear differential equations, which has
come into focus due to Miller’s famous algorithm (see [4–8]). This is because it has been
turned out that many special functions can be represented as so-called minimal solutions
of second-order linear differential equations and their discrete analogues. But when it was
recognized that this approach could not directly be transferred to higher order linear dif-
ference and differential equations (see [8]), the interest in this subject waned. For discrete
systems and scalar differential equations, some of these problems have been investigated
by Schäfke [9, 10] and Hanschke [11, 12].

In the sequel it is shown that the initial values corresponding to a specific growth prop-
erty can be determined by means of a continuous-time analogue of a modified matrix
continued fraction. Matrix continued fractions have been originally developed for com-
puting subdominant solutions of linear systems of difference equations (see P. Levrie and
A. Bultheel [13]) and stationary measures of discrete state Markov chains with block-band
transition matrix (see [14, 15]).

Note that standard numerical methods for solving differential equations are dedicated
to solving boundary value problems or initial value problems. In particular, if a numer-
ical method is applied to a differential equation for some function x : [0,∞) → R, con-
sistency/convergence statements guarantee that the approximation to x(t) converges to
the exact value x(t) as the maximum step size h tends to 0 (note that we only consider
linear problems, and hence, consistency implies convergence). Furthermore, the order of
consistency/convergence gives some estimates on the speed of convergence. However, for
any method, the error will increase with t, in most cases exponentially. This fact entails
that the solution of the discretized system can have other asymptotic properties than the
exact solution. In so far, finding a solution with prescribed asymptotic behavior, requires
a thorough consideration not only of the original equation but also of its corresponding
discretization scheme. The alignment of these two systems may be crucial for the success
of the approach.

The rest of this paper is organized as follows: After some remarks on 2 × 2-block-
matrices and their inverses we present our main results. In order to be able to distinguish
the asymptotically differently growing solutions of the underlying differential equation we
introduce the concept of �-subdominant solutions, which is a generalization of the con-
cept introduced in [12]. It turns out that under certain regularity conditions each subspace
of �-subdominant solutions can be characterized by means of a continuous-time ana-
logue of a modified matrix continued fraction. Since matrix continued fractions represent
generalizations of the Jacobi–Perron-algorithm (see [16]), we refer to this correspondence
as Jacobi–Perron-characterization. To demonstrate the efficiency of our method we apply
it to Poincaré type and Kneser‘s differential equation. Numerical examples complete our
work.
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2 Preparation: some notes on block matrices
In this paper, we will frequently use a block partition of some r × r-matrix

A =

(
B C
D E

)
,

where B is a square p × p-matrix for some p < r. In order to avoid an overload of notation,
we introduce F1 =

( Ip
0

) ∈ C
r×p and F2 =

( 0
Ir–p

) ∈C
r×(r–p). Hence, in the above partition, we

have B = FT
1 AF1, C = FT

1 AF2, . . . .
Sometimes, we have to derive the inverse of a block-partitioned matrix. Fundamental

identities are

A–1 =

(
B C
D E

)–1

=

(
B–1 + B–1CSDB–1 –B–1CS

–SDB–1 S

)
(1)

=

(
V –VCE–1

–E–1DV E–1 + E–1DVCE–1

)
, (2)

where S = (E – DB–1C)–1 and V = (B – CE–1D)–1, provided that A is non-singular and that
B or E, respectively, are non-singular square submatrices; see [17, pp. 37–39].

3 Setting, notations, and definitions
We consider solutions to

x(t + 1) = A(t)x(t), t ∈ I = {t0, t0 + 1, t0 + 2, . . .} or (3)

x′(t) = A(t)x(t), t ∈ I \ t0 where I = [t0,∞), (4)

where A(t) ∈ C
r×r is assumed to be invertible for all t ∈ I . In case of the differential equa-

tion (4), we look for solutions being differentiable on I \ t0 and right-continuous in t0. Note
that a scalar rth order linear differential equation can always be transformed into a system
of the form (4). Therefore, we do not consider scalar rth order linear differential equations
separately.

For the solutions of both (3) and (4), we can state some well-known properties:
• The solution space of (3) and (4), respectively, is a linear vector space of dimension r.
• A fundamental system of solutions consists of r linearly independent solutions, say

(x(j)(t))t∈I for j = 1, . . . , r. By setting zij(t) = x(j)
i (t), we define matrices Z(t) = (zij(t))r

i,j=1

which are invertible for all t ∈ I (due to the linear independence of the columns), and
the sequence (Z(t))t∈I is a matrix-valued solution of (3) or (4).

• We can directly look for matrix-valued solutions to (3) or (4). If Z = (Z(t))t∈I is a
solution with Z(t) ∈ C

r×p for some p ∈N, then we obtain another solution
Z̃ = (Z̃(t))t∈I with Z̃(t) ∈C

r×s by setting Z̃(t) = Z(t)B for all t ∈ I with some constant
matrix B ∈C

p×s for some s ∈N. Furthermore, if Z(t) has full rank (which is p for
p ≤ r) for some t ∈ I , then Z(t) has full rank for all t ∈ I .

• In particular, we can look for solutions Z = (Z(t))t∈I with square matrices Z(t) ∈C
r×r .

Then Z(t) might be invertible, and the above rank statement can be written as follows:
If Z–1(t) exists for some t ∈ I then Z–1(t) exists for all t ∈ I . Furthermore, if Z is a
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solution with existing inverse Z–1(t0), and Z̃ = (Z̃(t)) is another solution, we have
Z̃(t) = Z(t)Z–1(t0)Z̃(t0). For the latter statement, Z̃(t) is not necessarily a square
matrix.

As pointed out in the introduction, often we know that there are vector-valued solutions
with a certain asymptotic behavior. These solutions form a p-dimensional subspace (p < r)
of the space of all vector-valued solutions. This p-dimensional vector space is uniquely
characterized by a matrix-valued solution P = (P(t))t∈I with matrices P(t) ∈ C

r×p of full
rank p, since then we obtain vector-valued solutions x = (x(t))t∈I by setting x(t) = P(t)α for
some α ∈C

p×1.
The characterization of the asymptotic behavior can have different forms:
• In some situations, we know that there is a solution (Z(t)) of square and invertible

matrices with an asymptotic representation of the form

Z(t) = Y (t) + E(t),

where the error-term E(t) is ‘neglectible’ in comparison to the matrices Y (t) in the
sense that Y –1(t) exists for all t ≥ t1 (with some t1 ∈ I) with limt→∞ ||Y –1(t)E(t)|| = 0.
We will briefly express this assumption as

lim
t→∞ Y –1(t)Z(t) = I. (5)

If P(t) contains the first p columns of Z(t), that is, P(t) = Z(t)F1, P(t) has rank p, and
hence, the vector space of vector-valued solutions x = (x(t))t∈I with x(t) = P(t)α for
some α is p-dimensional. In some sense, the columns of P(t) have an asymptotic
expansion given by the first p columns of Y (t). (We have to be careful with this
interpretation since the characterization of E(t) as the ‘error term’ is given in the form
Y –1(t)E(t) → 0.)

• Let P(t) = Z(t)F1 contain the first p columns of Z(t), and let R(t) = Z(t)F2 contain the
last r – p columns of Z(t). Set �T (t) = FT

2 Y –1(t) ∈C
(r–p)×r . Under the assumption (5),

it becomes obvious that �T (t)R(t) converges to Ir–p while �T (t)P(t) ∈C
(r–p)×p

converges to a null matrix of appropriate size. Hence, we have

lim
t→∞

(
�T (t)R(t)

)–1(
�T (t)P(t)

)
= 0. (6)

This may be interpreted as follows: With respect to multiplication with �T (t), the
solution (P(t))t∈I is subdominant to the solution (R(t))t∈I , or concisely, (P(t)) is
�-subdominant. In some sense, P(t) can be interpreted as ‘asymptotically normal’ to
�(t).

• Note that under the assumption (5), both denominator and numerator in (6) converge
for the choice �T (t) = FT

2 Y –1(t). On the other hand, there are situations where (6)
holds for a specific choice of the family (�(t))t∈I of matrices with full rank r – p, but
neither denominator nor numerator converge for t → ∞. Hence, for Z(t) = (P(t) R(t)),
the characterization of P(t) as the first p columns of a solution (Z(t)) of invertible
matrices satisfying (5) is a special case of the characterization (6) with a specific
choice of (�(t)), whereas the opposite is not true. Hence, the characterization of P(t),
being subdominant with respect to some family (�(t)) of matrices, is more general.
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• For p = r – 1, σ T (t) = �T (t) and R(t) are vectors. Hence (6) may be written as

lim
t→∞

〈σ T (t), P•,j(t)〉
〈σ T (t), R(t)〉 = 0, j = 1, . . . , r – 1,

where P•,j(t) denotes the jth column of P(t). This is equivalent to

lim
t→∞

〈σ T (t), x(t)〉
〈σ T (t), x̃(t)〉 = 0 (7)

for any solutions x, x̃ of (3) or (4), respectively, with the following assumptions: There
is some vector α ∈C

p×1 with x(t) = P(t)α for all t ∈ I , and there is no such vector
for x̃. This is the concept of σ -subdominance which was introduced in [3, 12].

Since the �-subdominance is the most general concept for characterizing the asymp-
totic behavior, we introduce a special notation for the space of all vector-valued solu-
tion which can be derived from the matrix-valued �-subdominant solution (P(t)): Let
� = (�(t))t∈I of r × (r – p)-dimensional matrices with rank r – p, and let (Z(t))t∈I be a so-
lution to (3) or (4), respectively, with the property (6) for P(t) = Z(t)F1 and R(t) = Z(t)F2.
Then we define

S� =
{

x =
(
x(t)

)
t∈I : x(t) = P(t)α for all t ∈ I with some α ∈C

p×1}.

The following is about the determination of S� .

4 The Jacobi–Perron characterization of �-subdominant solutions
In the special case of p = r – 1, (6) and (7) become equivalent. Up to notation, in [12], it
was suggested to characterize the subspace Sσ as follows:

• For all τ ∈ I and for all i = 1, . . . , r, define (�ij(τ , t))r
i=1 as a (vector-valued) solution to

(3), subject to ψij(τ , t) = δij , that is, the sequence of matrices 	(τ , t) = (�ij(τ , t))r
i,j=1 is a

matrix-valued solution of (3) with 	(τ , τ ) = Ir .
• In the case of existence, set

ηi(τ ,σ ) = lim
n→∞

〈σ (t),�j(τ , t)〉
〈σ (t),�r(τ , t)〉 , j = 1, . . . , r – 1.

• Then it was shown that the limits η1(τ ,σ ), . . . ,ηr–1(τ ,σ ) exist and are finite iff there
are r linearly independent solutions x(1), . . . , x(r) to (3) satisfying

lim
t→∞

〈σ (t), x(j)(t)〉
〈σ (t), x(r)(t)〉 = 0, i = 1, . . . , r – 1, (8)

and

∣∣∣∣∣∣∣∣∣∣

x(1)
1 (τ ) · · · x(r–1)

1 (τ )
x(1)

2 (τ ) · · · x(r–1)
2 (τ )

...
...

x(1)
r–1(τ ) · · · x(r–1)

r–1 (τ )

∣∣∣∣∣∣∣∣∣∣

= 0. (9)
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• If (8) and (9) hold, we have

x ∈ span
{

x(1), . . . , x(r–1)} iff
r–1∑
j=1

ηj(τ ,σ )xj(τ ) + xr(τ ) = 0. (10)

(10) characterizes the rth entry of x(τ ) in terms of the other entries. By re-inserting
(10) into (3), it is seen that the first r – 1 entries of x(τ ) satisfy a system of the form (3)
of order r – 1.

• In [12], it was demonstrated how this method can be used to reduce the order of the
underlying system step by step. In addition, it was shown that the algorithm may be
interpreted as a generalization of so-called Jacobi–Perron algorithm; see [16].

In this paper, we deal with the determination of S� for arbitrary p < r in only one step. For
this purpose, let (�(t))t∈I be given, define (	(τ , t)) as a solution to (3) or (4) with 	(τ , τ ) =
Ir , let F1, F2 be defined as above, and, in the case of existence, set

• η(τ ,�) = limt→∞(�T (t)	(τ , t)F2)–1(�T (t)	(τ , t)F1) ∈C
(r–p)×p,

• ξ1(τ ,�) = limt→∞ �T (t)	(τ , t)F1 ∈C
(r–p)×p, and

• ξ2(τ ,�) = limt→∞ �T (t)	(τ , t)F2 ∈C
(r–p)×(r–p).

Obviously, if ξ1(τ ,�) and ξ2(τ ,�) do exist so does η(τ ,�) = ξ–1
2 (τ ,�)ξ1(τ ,�). On the other

hand, the existence of η(τ ,�) does not imply the existence of ξi(τ ,σ ) for i = 1, 2. The next
result is a straightforward extension of the results in [12].

Theorem 4.1 Let (�(t))t∈I be a family of matrices �(t) ∈ C
r×(r–p) with rank r – p, and let

F1, F2,	(τ , t), η(τ ,�) be defined as above. The limit η(τ ,�) exists if and only if there is a
solution (Z(t))t∈I to (3) or (4), respectively, with det(Z(t0)) 
= 0,

lim
t→∞

(
�T (t)Z(t)F2

)–1(
�T (t)Z(t)F1

)
= 0, and (11)

det
(
FT

1 Z(τ )F1
) 
= 0. (12)

If these conditions hold, we have x ∈ S� if and only if

η(τ ,�) · FT
1 x(τ ) + FT

2 x(τ ) = 0. (13)

Proof In [12], the result was proven with respect to the recurrence relation (3) and p =
r – 1. Since our result is more general, we state a detailed proof here. However, the basic
principles of the proof remain the same.

Assume first that the limit η(τ ,�) exists. Define Z(t) by

Z(t)F1 = 	(τ , t)F1 – 	(τ , t)F2 · η(τ ,�) and Z(t)F2 = 	(τ , t)F2.

Then

FT
1 Z(τ )F1 = FT

1 	(τ , t)F1 – FT
1 	(τ , t)F2 · η(τ ,�) = Ip – 0 = Ip,
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implying condition (12). Condition (11) follows from

lim
t→∞

(
�T (t)Z(t)F2

)–1(
�T (t)Z(t)F1

)
= lim

t→∞
(
�T (t)	(τ , t)F2

)–1(
�T (t)	(τ , t)F1 – �T (t)	(τ , t)F2 · η(τ ,�)

)
= η(τ ,�) –

(
�T (t)	(τ , t)F2

)–1
�T (t)	(τ , t)F2 · η(τ ,�) = 0.

Conversely, suppose there is a solution (Z(t))t∈I of invertible matrices satisfying (11) and
(12). Then we have Z(t) = 	(τ , t)Z(t), or equivalently 	(τ , t) = Z(t)Z–1(τ ). Let Z(τ ) =( B C

D E

)
. (12) guarantees that B is invertible so that we are enabled to apply inversion for-

mula (1) with

Z–1(τ ) =

(
B′ C′

D′ E′

)
=

(
B–1 + B–1CSDB–1 –B–1CS

–SDB–1 S

)
.

Note that the definition of S ensures that E′ is invertible. Hence, we have 	(τ , t)F2 =
Z(t)

( C′
E′

)
and 	(τ , t)F1 = Z(t)

( B′
D′

)
, implying

lim
t→∞

(
�T (t)	(τ , t)F2

)–1
�T (t)	(τ , t)F1

=
(
�T (t)Z(t)F2E′ + �T (t)Z(t)F1C′)–1(

�T (t)Z(t)F2D′ + �T (t)Z(t)F1E′)
= lim

t→∞
(
E′ +

(
�T (t)Z(t)F2

)–1(
�T (t)Z(t)F1

)
C′)–1

· (D′ +
(
�T (t)Z(t)F2

)–1(
�T (t)Z(t)F1

)
E′)

= E′–1D′ = –DB–1.

Therefore, η(τ ,�) exists with η(τ ,�)B + D = 0, that is,

η(τ ,�) · FT
1 Z(τ )F1 + FT

2 Z(ν)F1 = 0.

This concludes the proof since we have x ∈ S� if and only if x(t) = Z(t)F1α for some α ∈
C

p×1. �

We refer to Theorem 4.1 as the Jacobi–Perron characterization of �-subdominant
solutions since the results gives an exact characterization of the p-dimensional �-
subdominant subspace of solutions.

Note that Theorem 4.1 allows one to reduce the order of the differential equation if
η(τ ,�) can be computed explicitly: From (3) and (4), respectively, we obtain

FT
1 x(τ + 1)

FT
1 x′(τ )

}
= FT

1 A(τ )F1 · FT
1 x(τ ) + FT

1 A(τ )F2 · FT
2 x(τ ). (14)

By inserting (13) into (14), we get a reduced system for the first p entries of x(t) ∈ S� :

FT
1 x(τ + 1)

FT
1 x′(τ )

}
=

(
FT

1 A(τ )F1 – FT
1 A(τ )F2 · η(τ ,�)

)
FT

1 x(τ ). (15)

The other entries of x(t) can be calculated by applying (13) a second time.
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Remark 4.1 Let u(t) satisfy an rth order linear difference or differential equation. By set-
ting x(t) = (u(t), u(t + 1), . . . , u(t + r – 1))T or (u(t), u′(t), . . . , u(r–1)(t))T , we easily obtain an
equation of the form (3) or (4), respectively. In this case, (15) contains all information we
are looking for, and another application of (13) for computing xp+1(t), . . . , xr(t) is not nec-
essary. In particular, for p = 1, we obtain a first order difference or differential equation for
u(t).

Remark 4.2 In Theorem 5.2, we will show that the approximate values of η(τ , t) satisfy
a continued-fraction-type recursion scheme. For this reason, we refer to η(τ , t) as some
kind of matrix-driven continued fraction. Note that a similar construction can be found
in [13] although the authors only use the ordinary term of subdominance. The results
based on this can be derived from the more general concept by the restriction Y (t) = Ir

or �T (t) = FT
2 . For an overview on extensions of ordinary and generalized continued

fractions with a special focus on matrix-driven models consult [18]. With regard to this
overview, Theorem 4.1 may be interpreted as a matrix-version of Pincherle-type conver-
gence criteria for ordinary and generalized continued fractions [19–21].

Next, we show that an asymptotic expansion of the form (5) allows to find an even sim-
pler variant of the Jacobi–Perron characterization.

Theorem 4.2 Let (Z(t))t∈I be a fundamental system for (3) or (4), respectively, let (Y (t))t∈I

be a family of matrices satisfying (5), and set �T (t) = FT
2 Y –1(t) for all t ∈ I . Then ξ1(τ ,�) ∈

C
(r–p)×p and ξ2(τ ,�) ∈C

(r–p)×(r–p) as defined above exist and x ∈ S� if and only if

ξ1(τ ,�) · FT
1 x(τ ) + ξ2(τ ,�) · FT

2 x(τ ) = 0. (16)

Proof By definition, we have

ξi(τ ,�) = lim
t→∞�T (t)	(τ , t)Fi.

Due to Z(t) = 	(τ , t)Z(τ ), we can write 	(τ , t) = Z(t)Z–1(τ ). Since �T (t) = FT
2 Y –1(t), we

conclude that

ξi(τ ,�) = lim
t→∞ FT

2 Y –1(t)Z(t)Z–1(τ )Fi = FT
2 Z–1(τ )Fi

exists. Consequently,

Z–1(τ ) =

(
• •

ξ1(τ ,�) ξ2(τ ,�)

)
,

implying

ξ1(τ ,�) · FT
1 Z(τ )F1 + ξ2(τ ,�) · FT

2 Z(τ )F1 = 0.

Again, this concludes the proof since we have x ∈ S� if and only if x(n) = Z(n)F1α for some
α ∈ C

p×1. �
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From (16), we obviously return to (13) by multiplying both sides by ξ–1
2 (τ ,�). Again, it

becomes clear that the method (13) still works in situations where the limits ξi(τ ,�) do
not exist and therefore (16) cannot be applied.

5 Equivalent backward computation
For the discrete problem (3), the Jacobi–Perron characterization can be exploited in a di-
rect way (we only have to replace the limits by very large choices of t), whereas in the
continuous-time case, the numerical calculations must be preceded by a suitable dis-
cretization.

Either way, algorithms should be efficient, and it seems natural to compute the values of
η(τ ,�) (or the ξi(τ ,�)) for all values τ ∈ [t0, t1] ∩ I for an ‘interval of interest’ [t0, t1]. For
this purpose, we demonstrate that the approximants of η(τ ,�) or ξi(τ ,�) can be computed
by different kinds of ‘backward procedures’.

5.1 A direct backward computation
In case of the strong asymptotic condition (5), the natural approach is to define W (t) as a
solution to (3) or (4), respectively, with W (t)(t) = Y (t)F1, that is, W (t)(t) ∈C

r×p consists of
the first p columns of Y (t). For t → ∞, we should expect W (t)(τ ) → Z(τ ). Indeed, in this
situation, we can write

W (t)(τ ) = Z(τ )Z–1(t)W (t)(t) (17)

(note that we W (t)(τ ) and Z(τ ) are solutions (3) or (4), respectively, as functions of τ , and
Z–1(t)W (t)(t) is constant with respect to τ ), and since (5) guarantees that Z–1(t)W (t)(t) =
Z–1(t)Y (t)F1 converges to IrF1 = F1, the conjecture is true. In particular, in the discrete
setting of (3), W (t)(τ ) can be easily computed (numerically) for τ ∈ [t0, t1], and for t � t1,
we get good approximations to P(τ ) = Z(τ )F1.

Next we demonstrate that a similar kind of backward procedure can be used to compute
the approximants of η(τ ,�) even in the case that the less restrictive condition (5) holds.

Theorem 5.1 Let (�(t))t∈I be a family of matrices �(t) ∈ C
r×(r–p) with rank r – p, and

let Y (t) be an invertible r × r-matrix for all t ∈ I in such a way that �T (t) = FT
2 Y –1(t).

Furthermore, let (W (t)(τ ))τ∈I be a solution to (3) or (4), respectively, with W (t)(t) = Y (t)F1.
Then we have

(
�T (t)	(τ , t)F2

)–1(
�T (t)	(τ , t)F1

)
= –

(
FT

2 W (t)(τ )
)(

FT
1 W (t)(τ )

)–1 (18)

for the approximants of η(τ ,�) ∈C
(r–p)×p.

Proof We write Y –1(t) =
( HT (t)

�T (t)

)
. (17) holds for any solution Z with invertible Z(t). In par-

ticular, if we choose Z(t) = 	(τ , t), we obtain

W (t)(τ ) = 	–1(τ , t)W (t)(t) =
(
Y –1(t)	(τ , t)

)–1F1

=

((
HT (t)
�T (t)

)(
	(τ , t)F1 	(τ , t)F2

))–1

F1
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=

(
HT (t)	(τ , t)F1 HT	(τ , t)F2

�T (t)	(τ , t)F1 �T (t)	(τ , t)F2

)–1

F1

(1)=

(
V (τ , t)

–(�T (t)	(τ , t)F2)–1(�T (t)	(τ , t)F1)V (τ , t)

)
,

where V (τ , t) is chosen according to (1), that is,

(
V (τ , t)

)–1 = HT (t)	(τ , t)F1 – HT	(τ , t)F2

· �T (t)	(τ , t)F1
(
�T (t)	(τ , t)F2

)–1(
�T (t)	(τ , t)F1

)
,

which proves our assertion. �

Theorem 5.1 suggests the following numerical methods.

Algorithm 5.1 Let (6) hold for (3).
• Find Y (n) with �T (n) = FT

2 Y –1(n), set W (t)(t) = Y (t)F1 for t sufficiently large.
• Then compute W (t)(n) successively for n = t – 1, t – 2, . . . , t0 by backward calculation.

For t � n, the proportion of FT
1 W (t)(n) and FT

2 W (t)(n) is a good approximation to the pro-
portion of F1P(n) and F2P(n), where (P(n))τ∈I is the C

r×p-valued solution characterizing
S� .

Algorithm 5.2 Let (6) hold for (3).
• Set W (t)(t) = Y (t)F1 for t sufficiently large.
• Then compute W (t)(n) successively for n = t – 1, t – 2, . . . , t0 by backward calculation.

For t � τ , W (t)(n) is a good approximation for P(n).

5.2 Continued-fraction type scheme for η

According to Theorem 4.1, the limit η(τ ,�) exists if and only if there is a fundamental
system (Z(t))t∈I satisfying (11) and (12). Obviously, condition (11) does not depend on τ .
Hence, there will be many situations in which η(τ ,�) exists for all τ ∈ I .

In this section, we derive a recursion scheme for computing approximations of η(τ ,�) in
the discrete-time setting. The advantage of this scheme is that approximations of η(τ ,�)
for different values of τ can be computed simultaneously. The special form of the recursive
scheme justifies to refer to the values η(τ ) as some kind of generalized matrix continued
fraction.

In order to derive the recursion scheme for η(τ , t), we define the approximation

η(t)(τ ,�) =
(
�T (t)	(τ , t)F2

)–1(
�T (t)	(τ , t)F1

)
=

(
FT

2 Y –1(t)	(τ , t)F2
)–1(FT

2 Y –1(t)	(τ , t)F1
)
.

For t → ∞, we have convergence to η(τ ,�) by definition.

Theorem 5.2 With the notation introduced above and with A(t) =
( B(t) C(t)

D(t) E(t)
)
, that is, B(t) =

FT
1 A(t)F1, C(t) = FT

1 A(t)F2, . . . , we have

η(t)(t,�) = –FT
2 Y (t)F1 · (FT

1 Y (t)F1
)–1
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for all t ∈ I and

η(t)(τ ,�) =
(
η(t)(τ + 1,�)C(τ ) + E(τ )

)–1(
η(t)(τ + 1,�)B(τ ) + D(τ )

)

for all τ , t ∈ I with τ < t, provided that these inverses exist.

Proof For τ = t, we have 	(t, t) = Ir and hence

η(t)(t,�) =
(
FT

2 Y –1(t)F2
)–1(FT

2 Y –1(t)F1
)
.

Let Y (t) =
( B̃ C̃

D̃ Ẽ

)
. According to the inversion formula (2), we have FT

2 Y –1(t)F1 = –Ẽ–1D̃Ṽ
and FT

2 Y –1(t)F2 = Ẽ–1 + Ẽ–1D̃Ṽ C̃Ẽ–1 where Ṽ = (B̃ – C̃Ẽ–1D̃)–1. Using this representation
of Ṽ , it is easy to show that (Ir + D̃Ṽ C̃Ẽ–1)D̃ = D̃Ṽ B̃, and hence

η(t)(t) = –
(
Ẽ–1 + Ẽ–1D̃Ṽ C̃Ẽ–1)–1Ẽ–1D̃Ṽ =

(
Ir + D̃Ṽ C̃Ẽ–1)–1D̃Ṽ B̃B̃–1

= –D̃B̃–1,

which is exactly the statement for τ = t.
Now let τ < t and write Y –1(t)	(τ , t) =

( βτ γτ

δτ ετ

)
. By construction of 	(τ , t), we have

	(τ , t) = 	(τ + 1, t)A(τ ). Hence, we conclude that

η(t)(τ ) =
(
FT

2 Y –1(t)	(τ , t)F2
)–1(FT

2 Y –1(t)	(τ , t)F1
)[

= (ετ )–1δτ

]
=

(
FT

2 Y –1(t)	(τ + 1, t)A(τ )F2
)–1(FT

2 Y –1(t)	(τ + 1, t)A(τ )F1
)

=

(
(δτ+1, ετ+1)

(
C(τ )
E(τ )

))–1 (
(δτ+1, ετ+1)

(
B(τ )
D(τ )

))

=
(
δτ+1C(τ ) + ετ+1E(τ )

)–1(
δτ+1B(τ ) + ετ+1D(τ )

)
=

(
ε–1
τ+1δτ+1C(τ ) + E(τ )

)–1(
ε–1
τ+1δτ+1B(τ ) + D(τ )

)
=

(
η(t)(τ + 1)C(τ ) + E(τ )

)–1(
η(t)(τ + 1)B(τ ) + D(τ )

)
,

which completes the proof. �

With the notations of Theorem 5.2, we obtain the following

Algorithm 5.3
• Choose t sufficiently large.
• Set η(t)(t,σ ) = –FT

2 Y (t)F1 · (FT
1 Y (t)F1)–1.

• For n = t – 1, t – 2, . . . , t0, compute

η(t)(τ ,�) =
(
η(t)(τ + 1,�)C(τ ) + E(τ )

)–1(
η(t)(τ + 1,�)B(τ ) + D(τ )

)
.

• By means of (15), compute approximate values to x(t0 + 1), x(t0 + 2), . . . .
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6 On the dichotomy of differential equations and their discretization schemes
For the differential equation (4), it is obvious to use Algorithms 5.1 and 5.2, where the
numerical calculation of W (t)(τ ) for τ < t is performed by means of some discretization
method. However, this discretization will effect the asymptotic behavior. Therefore,

• in some situations, we will have to replace �(t) in algorithm 5.1 by a sequence
adapted to the discretization method,

• in almost all situations, we will have to replace Y (t) in algorithm 5.2 by a sequence
adapted to the discretization method.

Example 6.1 We consider the case r = 1, although our results have little meaning in this
situation since the space of solutions is one-dimensional and explicitly known. Never-
theless, it becomes clear that the asymptotic behavior of the solutions of x′(t) = A(t)x(t),
t ∈ I , and the corresponding discretized system differ. Consider the differential equation
x′(t) = (λ + φ(t))x(t), t ∈ I = [0,∞), for some constant λ ∈ R and some function φ(t) ∈ L1.
Then the exact solution is given by

x(t) = eλt+
∫ t

0 φ(s) dsx(0), t ≥ 0. (19)

Now apply Euler’s explicit method for computing approximations x[h](n) to x(nh). Then

x[h](n + 1) = (1 +
(
λ +

(
φ(nh)

)
h
)
x(nh), n = 0, 1, 2, . . . , (20)

implying

x[h](n) =

(n–1∏
k=0

(
1 +

(
λ + φ(kh)

)
h
))

x(0), n = 0, 1, 2, . . . . (21)

From the general theory of discretization methods we know that

lim
h→0
nh→t

x[h](n) = x(t), (22)

since we apply a consistent method to a linear and therefore Lipschitz-continuous prob-
lem. Although the limit (22) is a key topic in numerical mathematics, we are interested
in a somewhat different property: We want to compare the behavior of the exact solution
x(t) for t → ∞ with the behavior of x[h](n) for n → ∞.

Set y(t) = eλt for t ≥ 0. From (19), we see that

y–1(t)x(t) = e
∫ t

0 φ(s) dsx(0), t ≥ 0.

Since φ ∈ L1, we observe that there is a solution x(t) with

lim
t→∞ y–1(t)x(t) = 1,

that is, (5) is satisfied for x′(t) = (λ + φ(t))x(t), t ≥ 0, with y(t) = eλt , t ≥ 0.
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In the sequel, we consider the discretized system. Since x[h](n) is an approximation to
x(nh), we conclude that

lim
n→∞ y–1(nh)x[h](n) = lim

n→∞
(1 + λh)n

eλhn

n–1∏
k=0

1 + (λ + φ(kh))h
1 + λh

x(0)

= lim
n→∞ en(ln(1+λh)–λh)

n–1∏
k=0

(
1 + φ(kh) · h

1 + λh

)
x(0).

Under appropriate conditions (e.g. monotonicity), φ ∈ L1 ensures that
∑∞

k=0 φ(kh) is abso-
lutely convergent, so that the product on the right-hand side converges to a finite value for
n → ∞. Observe ln(1 + λh) – λh 
= 0, implying that y–1(nh)x[h](n) either tends to 0 or ∞.
Hence, (5) is not satisfied for the discretized system with the sequence (y(nh)). Therefore,
setting W (N)(N) = y(Nh) for some large N and compute W (N)(n) backwards by use of (20)
will not give good approximations to x(nh) for the solution x(t) ∼ eλt .

The above calculation already tells us what to do: We have to choose y[h](n) = (1 + λh)n.
Then (y[h](n))–1x[h](n) converges to some value ∈ R \ {0}, that is, it converges to 1 for an
appropriate choice of x[h](0). Hence, we could use Algorithm 5.2 in the following way: Set
W (N)(N) = y[h](N), compute W (N)(n) backwards by means of (20). Then we obtain good
approximations to x[h](n).

Note that usually, there is no need to solve x′(t) = (λ + φ(t))x(t), t ∈ I , numerically, since
we have the explicit solution given in (19). However, this behavior is typical also in situa-
tions where we have no explicit solution.

Of course, there are better discretization methods (in terms of consistency order, speed
of convergence, . . . ) than the explicit Euler method. However, for any classical discretiza-
tion method, the discretizaton error will increase (often exponentially) as t → ∞. There-
fore, we can never expect the discretized system to have the same asymptotic behavior as
the original differential equation.

For the sake of simplicity, we restrict the discussion in this paper to:
• Single-step methods. The reason is that discretizing (4) with A(t) ∈ C

r×r by means of
a single-step method will result in a system x[h](n + 1) = A[h](n)x[h](n) with
A[h](n) ∈C

r×r whereas multi-step methods will change (increase) the number of
dimensions of the discretized system.

• Constant step size h. This is mostly done for the sake of simplicity of the formulas.
This means that we approximate x(nh) by x[h](n) where

x[h](n + 1) = x[h](n) + hC[h](n)x[h](n) + hD[h](n)x[h](n + 1), n = 0, 1, 2, . . . .

For explicit methods, D[h](n) = 0. With

A[h](n) =
(
Ir – hD[h](n)

)–1(Ir + hC[h](n)
)
,

we obtain x[h](n + 1) = A[h](n)x(n), n = 0, 1, 2, . . . . Popular examples are as follows:
• For the explicit Euler method, we have C[h](n) = A(nh).
• For the implicit Euler method, we have C[h](n) = 0 and D[h](n) = A((n + 1)h).
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• For the (implicit) trapezoidal rule, we have C[h](n) = 1
2 A(nh) and

D[h](n) = 1
2 A((n + 1)h).

7 Poincaré-type/Levinson-type systems of linear difference and differential
equations

In this section, we consider the case where A(∞) := limt→∞ A(t) exists. Basic results on the
asymptotic behavior of the solutions of linear difference and differential equations with al-
most constant coefficients are due to Poincaré [22] and Perron [23–25]. A milestone in the
analysis of such differential equations is due to Levinson [2]. Therefore, literature refers to
these systems as Poincaré-type equations, Poincaré–Perron-type equations, or Levinson-
type equations (in particular, in the continuous-time setting). Levinson-type results refer
to statements on the asymptotic behavior of the solutions of systems (3) or (4) for which
we can write

A(t) = A(∞) + V (t) + R(t),

where R(t) is summable/integrable and V (t) → 0 with some additional constraints (e.g.
V ′(t) should be summable/integrable with some conditions on the eigenvalues of A(∞) +
V (t), the latter conditions are referred to as dichotomy conditions). We refer to the liter-
ature (e.g. [2, 26–28]) for results in this setting or similar settings. An exact translation of
Levinson’s ideas to the discrete-time setting is due to Benzaid and Lutz [29], and therefore,
such results are often referred to as Benzaid–Lutz-type results (or sometimes, Levinson–
Benzaid–Lutz-type results). A more recent publication in this direction is [30] where fur-
ther remarks on literature can be found. Note that our focus is not on deriving such results
but using these results and finding numerical methods for computing solutions with pre-
scribed asymptotic behavior. Therefore, referring to all literature in this direction is far
beyond the scope of this paper, and furthermore, we will only consider the ‘simple’ situa-
tion where V (t) = 0.

7.1 Difference equations
In the discrete-time setting of (3), let A(t) = A(∞) + R(t) where

• A(∞) = BDB–1 with D = diag(λ1, . . . ,λr) and B = (b1, . . . , br),
•

∑∞
t=t0

‖R(t)‖ < ∞ for some t0 ∈N.
By means of [29] or Theorem 8.25 in [31], we conclude that there is a fundamental system
of vector-valued solutions to (3), say x(1), . . . , x(r), with x(i)(t) = (bi + o(1))λt

i for i = 1, . . . , r.
The asymptotic representation of the solutions is equivalent to limn→∞ ziλ

–n
i = bi, and

in matrix notation, we conclude that there is a solution Z = (Z(n)) with Z(n) ∈ C
r×r for

n ∈N0 with

lim
n→∞ Z(n) diag

(
λ–n

1 , . . . ,λ–n
r

)
= B.

Remark 7.1 By setting Y (t) = B diag(λt
1, . . . ,λt

r), we find that Z(t)Y –1(t) → I . Unfortunately,
this is not equivalent to our strong condition (5) which requires Y –1(t)Z(t) → I . There are
some exceptions, e.g. if all eigenvalues of A(∞) have absolute value 1 since in that situation,
both Y (t) and Y –1(t) are bounded and we can argue that

Y –1(t)Z(t) = Y –1(t)
(
Z(t)Y –1(t)

)
Y (t) → Y –1(t)IY (t) = I.
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7.2 Differential equations
Now consider (4) with A(t) = A(∞) + R(t) where

• A(∞) = BDB–1 with D = diag(λ1, . . . ,λr) and B = (b1, . . . , br),
•

∫ ∞
0 ‖R(t)‖dt < ∞.

By Levinson-type criteria (e.g. [2, 26, 28]), it is guaranteed that there is a fundamental
system Z(t) of (4) with

lim
t→∞ Z(t) diag

(
e–λ1t , . . . , e–λrt) → B. (23)

Let us consider a special case: Let u(t) satisfy the scalar rth-order linear differential equa-
tion

u(r)(t) –
r–1∑
k=0

pk(t)u(k)(t) = 0, t ∈ I,

with p0(t) 
= 0 for all t ∈ I and assume that the limits pk = limt→∞ pk(t) exist. Then the
vector x(t) = (u(t), u(1)(t), . . . , u(r–1)(t))T satisfies

x′(t) =

⎛
⎜⎜⎜⎜⎝

0 1
0 1

. . . . . .
p0(t) p1(t) · · · pr–2(t) pr–1(t)

⎞
⎟⎟⎟⎟⎠x(t) =: A(t)x(t), t ∈ I.

Then

A(∞) =

⎛
⎜⎜⎜⎜⎝

0 1
0 1

. . . . . .
p0 p1 · · · pr–2 pr–1

⎞
⎟⎟⎟⎟⎠

and the eigenvector corresponding to the eigenvalue λj has the form (1,λj, . . . ,λr–1
j )T .

Hence, the solution associated with this eigenvector satisfies limt→∞ u′(t)
u(t) = λj.

Remark 7.2 Again, setting Y (t) = B diag(eλ1t , . . . , eλrt) does not imply that our strong con-
dition (5) is met. Again, there are some exceptions, e.g. for Re(λj) = 0 for j = 1, . . . , r, both
Y (t) and Y –1(t) are bounded and we can argue as in the discrete-time setting.

7.3 Discretization
We give some instructions concerning the discretization of Poincaré-type differential
equations. As above, we focus on single-step methods with constant step size h. Since
these methods rely on the idea of replacing the integral at the right-hand side of

x
(
(n + 1)h

)
= x(nh) +

∫ (n+1)h

nh
A(t)x(t)
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by an appropriate summation formula, it becomes apparent that however we calculate, we
finally arrive at

A[h](n) = Ir + h
(
C[h](n) + D[h](n)

)
+ o(h) = Ir + hA(nh) + o(h). (24)

Since A[h](n) tends to some A[h](∞) by assumption, we conclude from (24) that A[h](∞) =
Ir + hA(∞) has eigenvalues μ

[h]
j (n) = 1 + hλj + o(h). Applying the Levinson-type theorem

for the discrete setting, we note that there is a fundamental matrix Z[h](n) with

lim
n→∞ Z[h](n) diag

((
μ

[h]
1

)–n, . . . ,
(
μ[h]

r
)–n) → B[h], (25)

provided that R(nh) satisfies the summability condition. For example, if R(t) is (compo-
nentwise) monotone, the integrability of R(t) implies summability of R(nh). Due to

(
Ir + hA(∞) + o(h)

)
B[h] = B[h] diag

(
1 + hλ1 + o(h), . . . , 1 + hλr + o(h)

)
,

we have limh→0 B[h] = B. More precisely, for all discretization methods discussed above,
A[h](∞) may be decomposed into Ir and A(∞), and hence, the eigenvectors of A(∞) co-
incide with the eigenvectors of A[h](∞) (but with different eigenvalues), that is, B[h] = B.

Hence, if we want to compute solutions generated by the first p columns of the funda-
mental system Z(t) of the differential equation, a good approximation can be obtained by
computing solutions generated by the first p columns of the fundamental system Z[h](n)
of the discretized system. For this purpose, we need to compute the corresponding eigen-
values μ

[h]
1 , . . . ,μ[h]

r .
We give some examples. Let D = diag(λ1, . . . ,λr), then we have A(∞)B = BD and

B–1A(∞) = DB–1.
• For the explicit Euler method, we have A[h](∞) = I + hA(∞). Therefore, we obtain

A[h]B = B + hA(∞)B = (I + hd)B, that is, μj = 1 + hλj for j = 1, . . . , r.
• For the implicit Euler method, we have A[h](∞) = (I – hA(∞))–1, and hence

B–1A[h](∞) = B–1(Ir – hA(∞)
)–1 =

(
B – hA(∞)B

)–1

= (B – hBD)–1 = (I – hD)–1B–1,

that is, μj = 1
1–hλj

for j = 1, . . . , r.
• For the trapezoidal rule, we have A[h](∞) = (I – h

2 A(∞))–1(Ir + h
2 A(∞)), and we obtain

B–1A[h](∞)B =
(

B –
h
2

A(∞)B
)–1(

B +
h
2

A(∞)B
)

=
(

B –
h
2

DB
)–1(

B +
h
2

DB
)

=
(

Ir –
h
2

D
)–1(

I +
h
2

D
)

.

Hence, we have μj = 1+ h
2 λj

1– h
2 λj

for j = 1, . . . , r.
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• For Runge–Kutta-4, we have

B–1A[h](∞)B

= B–1
(

Ir + hA(∞) +
5
6

h2A2(∞) +
1
2

h3A3(∞) +
1
6

h4A4(∞)
)

B

= Ir + hD +
5
6

h2D2 +
1
2

h3D3 +
1
6

h4D4,

that is, μj = 1 + hλj + 5
6 h2λ2

j + 1
2 h3λ3

j + 1
6 h4λ4

j .

Remark 7.3 Although each solution of the discretized system corresponds to a solu-
tion of the original differential equation, it is worth noting that for fixed step size h, the
dominance–subdominance relationship between the solutions may change. As a simple
example, consider the continuous-time setting where r = 2, A(∞) = B diag(–1, –100)B–1

with all entries of B being 
= 0. Then, for �T = (0, 1) (resulting in the classical dominance
and subdominance term), the solution corresponding to the eigenvalue –1 dominates over
the solution corresponding to the eigenvalue –100. As a simple discretization scheme,
choose the explicit Euler method with step size h = 0.1. For the discretized system, the
eigenvalues are 1 + h · (–1) = 0.9 and 1 + h · (–100) = –9, where the latter eigenvalue corre-
sponds to the original eigenvalue –100. Obviously, for the discrete system, the solutions
corresponding to the eigenvalue 0.9 are subdominant.

This problem is well-known in the context of initial value problems: If the initial values
are chosen in such a way that the desired solution is the solution corresponding to the
eigenvalue –1, the explicit Euler method and many other discretization schemes require a
very small step size h since otherwise the solution corresponding to the eigenvalue –100
becomes dominant and will cause massive numerical deviations. This is a well-known
effect which belongs to the phenomenon of stiffness of differential equations.

In order to avoid the effects of stiffness, it is often recommended to use implicit dis-
cretization methods. Indeed, when applying the implicit Euler method in the situation
sketched above, we would obtain the new eigenvalues 1

1–h·(–1) = 10
11 and 1

1–h·(–100) = 1
11 , that

is, the dominance–subdominance relationship of the two solutions is preserved.
In some way, this is not entirely true for all applications of implicit discretization

schemes. Think of the situation where A(∞) admits the eigenvalues +1 and +100. Then the
corresponding eigenvalues of the implicit Euler method with step size h = 0.1 are 1

1–h·1 = 10
9

and 1
1–h·100 = – 1

9 . Hence, the apparently dominant solution (eigenvalue 100) corresponds
to the subdominant solution of the discretized system (eigenvalue – 1

9 ). Of course, in this
situation, the step size h = 0.1 is too large for aspects of accuracy.

Anyway, discussing all aspects of stiffness and stability definitions from a numerical
point of view is far beyond the scope of this paper since we cannot claim to answer all
questions related with them. This remark simply intends to draw attention to the fact that
when dealing with solutions of differential equations with prescribed asymptotic behav-
ior numerically, one should carefully study the properties of the resulting discrete system
since it is not guaranteed that the dominance–subdominance relationship is preserved
during the discretization process.
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8 Numerical examples
8.1 A Poincaré-type difference equation
Let D = diag(–2i, 2i, –2, 2),

B =

⎛
⎜⎜⎜⎝

–1 + 5i –1 – 5i 0 –2
1 + 3i 1 – 3i 1 –4
–5 + i –5 – i 0 0

10 10 1 1

⎞
⎟⎟⎟⎠ ,

A(∞) = BDB–1 =
1

27

⎛
⎜⎜⎜⎝

19 14 –83 –14
11 28 –193 –82
65 –26 23 26

–94 16 –118 –70

⎞
⎟⎟⎟⎠ .

Furthermore, let A(t) = A(∞) + R(t) for t ∈ N0 where
∑∞

t=0 ‖R(t)‖ < ∞. The general re-
marks concerning linear differential equations with almost constant coefficients imply that
Z(t)Y –1(t) → I where

Y (t) = BeD =

⎛
⎜⎜⎜⎝

–1 + 5i –1 – 5i 0 –2
1 + 3i 1 – 3i 1 –4
–5 + i –5 – i 0 0

10 10 1 1

⎞
⎟⎟⎟⎠ · diag

(
(–2)t , 2t), t = 0, 1, 2, . . . .

Define Ỹ (t) = 1
2t Y (t). Then Ỹ (t) and (Ỹ (t))–1 are bounded. Hence, we obtain

Y –1(t)Z(t) =
(
Ỹ (t)

)–1Ỹ (t)Y –1(t)Z(t)Y –1(t)Y (t)
(
Ỹ (t)

)–1Ỹ (t)

=
(
Ỹ (t)

)–1 · 2t · Z(t)Y –1(t) · 1
2t · Ỹ (t)

=
(
Ỹ (t)

)–1(Z(t)Y –1(t)
)
Ỹ (t)

→ (
Ỹ (t)

)–1 · I · Ỹ (t) = I, t = 0, 1, 2, . . . ,

that is, our strong assumption (5) is satisfied. For this reason, we may apply all algorithms
developed in this paper.

We start with testing our algorithms by setting R(t) = 0. Then Z(t) = Y (t)B–1Z(0) for all
solutions Z and all t ∈N0. This means that each linear combination of the columns of Y (t)
provides a solution of the underlying differential equation. We slightly modify Y (t):

• Let us change the order of the columns such that Y (t)F1 represents the latter two
columns of the original matrices Y (t), that is,

Y (t)F1 =

⎛
⎜⎜⎜⎝

0 –2
1 –4
0 0
1 1

⎞
⎟⎟⎟⎠ · diag

(
(–2)t , 2t).

With initialization time t = 100, we apply Algorithm 5.2, that is, we set
W (100)(100) = Y (100)F1 and compute W (100)(n) for n = 99, 98, . . . , 1, 0. We recognize
that all numerically computed values coincide with the true entries of Y (n)F1.
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• With the same definition of Y (t)F1 as before, we want to apply Algorithm 5.3, that is,
we set η(t) = –

( 0 0
1 1

)( 0 –2
1 –4

)–1 =
( 0 0

– 5
2 1

)
for some large t (here, t = 100), and compute

η(n) by the continued-fraction-type scheme for n = t – 1, t – 2, . . . , 0. Due to R(t) = 0,
the exact proportions η(n) do not depend on n. Indeed, Algorithm 5.3 reproduces the
exact (and constant) matrices η(n).

• Next, we are interested in the subspace spanned by the two solutions corresponding
to the eigenvalues –2i, 2i. In order to obtain a real-valued solution, we set

Y (t)F1 =

⎛
⎜⎜⎜⎝

–2 10
2 6

–10 2
20 0

⎞
⎟⎟⎟⎠diag

(
2t , 2t)

for all t ∈N0 which are divisible by four. We apply the backward procedure 5.2 with
t = 100. Again, the algorithm reproduces the exact solution.

• Finally, we use Y (t)F1 as defined in the last point, and we set
η(100) = –

( –10 –2
20 0

)( –2 10
2 6

)–1 =
( –2 3

15
4 – 25

4

)
for applying Algorithm 5.3. It turns out that the

algorithm reproduces the exact values (e.g. η(n) = η(100) for all n which are divisible
by four) in this situation, too.

Now let us consider

R(t) =

⎛
⎜⎜⎜⎝

0 2e–t 0 – 5
2t2+2

0 0 0 0
3

2t3+2 0 0 0
0 0 – 3

2(t+1) ln(t+2) 0

⎞
⎟⎟⎟⎠ .

Obviously,
∑‖R(t)‖ converges. Suppose we are interested in the solutions corresponding

to the real eigenvalues 2, –2. As in the case for R(t) = 0, we set

W (100)(100) =

⎛
⎜⎜⎜⎝

0 –2
1 –4
0 0
1 1

⎞
⎟⎟⎟⎠ · diag((–2)t , 2t)

and apply Algorithm 5.2 or we set η(100) =
( 0 0

– 5
2 1

)
and apply Algorithm 5.3. In Table 1,

we have listed some numerical results. Although we are not in a position to find the exact
solution to (3) in the given situation, we remark that the results of both algorithms ‘fit
together’ in the sense that we have η(100)(0) = –(FT

2 W (100)(0))(FT
1 W (100)(0)).

Since both algorithms lead to the same results, it becomes clear that using the continued-
fraction type scheme in Algorithm 5.3 has some advantages: Whereas the growth/decay
values of W (100)(n) are clearly influenced by the absolute value of the eigenvalues, this is
not true for the values of η(t)(n). Hence, computing η(t)(n) does not require any ‘scaling
technique’ and Algorithm 5.3 can be applied with much larger t. E.g. for t = 1000, we
obtain η(1000)(0) =

( –1.5504 0.6340
1.0773 –1.3982

)
.
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Table 1 Poincaré-type linear system of difference equations: Numerical results obtained by
Algorithm 5.2 and Algorithm 5.3

n W (100)(n) η(100)(n)

100

⎛
⎜⎜⎝

0 –2.535 · 1030
1.268 · 1030 –5.071 · 1030

0 0
1.268 · 1030 1.268 · 1030

⎞
⎟⎟⎠

(
0 0

–2.5 1

)

99

⎛
⎜⎜⎝

4.632 · 1025 –1.268 · 1030
–6.339 · 1029 –2.535 · 1030
9.725 · 1025 –9.767 · 1025
–6.341 · 1029 6.341 · 1029

⎞
⎟⎟⎠

(
–0.0004 0.0002
2.5003 –1.0001

)

2

⎛
⎜⎜⎝
–0.0937 –14.4523
6.0451 –15.9751
–1.1255 –9.9137
8.1103 27.0848

⎞
⎟⎟⎠

(
–0.8767 0.1726
3.3005 –1.2905

)

1

⎛
⎜⎜⎝
–0.8344 –3.8417
–3.1130 –31.8064
–1.1025 15.9212
–0.5705 –43.5892

⎞
⎟⎟⎠

(
–5.8040 1.2016
8.0617 –2.3442

)

0

⎛
⎜⎜⎝
–0.4438 3.6676
–4.8386 –3.5192
2.3796 7.9174
–6.2876 –8.8716

⎞
⎟⎟⎠

(
–1.5504 0.6340
1.0772 –1.3983

)

8.2 Ordinary subdominance for Poincaré-type differential equations
The computation of subdominant solutions in the ordinary sense is a special case of our
approach. By ‘ordinary sense’ we mean that we consider a scalar rth order linear differential
equation, and that we say a subspace S to be subdominant if u(t)

v(t) → 0 for every u ∈ S and
every solution v /∈ S .

Consider the scalar differential equation

u′′′(t) = –2u′′(t) + u′(t) + 2
(
1 + φ(t)

)
u(t), t ≥ 0,

with some differentiable function φ(t) converging to 0 monotonically. (The assumption of
monotonicity is chosen for the sake of simplicity, it could be replaced by a weaker one.)
With the above construction, we have

A(t) =

⎛
⎜⎝

0 1 0
0 0 1

2(1 + φ(t)) 1 –2

⎞
⎟⎠ = A(∞) + V (t),

where the monotonicity ensures that V ′(t) ∈ L1. A(∞) has the eigenvalues λ1 = –2, λ2 = –1
and λ3 = 1. According to (23), there is a fundamental system of solutions x(1), x(2), x(3) such
that the asymptotic growth of x(i) is expressed by λi.

First, assume that we want to compute a solution which is a multiple of x(1). Then we set
p = 1 and �T (t) = FT

2 B–1. With an arbitrary λ∗ ∈ (λ1,λ2) = (–2, –1), we can write

(
�T (t)Z(t)F2

)–1(
�T (t)Z(t)F1

)
=

(
FT

2 B–1Z(t) diag
(
e–

∫ t
t1

λj(s) ds)diag
(
e
∫ t

t1
λj(s) ds)e–λ∗tF2

)–1

· (FT
2 B–1Z(t) diag

(
e–

∫ t
t1

λj(s) ds)diag
(
e
∫ t

t1
λj(s) ds)e–λ∗tF1

)
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=
(
FT

2
(
Ir + o(1)

)
diag

(
e(λj–λ∗)t+o(t))F2

)–1

· (FT
2
(
Ir + o(1)

)
diag

(
e(λj–λ∗)t+o(t))F1

)
.

Since λj – λ∗ > 0 for j = 2, 3 and λ1 – λ∗ < 0, this term obviously converges to 0, that is, the
main condition (11) of Theorem 4.1 is satisfied.

For a thorough numerical computation, we have to use some discretization method. The
monotonicity of φ(t) ensures that (V (nh)) converges to 0 in a (componentwise) monotonic
sense and therefore, (25) holds. Since B[h] = B, we choose (�[h](t))T = FT

2 B–1. Then we can
easily prove that (11) is satisfied for the discretized system; in the above calculation for the
continuous case, we only have to replace e–λ∗t by (μ∗)–n with some μ∗ ∈ (1 + hλ1, 1 + hλ2).

For our numerical experiment, we set φ(t) = 1
1+t2 , h = 0.001 and start our backward pro-

cedure (for the discretized system) at t = 20 = 2 ·104 ·h. For the discretization, we consider
the explicit Euler method (EE) and the trapezoidal rule (TR). The results are listed in Ta-
ble 2. We have included the values u1(t)–u1(t–h)

hu1(t–h) as approximations to u′
1(t)

u1(t) . The results clearly
indicate that we calculate the solution u1 for which u′

1(t)
u1(t) approaches –2 as t → ∞.

Next, assume that we want to compute solutions which are linear combinations of x(1)

and x(2). Hence, we set p = 2 and �T (t) = FT
2 B–1. Again, (11) is satisfied not only for the

differential equation but also for its discretized version. In addition to the above param-
eters for p = 1, we compute a solution u1(t) with u1(0) = 1 and u′

1(0) = 2. The results are
documented in Table 3, and they clearly indicate that here, u′

1(t)
u1(t) approaches –1 as t → ∞.

This is completely in accordance with our goals.

Table 2 Poincaré-type differential equation: Numerical calculation of the one-dimensional subspace
defined by the subdominant solution

t EE: u1(t) EE: u1(t)–u1(t–h)hu1(t–h)
TR: u1(t) TR: u1(t)–u1(t–h)hu1(t–h)

0 1 inf 1 inf
0.001 0.998403 –1.59697 0.998403 –1.59677
0.002 0.996808 –1.59737 0.996809 –1.59717
0.003 0.995216 –1.59776 0.995216 –1.59757
0.004 0.993625 –1.59816 0.993626 –1.59796
0.005 0.992037 –1.59856 0.992038 –1.59836
0.006 0.99045 –1.59896 0.990452 –1.59876
0.007 0.988866 –1.59935 0.988868 –1.59915
0.008 0.987284 –1.59975 0.987286 –1.59955
0.009 0.985705 –1.60015 0.985706 –1.59994
0.01 0.984127 –1.60054 0.984129 –1.60033
0.1 0.85065 –1.63506 0.850673 –1.6347
1 0.174041 –1.85137 0.174195 –1.84999
3 0.00370203 –1.96093 0.00371804 –1.95906
4.99 7.25945e–005 –1.98241 7.31878e–005 –1.98047
4.991 7.24506e–005 –1.98242 7.30429e–005 –1.98047
4.992 7.23069e–005 –1.98243 7.28982e–005 –1.98048
4.993 7.21636e–005 –1.98243 7.27538e–005 –1.98048
4.994 7.20205e–005 –1.98244 7.26097e–005 –1.98049
4.995 7.18778e–005 –1.98244 7.24659e–005 –1.9805
4.996 7.17353e–005 –1.98245 7.23224e–005 –1.9805
4.997 7.15931e–005 –1.98246 7.21792e–005 –1.98051
4.998 7.14511e–005 –1.98246 7.20362e–005 –1.98051
4.999 7.13095e–005 –1.98247 7.18936e–005 –1.98052
5 7.11681e–005 –1.98247 7.17512e–005 –1.98052
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Table 3 Poincaré-type differential equation: Computation of u1(t) for p = 2

t EE: u1(t) EE: u1(t)–u1(t–h)hu1(t–h)
TR: u1(t) TR: u1(t)–u1(t–h)hu1(t–h)

0 1 inf 1 inf
0.001 1.002 2 1.002 1.99533
0.002 1.00399 1.98668 1.00398 1.98206
0.003 1.00597 1.97346 1.00596 1.96888
0.004 1.00794 1.96033 1.00793 1.95579
0.005 1.00991 1.9473 1.00988 1.9428
0.006 1.01186 1.93436 1.01183 1.9299
0.007 1.0138 1.92151 1.01377 1.9171
0.008 1.01574 1.90875 1.0157 1.90438
0.009 1.01767 1.89608 1.01762 1.89175
0.01 1.01958 1.88351 1.01954 1.87921
0.1 1.15754 1.02648 1.15719 1.02459
1 0.891296 –0.844232 0.891478 –0.842916
3 0.110259 –1.09618 0.110554 –1.0952
4.99 0.0129359 –1.05457 0.0129902 –1.05395
4.991 0.0129222 –1.05455 0.0129765 –1.05394
4.992 0.0129086 –1.05453 0.0129628 –1.05392
4.993 0.012895 –1.05452 0.0129491 –1.0539
4.994 0.0128814 –1.0545 0.0129355 –1.05388
4.995 0.0128678 –1.05448 0.0129219 –1.05386
4.996 0.0128542 –1.05446 0.0129082 –1.05384
4.997 0.0128407 –1.05444 0.0128946 –1.05382
4.998 0.0128272 –1.05442 0.012881 –1.0538
4.999 0.0128136 –1.0544 0.0128675 –1.05378
5 0.0128001 –1.05438 0.0128539 –1.05376

8.3 Knesers’s differential equation
For computing subdominant solutions in the ‘ordinary sense’, we were allowed to choose
�T (t) = (�[h](t))T = FT

2 B–1 independently of the discretization scheme. Next, we demon-
strate that there are situations in which the choice of �[h](t) depends on the discretization
scheme.

Consider Kneser’s differential equation

u′′(t) +
(
1 + φ(t)

)
u(t) = 0, t ≥ 0, (26)

in which φ is continuous and real-valued with φ(t) → 0 ‘sufficiently fast’. Kneser [32, 33] al-
ready investigated conditions under which there is a fundamental set of solutions [u(1), u(2)]
to equation (26) satisfying

u(1)(t) = sin(t)
(
1 + o(1)

)
as t → ∞, (27)

u(2)(t) = cos(t)
(
1 + o(1)

)
as t → ∞. (28)

Various conditions on the speed-of-convergence condition on φ(t) were discussed by
Wintner [34]. The algebraic characterization of these solutions in terms of its initial values
and its computation for small values of t remained an open problem.

For the sake of simplicity, let us assume t0 = 0, φ(t) → 0 monotonically and φ(t) ∈ L1.
Then we have φ((nh)) ∈ �1 for all h > 0 so that we can apply Levinson-type results to the un-
derlying differential equation and Bensaid–Lutz-type results to its discretization scheme.

Put x(t) =
( u(t)

u′(t)

)
. Then x(t) satisfies (4) with A(t) =

( 0 1
–(1+φ(t)) 0

) → A(∞) =
( 0 1

–1 0

)
and

A(t) – A(∞) =
( 0 0

–φ(t) 0
) ∈ L1. In addition, we have A(∞)B = BD for B =

( 1 1
i –i

)
and D =
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diag(i, –i). Applying (23), we conclude that there is a fundamental system Z(t) with
Z(t)Y –1(t) → I where

Y (t) = B

(
eit 0
0 e–it

)
=

(
eit e–it

ieit –ie–it

)
.

With B̃ =
( 1

2i
1
2

– 1
2i

1
2

)
, set Z̃(t) = Z(t)B̃ and

Ỹ (t) = Y (t)B̃ =

(
sin(t) cos(t)
cos(t) – sin(t)

)
,

and obtain Z̃(t)Ỹ –1(t) → I . Note that Ỹ –1(t) = Ỹ (t) and supt≥0 ||Ỹ (t)|| < ∞. Hence,

Ỹ –1(t)Z̃(t) = Ỹ –1(t)
(
Z̃(t)Ỹ –1(t)

)
Ỹ (t) → I,

and therefore, (5) is satisfied, allowing the naive backward computation for computing the
sinus-solution.

However, due to the need of discretization, we have to replace Y (t) by a sequence
(Y [h](n)). For the discretized system, we have A[h](n) = A[h](∞) + R[h](n), and clearly
R[h](n) ∈ �1. As pointed out above, the eigenvalues of A[h](∞) depend on the discretization
method. For example, for the explicit Euler method, we have the eigenvalues μj = 1 + hλj,
that is, μ1 = 1 + ih and μ2 = 1 – ih. Hence, we choose

Y [h](n) = B

(
μn

1 0
0 μn

2

)n

B̃

=

(
Im((1 + ih)n) Re((1 + ih)n)
Re((1 + ih)n) –Im((1 + ih)n)

)
. (29)

For the trapezoidal rule, we have

Y [h](n) = B

⎛
⎜⎝( 1+i h

2
1–i h

2
)n 0

0 ( 1–i h
2

1+i h
2

)n

⎞
⎟⎠ B̃

= B

⎛
⎜⎜⎝

( 1+ih– h2
4

1+ h2
4

)n 0

0 ( 1–ih– h2
4

1+ h2
4

)n

⎞
⎟⎟⎠ B̃

=

⎛
⎜⎜⎝

Im(( 1+ih– h2
4

1+ h2
4

)n) Re(( 1+ih– h2
4

1+ h2
4

)n)

Re(( 1+ih– h2
4

1+ h2
4

)n) –Im(( 1+ih– h2
4

1+ h2
4

)n)

⎞
⎟⎟⎠ (30)

for n = 0, 1, 2, . . . . In order to assess the accuracy of the backward computation procedure,
we apply it to those cases whose solutions we know. For this purpose, we choose

• φ(1)(t) = 0, implying u(1)(t) = sin(t) and u(2)(t) = cos(t) and
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• φ(2)(t) = – 2
(t+1)2 , implying

u(1)(t) =

√
1 + (t + 1)2

(t + 1)2 cos
(
t – arctan(t + 1)

)

=

√
1 + (t + 1)2

(t + 1)2 sin

(
t – arctan(t + 1) +

π

2

)
, t ≥ 0, and

u(2)(t) = –

√
1 + (t + 1)2

(t + 1)2 sin
(
t – arctan(t + 1)

)

=

√
1 + (t + 1)2

(t + 1)2 cos

(
t – arctan(t + 1) +

π

2

)
, t ≥ 0,

which can be verified by standard calculations.
The results for φ(1) can be found in Tables 4 and 5, the corresponding results for φ(2) are
listed in Tables 6 and 7. In all cases, we have chosen h = 0.001 = 10–3, and the backward

Table 4 Kneser’s differential equation: Computation of Sinus solution for φ(t) = 0

t u1(t) exact EE with u1(T ) = sin(T ) Corrected EE TR with u1(T ) = sin(T ) Corrected TR

0 0 2.24598e–005 –3.58392e–013 0.000833333 1.93341e–013
0.001 0.001 2.91978e–005 0.001 0.00183333 0.001
0.002 0.002 3.59357e–005 0.002 0.00283333 0.002
0.003 0.003 4.26735e–005 0.003 0.00383332 0.003
0.004 0.00399999 4.94114e–005 0.004 0.00483331 0.00399999
0.005 0.00499998 5.61492e–005 0.00499999 0.0058333 0.00499998
0.006 0.00599996 6.28869e–005 0.00599998 0.00683328 0.00599996
0.007 0.00699994 6.96246e–005 0.00699997 0.00783325 0.00699994
0.008 0.00799991 7.63622e–005 0.00799994 0.00883322 0.00799991
0.009 0.00899988 8.30998e–005 0.00899992 0.00983317 0.00899988
0.01 0.00999983 8.98373e–005 0.00999988 0.0108331 0.00999983
0.05 0.0499792 0.000359197 0.0499804 0.0508114 0.0499792
0.1 0.0998334 0.000695052 0.0998384 0.100663 0.0998334
0.15 0.149438 0.00102919 0.149449 0.150262 0.149438
0.2 0.198669 0.00136077 0.198689 0.199486 0.198669
0.25 0.247404 0.00168896 0.247435 0.248211 0.247404

Table 5 Kneser’s differential equation: Computation of Cosinus solution for φ(t) = 0

t u2(t) exact EE with u2(T ) = cos(T ) Corrected EE TR with u2(T ) = cos(T ) Corrected TR

0 1 0.00673793 1 1 1
0.001 1 0.0067379 1 0.999998 0.999999
0.002 0.999998 0.00673787 0.999999 0.999996 0.999998
0.003 0.999996 0.00673784 0.999997 0.999993 0.999995
0.004 0.999992 0.0067378 0.999994 0.999988 0.999992
0.005 0.999988 0.00673775 0.99999 0.999983 0.999987
0.006 0.999982 0.00673769 0.999985 0.999977 0.999982
0.007 0.999976 0.00673763 0.999979 0.999969 0.999975
0.008 0.999968 0.00673756 0.999972 0.999961 0.999968
0.009 0.99996 0.00673748 0.999964 0.999952 0.999959
0.01 0.99995 0.0067374 0.999955 0.999941 0.99995
0.05 0.99875 0.00672855 0.998775 0.998708 0.99875
0.1 0.995004 0.00670236 0.995054 0.994921 0.995004
0.15 0.988771 0.00665941 0.988845 0.988646 0.988771
0.2 0.980067 0.00659981 0.980165 0.979901 0.980067
0.25 0.968912 0.00652372 0.969034 0.968706 0.968912
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Table 6 Kneser’s differential equation: Computation of Sinus solution for φ(t) = – 2
(t+1)2

t u1(t) exact EE with u1(T ) = sin(T ) Corrected EE TR with u1(T ) = sin(T ) Corrected TR

0 1 0.00676985 1.0014 1.00073 0.9999
0.001 1 0.00676982 1.0014 1.00073 0.999901
0.002 1 0.0067698 1.0014 1.00073 0.999902
0.003 1 0.00676978 1.0014 1.00074 0.999905
0.004 1.00001 0.00676978 1.0014 1.00074 0.999908
0.005 1.00001 0.00676977 1.00141 1.00074 0.999913
0.006 1.00002 0.00676978 1.00141 1.00075 0.999919
0.007 1.00002 0.00676979 1.00142 1.00075 0.999925
0.008 1.00003 0.00676981 1.00142 1.00076 0.999933
0.009 1.00004 0.00676983 1.00143 1.00077 0.999941
0.01 1.00005 0.00676987 1.00144 1.00078 0.99995
0.05 1.00117 0.0067762 1.00251 1.00187 1.00107
0.1 1.00438 0.00679644 1.00567 1.00505 1.00429
0.15 1.00924 0.00682785 1.01048 1.00987 1.00915
0.2 1.01539 0.00686808 1.0166 1.01599 1.01531
0.25 1.02253 0.00691504 1.02371 1.0231 1.02246

Table 7 Kneser’s differential equation: Computation of Cosinus solution for φ(t) = – 2
(t+1)2

t u2(t) exact EE with u2(T ) = cos(T ) Corrected EE TR u2(T ) = cos(T ) Corrected TR

0 1 0.00672286 1.0011 0.999267 1.0001
0.001 0.999 0.00671611 1.0001 0.998267 0.999101
0.002 0.998002 0.00670937 0.9991 0.997269 0.998102
0.003 0.997004 0.00670264 0.9981 0.996271 0.997105
0.004 0.996008 0.00669591 0.997102 0.995275 0.996108
0.005 0.995012 0.00668919 0.996104 0.994279 0.995113
0.006 0.994018 0.00668247 0.995108 0.993285 0.994118
0.007 0.993024 0.00667576 0.994112 0.992291 0.993125
0.008 0.992032 0.00666906 0.993118 0.991298 0.992132
0.009 0.99104 0.00666237 0.992124 0.990307 0.99114
0.01 0.990049 0.00665568 0.991131 0.989316 0.99015
0.05 0.951151 0.00639307 0.95216 0.950417 0.951252
0.1 0.904247 0.00607641 0.905175 0.90351 0.904347
0.15 0.858825 0.00576978 0.859682 0.858085 0.858926
0.2 0.814509 0.00547062 0.815303 0.813764 0.814611
0.25 0.770989 0.00517685 0.771727 0.770239 0.771092

computation starts at time T = 104 = 107 · h. ‘EE’ denotes the explicit Euler method, while
‘TR’ denotes the trapezoidal rule. In order to demonstrate the effect of choosing Y [h](n)
according to the method of discretization, we have computed all results twice: In the first
case, the backward computation was initialized with u1(T) = sin(T) and u2(T) = cos(T),
in the ‘Corrected EE’ and ‘Corrected TR’, the backward computation was initialized with
the corresponding column of Y [h](107) according to (29) and (30), respectively.

The tables clearly indicate that the corrected methods relying on initial values of the
discretized problem work much better. In particular, even the explicit Euler method with
these initial values yields very good results.

9 Conclusion and further research
As outlined in this paper the concept of �-subdominant solutions of linear systems of
differential and difference equations, respectively, has a strong impact to a lot of classical
mathematical problems. Our aim was to raise awareness of this problem not only from a
theoretical but also from a practical point of view. It is therefore to be expected that even
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more problems can be subjected to this context. As an example we mention the mathe-
matical representation of regular solutions of complex-valued singular linear systems of
differential equations. For the scalar case this problem has been addressed by Pincherle
[19] and Perron [35], who linked it to the computation of certain ordinary and generalized
continued fractions.

This paper is restricted to linear differential equations. But there is also a connection
with nonlinear equations. For example, if x(t) =

( z(t)
z′(t)

)
satisfies

x′(t) =

(
g(t) + f ′(t)

f (t) –f (t)h(t)
1 0

)
x(t), t ≥ t0,

that is, z′′(t) = (g(t) + f ′(t)
f (t) )z′(t) – f (t)h(t)z(t) for t ≥ t0, the function y(t) = – z′(t)

f (t)z(t) solves the
Ricatti differential equation

y′(t) = f (t)y2(t) + g(t)y(t) + h(t), t ≥ t0,

which means that our methods can also be applied to special cases of Ricatti differential (or
difference) equations. But this is not surprising since the continued-fraction-type scheme
in Theorem 5.2 reminds one of Ricatti difference equations.

Without further investigations we cannot principally exclude that our algorithm is sub-
ject to inherent numerical instability. For example, in the situation of Sect. 7, it is not
trivial to find Y (t) or �T (t) such that the strong criterion (5) or the weaker condition (6) is
met. A trivial exception is given for R(t) = 0 where we know the exact solutions. Numeri-
cal computations in this situation reveal that our algorithms might still be susceptible to
numerical instabilities. However, a profound study of these effects cannot be performed
before it is clarified how to choose �T (t) in this situation. Therefore, these questions need
further research. In order to solve these problems, it might make sense to consider the
adjoint systems of (3) and (4) (some considerations in the scalar case can be found in
[3, 11, 35]).
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