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Abstract
In this research, we probe the influences of two common types of stochastic noises in
the environment, namely, white noise and telephone noise, and put forward a
stochastic differential equation population model with Allee effects. We analyze some
asymptotic behaviors of the model, including extermination, persistence and
invariant measure. Some vital functions of white noise and telephone noise on these
asymptotic behaviors of the model are discovered and numerically expounded.
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1 Introduction
In the nature, species often forms various degrees of aggregations [17]. Aggregation may
enhance intraspecific competition, but this influence is often offset by the increased sur-
vival ability of the species, because aggregation could help the individual to protect itself,
discover resources, or adapt to the environmental stresses [17]. The degree of aggregation,
which varies with species and circumstances, promotes optimum population growth and
survival. A group often has an optimal population size at some intermediate level. Both
undercrowding and overcrowding have limitations [16]. This aggregation principle is the
famous Allee principle [16].

To mathematically depict the Allee principle, several models have been put forward (see,
e.g., [4, 5, 8]). Especially, Jacobs [5] has put forward the following deterministic differential
equation model and probed its stability:

dN(t)
dt

= N(t)
[

r +
ρNa(t)

Na(t) + θ
– βNb(t)

]
, (1)

where N(t) is the population abundance; r > 0, ρ > 0 and β > 0 measure the growth rate, the
positive influence of aggregation and the negative influence of overcrowding, respectively.
a > 0 and b > 0 are flexible constants to fit the real data.

Nevertheless, environmental noises should be thought over owing to their universal ex-
istence [15]. In fact, ignoring environmental noises may be one of the main causes for the
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vanishing of many species [10]. As a result, one should concentrate on model (1) with en-
vironmental noises to exploit the Allee principle more accurately. However, no findings of
model (1) with environmental noises have been reported.

The goal of this research is to put forward a stochastic form of model (1) and to probe
its dynamical behaviors. We put forward the stochastic differential equation model in
Sect. 2. Then we probe the extermination-persistence and invariant measure of the model
in Sects. 3 and 4, respectively. Afterwards, we discuss and numerically expound the im-
pacts of environmental noises on the properties of model (3) in Sect. 5. Finally, we sum-
marize the research in Sect. 6.

2 The stochastic model
Two common types of stochastic noises in the environment are white noise and telephone
noise [19]. White noise could influence one or more parameters in a population model
[15]; and the growth rate might be the most sensitive parameter [2]. There are several
means to bring white noise to the growth rate. One widely adopted means (see, e.g., [6, 7,
13]) is to presume that

r → r + �ω̇(t),

where ω̇(t) is white noise, namely, {ω(t)}t≥0 is a standard Brownian motion, � 2 represents
the intensity. Therefore, model (1) turns into

dN(t) = N(t)
[

r +
ρNa(t)

Na(t) + θ
– βNb(t)

]
dt + �N(t) dω(t). (2)

Now we move to telephone noise which can cause the changes of parameters [12]. Math-
ematically, one can recur to a right continuous irreducible Markov chain κ(t) with a finite
state space ϒ = {1, . . . , N∗} to describe telephone noise [20]. Adhering to this means, model
(2) turns into

dN(t) = N(t)
[

r
(
κ(t)

)
+

ρ(κ(t))Na(t)
Na(t) + θ (κ(t))

– β
(
κ(t)

)
Nb(t)

]
dt + �

(
κ(t)

)
N(t) dω(t), (3)

where mini∈ϒ {r(i),ρ(i), θ (i)} > 0. Model (3) could depict the reality better than model (2).
As a matter of fact, assume initially, κ(t) = i0, then model (3) is as follows:

dN(t) = N(t)
[

r(i0) +
ρ(i0)Na(t)

Na(t) + θ (i0)
– β(i0)Nb(t)

]
dt + � (i0)N(t) dω(t)

for a random time, until κ(t) jumps to a new state, i1, then model (3) is as follows:

dN(t) = N(t)
[

r(i1) +
ρ(i1)Na(t)

Na(t) + θ (i1)
– β(i1)Nb(t)

]
dt + � (i1)N(t) dω(t)

until κ(t) jumps again. Clearly, if κ(t) does not jump, then model (3) reduces to model (2).
As a result, model (3) could depict the random changes of the environment, which cannot
be described by model (2).
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3 Extinction and persistence
Let κ(t) be independent with ω(t), and let M = (mil)N∗×N∗ and φ = (φ1, . . . ,φN∗ ) represent
the generator and the invariant measure of κ(t), respectively. Then, for i �= l, mil > 0, and,
for i ∈ ϒ ,

∑
l∈ϒ mil = 0. Define

ςu = max
i∈ϒ

{
ς (i)

}
, ς l = min

i∈ϒ

{
ς (i)

}
.

For the scalar equation

dz(t) = f1
(
z(t),κ(t)

)
dt + f2

(
z(t),κ(t)

)
dω(t),

define an operator L as follows:

L�(z, i) = �z(z, i)f1(z, i) + f 2
2 (z, i)�zz(z, i)/2 +

∑
l∈ϒ

mil�(z, l),

where �(z, i) is a twice differentiable function of z.

Lemma 1 ([9], Lemma 2.3) Let υ ∈ R
N∗ be a vector, then φυ = 0 means that Mx = υ pos-

sesses a solution.

Lemma 2 For arbitrary (N(0),κ(0)) ∈ (0, +∞) × ϒ , model (3) has a unique solution
(N(t),κ(t)) ∈ (0, +∞) × ϒ for all t ≥ 0 a.s.

Proof The proof is standard and therefore is omitted (see, e.g., [19]). �

Now, let us probe the extermination of (3).

Theorem 1 If 
̄ + ρ̄ < 0, then limt→+∞ N(t) = 0, a.s., here


̄ =
∑
i∈ϒ

φi
(i), 
(i) = r(i) – � 2(i)/2, ρ̄ =
∑
i∈ϒ

φiρ(i).

Proof According to Itô’s formula [14],

ln N(t) – ln N(0)

=
∫ t

0

[



(
κ(s)

)
+ ρ

(
κ(s)

) Na(s)
Na(s) + θ (κ(s))

– β
(
κ(s)

)
Nb(s)

]
ds +

∫ t

0
�

(
κ(s)

)
dω(s)

≤
∫ t

0

[



(
κ(s)

)
+ ρ

(
κ(s)

)]
ds +

∫ t

0
�

(
κ(s)

)
dω(s).

(4)

Taking advantage of the ergodicity of φ leads to

lim
t→+∞ t–1

∫ t

0

[



(
κ(s)

)
+ ρ

(
κ(s)

)]
ds = 
̄ + ρ̄. (5)
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The strong number law of martingales [14] implies

lim
t→+∞ t–1

∫ t

0
�

(
κ(s)

)
dω(s) = 0, a.s. (6)

By (4), (5) and (6),

lim sup
t→+∞

t–1 ln N(t) ≤ 
̄ + ρ̄ < 0, a.s.

So limt→+∞ N(t) = 0, a.s. �

Theorem 2 If 
̄ > 0, then the species represented by Eq. (3) is stochastically persistent,
namely, for any ε ∈ (0, 1), one can seek a pair of constants �1 = �1(ε) ∈ (0, +∞) and �2 =
�2(ε) ∈ (0, +∞) such that, for arbitrary (N(0),κ(0)) ∈ (0, +∞) × ϒ ,

lim inf
t→+∞ P

{
N(t) ≤ �1

} ≥ 1 – ε (7)

and

lim inf
t→+∞ P

{
N(t) ≥ �2

} ≥ 1 – ε. (8)

Proof We address (7) to begin with. For a given ν ∈ (0, 1), define

�1(N) = Nν , N > 0.

By Itô’s formula, we have

d�1(N)

= νNν–1 dN + 0.5ν(ν – 1)Nν–2(dN)2

= νNν

[
r(κ) + 0.5(ν – 1)� 2(κ) + ρ(κ)

Na(t)
Na(t) + θ (κ)

– β(κ)Nb(t)
]

dt

+ ν� (κ)Nν dω(t)

≤ νNν

[
r(κ) + ρ(κ)

Na(t)
Na(t) + θ (κ)

– β(κ)Nb(t)
]

dt + ν� (κ)Nν dω(t).

As a result,

d
(
et�1(N)

)
= et�1(N) dt + et d�1(N)

≤ νetNν

[
1/ν + r(κ) + ρ(κ)

Na(t)
Na(t) + θ

– β(κ)Nb(t)
]

dt + etν� (κ)Nν dω(t)

≤ νetNν
[
1/ν + ru + ρu – β lNb(t)

]
dt + etν� (κ)Nν dω(t)

≤ �et dt + etν� (κ)Nν dω(t),
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here � ∈ (0, +∞) is a constant. Thereby,

lim sup
t→+∞

E
[
Nν(t)

] ≤ �.

Let �1 = (�/ε)1/ν , by Chebyshev’s inequality [14],

lim sup
t→+∞

P
{

N(t) > �1
}

= lim sup
t→+∞

P
{

Nν(t) > �ν
1
} ≤ lim sup

t→+∞
E

[
Nν(t)

]
/�ν

1 = ε.

Now we address (8). Let

�2(N) = 1/N2, N > 0.

Taking advantage of Itô’s formula yields

d�2(N) = –2N–3 dN + 3N–4(dN)2

= 2�2(N)
[
β(κ)Nb(t) – ρ(κ)

Na(t)
Na(t) + θ (κ)

– r(κ)
]

dt

+ 3� 2(κ)�2(N) dt – 2� (κ)�2(N) dω(t).

From Lemma 1 we know that Mx = –2
 + 
̄(2, . . . , 2)T possesses a solution which is rep-
resented as (ξ1, . . . , ξN∗ )T, here 
 = (
(1), . . . ,
(N∗))T. Accordingly, for each i ∈ ϒ ,

1
2

∑
l∈ϒ

milξl + 
(i) = 
̄. (9)

Fix a sufficiently small μ ∈ (0, 1) such that, for all i ∈ ϒ ,

1 – ξiμ > 0, 
̄ – μ� 2(i) +
ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl > 0.

It then follows from (9) that


(i) –
1

2(1 – ξiμ)μ
∑
l∈ϒ

mil(1 – ξlμ) = 
(i) +
1

2(1 – ξiμ)
∑
l∈ϒ

milξl

= 
̄ +
ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl.
(10)

Let

�3(N , i) = (1 – ξiμ)
(
1 + �2(N)

)μ.

By Itô’s formula,

E�3
(
N(t),κ(t)

)
= �3

(
N(0),κ(0)

)
+ E

∫ t

0
L�3

(
N(s),κ(s)

)
ds,
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here

L�3(N , i)

= 2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2
{(

1 + �2(N)
)

×
[
�2(N)

(
β(i)Nb – ρ(i)

Na

Na + θ (i)
– r(i) + 1.5� 2(i)

)]

+ (μ – 1)� 2(i)�2
2 (N)

}
+

(
1 + �2(N)

)μ
∑
l∈ϒ

mil(1 – ξlμ)

= 2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2
{

–
[

(i) – μ� 2(i)

]
�2

2 (N)

+
(
1.5� 2(i) – r(i)

)
�2(N) + β(i)Nb�2(N)

(
1 + �2(N)

)

– ρ(i)
Na

Na + θ (i)
�2(N)

(
1 + �2(N)

)}
+

(
1 + �2(N)

)μ
∑
l∈ϒ

mil(1 – ξlμ)

= 2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2

×
{

–
[

(i) – μ� 2(i) –

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ)
]
�2

2 (N)

+ β(i)�2–b/2
2 (N) +

[
1.5� 2(i) – r(i) +

1
(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ)
]
�2(N)

+ β(i)�1–b/2
2 (N) +

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ)

– ρ(i)
Na

Na + θ (i)
�2(N)

(
1 + �2(N)

)}

= 2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2
{

–
[

̄ – μ� 2(i) +

ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl

]
�2

2 (N)

+ β(i)�2–b/2
2 (N) +

[
1.5� 2(i) – r(i) +

1
(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ)
]
�2(N)

+ β(i)�1–b/2
2 (N) +

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ)

– ρ(i)
Na

Na + θ (i)
�2(N)

(
1 + �2(N)

)}
.

One can verify that

(
1 + �2(N)

)μ
∑
l∈ϒ

mil(1 – ξlμ)

=
[
2(1 – ξiμ)μ

(
1 + �2(N)

)μ–2][(
1 + �2(N)

)2
∑

l∈ϒ mil(1 – ξlμ)
2(1 – ξiμ)μ

]

=
[
2(1 – ξiμ)μ

(
1 + �2(N)

)μ–2][∑
l∈ϒ mil(1 – ξlμ)
2(1 – ξiμ)μ

�2
2 (N)
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+
∑

l∈ϒ mil(1 – ξlμ)
(1 – ξiμ)μ

�2(N) +
∑

l∈ϒ mil(1 – ξlμ)
2(1 – ξiμ)μ

]
.

Fix a sufficiently small γ > 0 such that, for all i ∈ ϒ ,


̄ – μ� 2(i) +
ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl –
γ

2μ
> 0. (11)

Let

�4(N , i) = eγ t�3(N , i).

By Itô’s formula,

E�4
(
N(t),μ(t)

)
= �3

(
N(0),μ(0)

)
+ E

∫ t

0
L

[
eγ s�3

(
N(s),μ(s)

)]
ds,

here

L
[
�4(N , i)

]
= eγ tL�3(N , i) + γ eγ t�3(N , i)

= eγ t2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2

×
{

–
[

̄ – μ� 2(i) –

γ

2μ
+

ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl

]
�2

2 (N)

+ β(i)�2–b/2
2 (N) +

[
1.5� 2(i) – r(i) +

1
(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

μ

]
�2(N)

+ β(i)�1–b/2
2 (N) +

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

2μ

– ρ(i)
Na

Na + θ (i)
�2(N)

(
1 + �2(N)

)}

≤ eγ t2(1 – ξiμ)μ
(
1 + �2(N)

)μ–2

×
{

–
[

̄ – μβ2

1 (i) –
γ

2μ
+

ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl

]
�2

2 (N)

+ β(i)�2–b/2
2 (N) +

[
1.5� 2(i) – r(i) +

1
(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

μ

]
�2(N)

+ β(i)�1–b/2
2 (N) +

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

2μ

}

=: eγ t(1 – ξiμ)�(N , i)

and

�(N , i)

= 2μ
(
1 + �2(N)

)μ–2
{

–
[

̄ – μβ2

1 (i) –
γ

2μ
+

ξiμ

2(1 – ξiμ)
∑
l∈ϒ

milξl

]
�2

2 (N)
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+ β(i)�2–b/2
2 (N) +

[
1.5� 2(i) – r(i) +

1
(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

μ

]
�2(N)

+ β(i)�1–b/2
2 (N) +

1
2(1 – ξiμ)μ

∑
l∈ϒ

mil(1 – ξlμ) +
γ

2μ

}
.

By (11),

�̃1 := sup
N>0,i∈ϒ

�(N , i) < +∞.

Hence

(1 – ξiμ)E
[
eγ t(1 + �2

(
N(t)

))μ] ≤ (1 – ξiμ)
(
1 + �2

(
N(0)

))μ + (1 – ξiμ)�̃1
(
eγ t – 1

)
/γ .

Therefore,

lim sup
t→+∞

E
[
�

μ
2
(
N(t)

)] ≤ lim sup
t→+∞

E
[(

1 + �2
(
N(t)

))μ] ≤ �̃1/θ =: �̃2.

That is to say

lim sup
t→+∞

E
[
N–2μ(t)

] ≤ �̃2.

Let �2 = (ε/�̃2)0.5/μ. Using the Chebyshev inequality,

P
{

N(t) < �2
}

= P
{

N–2μ(t) > �
–2μ
2

} ≤ E
[
N–2μ(t)

]
/�–2μ

2 = �
2μ
2 E

[
N–2μ(t)

]
.

Hence,

lim sup
t→+∞

P
{

N(t) < �2
} ≤ �

2μ
2 �̃2 = ε.

So

lim inf
t→+∞ P

{
N(t) ≥ �2

} ≥ 1 – ε. �

4 Stability
In the investigation of stochastic population models, the existence and uniqueness of an
invariant measure are key topics [18]. Now let us give a sufficient condition for the exis-
tence and uniqueness of an invariant measure of model (3).

Theorem 3 If 
̄ > 0, then model (3) has a unique invariant measure which is concentrated
on (0, +∞) × ϒ .

Proof Fix a sufficiently small σ > 0 such that

1 –
σ

2
ξu > 0, 
̄ –

σ

2
(
� 2)u +

σ

2
min
i∈ϒ

{
ξi(
̄ – 
(i))

1 – σξi/2

}
> 0, (12)
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where ξi satisfies (9). Let

�5(N , i) =
(

1 –
σξi

2

)
N–σ + N , N > 0.

Then

L�5(N , i)

= –σ

(
1 –

σξi

2

)
N–σ

(
r(i) + ρ(i)

Na

Na + θ (i)
– β(i)Nb

)

+
� 2(i)

2
σ (σ + 1)

(
1 –

σξi

2

)
N–σ

– σN–σ
∑
l∈ϒ

mil
ξl

2
+ N

(
r(i) + ρ(i)

Na

Na + θ (i)
– β(i)Nb

)

= –σ

(
1 –

σξi

2

)
N–σ

(
r(i) –

1
2
� 2(i) –

σ

2
� 2(i)

)

– σ

(
1 –

σξi

2

)
N–σ

(
1 +

σξi/2
1 – σξi/2

)∑
l∈ϒ

mil
ξl

2

– σ

(
1 –

σξi

2

)
N–σ

(
ρ(i)

Na

Na + θ (i)
– β(i)Nb

)

+ N
(

r(i) + ρ(i)
Na

Na + θ (i)
– β(i)Nb

)
)

= –σ

(
1 –

σξi

2

)
N–σ

(

(i) +

1
2

∑
l∈ϒ

milξl –
σ

2
� 2(i) +

σξi/2
1 – σξi/2

∑
l∈ϒ

mil
ξl

2

)

– σ

(
1 –

σξi

2

)
N–σ

(
ρ(i)

Na

Na + θ (i)
– β(i)Nb

)

+ N
(

r(i) + ρ(i)
Na

Na + θ (i)
– β(i)Nb

)
)

= –σ

(
1 –

σξi

2

)
N–σ

(

̄ –

σ

2
� 2(i) +

σξi/2
1 – σξi/2

(

̄ – 
(i)

))

– σ

(
1 –

σξi

2

)
N–σ

(
ρ(i)

Na

Na + θ (i)
– β(i)Nb

)

+ N
(

r(i) + ρ(i)
Na

Na + θ (i)
– β(i)Nb

)
).

It then follows from (12) that

lim
N→0

L�5(N , i)
–σ (1 – σξi/2)N–σ (
̄ – σ

2 � 2(i) + σξi/2
1–σξi/2 (
̄ – 
(i)))

= 1 (13)

and

lim
N→+∞

L�5(N , i)
–β(i)N1+b = 1. (14)
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By (13) and (14), there is a a1 ∈ (0, 1) such that, for N ≤ a1 or N ≥ 1/a1,

L�5(N , i) ≤ –1.

Let U = (a1, 1/a1), we have, for any (N , i) ∈ {(0, +∞)\U} × ϒ ,

L�5(N , i) ≤ –1.

Then the desired assertion follows from Theorem 3.13 and Theorem 4.3 in [21]. �

5 Discussions and simulations
In this section, let us see the impacts of environmental noises on the extermination, per-
sistence and invariant measure of model (3).

Based on Theorems 1–3, if φ, the distribution of κ(t), makes 
̄ > 0, then the hybrid sys-
tem (3) is persistent, and it has a unique invariant measure on (0, +∞) × ϒ ; if φ makes

̄ + ρ̄ < 0, then the species represented by (3) vanishes. To see these functions more di-
rectly, let N∗ = 2, then (3) has the two subsystems

dN(t) = N(t)
[

r(1) +
ρ(1)Na(t)

Na(t) + θ (1)
– β(1)Nb(t)

]
dt + � (1)N(t) dω(t) (15)

and

dN(t) = N(t)
[

r(2) +
ρ(2)Na(t)

Na(t) + θ (2)
– β(2)Nb(t)

]
dt + � (2)N(t) dω(t). (16)

Suppose that in state 1 and state 2, r(1) –� 2(1)/2 +ρ(1) < 0 and r(2) –� 2(2)/2 > 0, respec-
tively. Then the species represented by subsystem (15) vanishes (see Fig. 1); subsystem (16)
is persistent, and it owns a unique invariant measure on (0, +∞) (see Fig. 2). If φ makes∑2

i=1 φi[r(i) – � 2(i)/2 + ρ(i)] < 0, then the species represented by (3) vanishes (see Fig. 3);
If φ makes

∑2
i=1 φi[r(i) – � 2(i)/2] > 0, then (3) is persistent, and it owns a unique invariant

measure on (0, +∞) × {1, 2} (see Fig. 4).
Now we probe the functions of white noise. According to Theorem 1, if 
̄ + ρ̄ =∑
i∈ϒ φi[r(i) +ρ(i) –� 2(i)/2] < 0, then the species vanishes. Hence, sufficiently large white

noise on the growth rate could lead to the extermination of the species, which is in ac-
cord with the classical results [3]. To observe this more clearly, let see Fig. 5 where the
parameter values are the same as those in Fig. 4 except � 2(2) = 0.8. Figure 4 shows that
the species represented by (3) is persistent when � 2(2) = 0.2. However, when the value of
� 2(2) changes to 0.8, Fig. 5 shows that the species represented by (3) vanishes.

6 Conclusions
In the field of mathematical biology, it is meaningful to probe the functions of the envi-
ronmental noises on the features of population models [11]. In the present research, we
have developed a stochastic differential equation population model with Allee effects. We
have analyzed the extermination, persistence and invariant measure of the model.

The findings uncover that the features of the model are closely related to the environ-
mental noises. First, if the Markov chain κ(t) spends more time on the desired states
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Figure 1 A trajectory of subsystem (15) with r(1) = 0.2, ρ(1) = 0.1, � 2(1) = 0.8, a = 1, θ (1) = 0.1, β(1) = 0.05,
b = 2. This figure suggests that the species represented by subsystem (15) vanishes

Figure 2 Subsystem (16) with r(2) = 0.2, ρ(2) = 0.1, � 2(2) = 0.2, a = 1, θ (2) = 0.1, β(2) = 0.05, b = 2. (a) is a
trajectory of the system which suggests that the system is persistent; (b) is the density function of the solution
of the system t = 3000
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Figure 3 A trajectory of hybrid system (3) with parameter values given in Fig. 1 and Fig. 2, and φ = (0.8, 0.2).
This figure suggests that the species represented by hybrid system (3) vanishes

Figure 4 Hybrid system (16) with parameter values given in Fig. 1 and Fig. 2, and φ = (0.2, 0.8). (a) is a
trajectory of the system which suggests that the system is persistent; (b) is the density function of the solution
of the system t = 3000
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Figure 5 Hybrid system (16) with parameter values given in Fig. 4 except � 2(2) = 0.8. This figure suggests
that the species represented by system (16) vanishes

(the states where r(·) – � 2(·)/2 > 0), then the species is persistent (see Fig. 4); conversely,
if the Markov chain κ(t) spends more time on the undesired states (the states where
r(·) + ρ(·) – � 2(·)/2 < 0), then the species vanishes (see Fig. 3). Second, sufficiently large
white noise on the growth rate could lead to the extermination of the species (compare
Fig. 4 with Fig. 5).

Some issues are not analyzed in this research. First, the case that 
̄ + ρ̄ > 0 > 
̄ is not
settled yet. Second, model (3) presumes that white noise only affects r; the case that other
parameters are also affected by white noise is not settled yet. Finally, there are some sudden
environmental noises which can be described by Lévy jumps (see, e.g., [1]). It is interesting
to consider model (3) with Lévy jumps.
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