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Abstract
This paper investigates the optimal control for a class of nonlocal fractional evolution
equations of order γ ∈ (1, 2) in Banach spaces. An adequate definition of α-mild
solutions is obtained and the existence, uniqueness and continuous dependence of
α-mild solutions for the presented control system are also established. The existence
of optimal pairs of nonlocal fractional evolution systems is also demonstrated with a
view on the construction of the Lagrange problem. Finally, an example is
propounded for the presentation of optimal control.
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1 Introduction
Applied linguistic mathematics has the sub-branch of the theory of fractional differential
equations. Ordinary and differential equations involving fractional derivatives have un-
dergone substantial development in the present era as is evident from the monographs of
Podlubny [1], Kilbas et al. [2], Zhou [3, 4] and papers [5–9] and the references therein.

The development of mild solutions is becoming the imperative cynosure of the present
era for fractional differential and integro-differential equations of the order γ ∈ (1, 2).
Li et al. [10] vehemently claim that fractional evolution issues with Riemann–Liouville
derivative be handled by implementing the concept of resolvent family. Based on the con-
cept of the sectorial operator, Shu [11] minutely studied the existence and uniqueness of
mild solutions for nonlocal fractional differential equations. Through the implementa-
tion of analytic solution operators, Li [12] examined the regularity of moderate solutions
of fractional abstract Cauchy problems. In addition, Kian and Yamamoto [13] analyzed
the nature and estimation of solutions for semilinear fractional wave equations through
Strichartz’s value expansion process in bounded domains. Li et al. [14] put forward his
opinion on the existence and uniqueness of fractional abstract Cauchy problems with or-
der γ ∈ (1, 2). Besides, some other engaging and imperative controllability results on the
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fractional differential systems were addressed in [15] with order γ ∈ (0, 1) and in [16, 17]
with order γ ∈ (1, 2).

The optimal control of fractional evolution equations is of paramount importance and
it plays a pivotal role in various fields of science like engineering and economy and some
other branches: physics, biology, electronic media, and dynamic processes. By dint of the
pressing need of optimal control of fractional evolution equation in the sub-fields of the
theory and its applications become better understood. In 2010, Wang et al. [18] worked
on a class of fractional evolution equations, they studied the existence of a mild solu-
tion for semilinear fractional evolution equations and the optimal control equipped with
the α-norm. Wang et al. [19] extended their interesting results and worked on a group
of fractional delay nonlinear integro-differential controlled systems coupled with an ana-
lytic semigroup in Banach spaces. All this work was performed on the fractional derivative
of the order of (0, 1). For further study we refer to [20–23]. After these researches, some
scholars contributed work to extend the order with (1, 2). For example, the authors studied
the controlled time-fractional equation of Sobolev type of Caputo and Riemann–Liouville
fractional derivatives with the order of (1, 2), respectively [24]. The authors of [25] con-
sidered approximate controllability for a class of fractional stochastic wave equations and,
in [26], the existence of a mild solution and the compactness of a set of mild solutions to
a nonlocal problem of fractional evolution inclusions are established. Very recent studies
with new results on the controllability of fractional evolution systems with order γ ∈ (1, 2)
have been presented in [27–31]. This paper investigates some motivating results of mild
solutions to fractional evolution systems in Banach spaces.

In this research paper, the research that used alpha norms of cosine families on opera-
tors and found new results one makes good use of these outcomes for the solution of the
present research paper. Further details of alpha norms of cosine families can be found in
[32].

Consider the nonlinear fractional evolution system with nonlocal condition as follows:

⎧
⎨

⎩

c
0Dγ

t Ew(t) + Gw(t) = a(t)J(t, w(t)) + K(t)v(t), t ∈ � = [0, S],

w(0) = w0 + g(w), w′(0) = w1,
(1)

where c
0Dγ

t is the Caputo fractional derivative of order γ ∈ (1, 2), the operator –GE–1 :
D(GE–1) → U is the infinitesimal generator of strongly continuous cosine family {C(t)}t≥0

on a separable reflexive Banach space U . The function J has a Uα-value, w(t) : [0, S] → Uα

where Uα = D(Gα
b E–1) is a Banach space having the norm ‖w‖α = ‖Gα

b w‖ for w ∈ U , v
is taking values from a separable reflexive Banach space V , K is a linear operator and
maps V into U , a ∈ Lp1 ([0, S], R+), p1 > 1, g : C([0, S]; U) → U , w0, w1 are elements of the
space U . G and E are linear operators. G is closed, D(E) ⊂ D(G). E is bijective. The linear
operator E–1 : V → D(E) ⊂ U is compact (which implies that E–1 is bounded). It implies
that E is closed: since E–1 is closed and injective, its inverse is also closed. We obtain the
boundedness of linear operators GE–1 : Y → Y . Consequently –GE–1 generates a cosine
family {C(t), t ≥ 0}. In considering the case of α ∈ (0, 1), we know from the references
that there is a similar representation of mild solutions if we have the initial value x1 =
0 for the case of α ∈ (1, 2). However, the biggest difference is that the operator –GE–1

(typically the Laplacian operator) generates a C0-semigroup, and one can use the method
of semigroup theory to obtain some well-known results for the case of α ∈ (0, 1), instead
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of cosine families. Furthermore, if α tends to 1, the method of semigroup theory can be
also used to deal with first-order evolution problems; if α tends to 2, we can directly solve
an evolution problem by using the concept of cosine families. Thus, the studied evolution
problem in Eq. (1) is more different from the case of α ∈ (0, 1], and it is valuable to consider
the existence of Eq. (1).

As far as the real-life application of the studied system is concerned, the first of concern
is food technology. The problem is to determine the time-dependent optimal temperature
inside a sterilizing chamber for canned foods. The industrial sterilization of canned foods
is a process in which there usually occurs a degradation of nutrients and a deterioration
of qualitative properties due to the temperature to which the food is overexposed in or-
der to ensure destroying pathogenic microorganisms. We face this problem using optimal
control methods. Linear constraints on the control and nonlinear ones on the state will
appear as a consequence of the technological restrictions and the requirements of quality
and economy. Besides an existence result for the optimal control and an optimality sys-
tem, we give numerical results for some real industrial examples. They show that present
industrial sterilization processes can be improved in terms of saving energy and nutrient
retention. The second problem is from environmental engineering. We deal with the de-
sign and management of wastewater treatment systems discharging polluting effluent into
an aquatic medium. This problem is formulated as a point-wise optimal control problem
with state and control constraints. The main difficulties arise from the lack of regularity of
the source term in the state system and the point-wise constraints on the state variables.
We develop a theoretical analysis of the problem, propose an algorithm for its numerical
resolution and give results for a realistic problem. The third problem is related to acoustic
engineering, more precisely, to noise reduction by active control methods. During the last
two decades, there has been an higher-growing level of interest in the control of sound
by active techniques. Many of the physical principles involved have long ago been estab-
lished, but the technological means for the successful implementation of active noise con-
trol, namely the fast-digital signal processors (DSP), have only recently become available.
Noise reduction is based on the destructive interference of waves. Accordingly, the control
consists of a (secondary) source of noise the properties of which have to be determined
optimally to cancel the original undesired (primary) noise. Many optimization problems
in science and engineering can be described by optimal control problems such as the con-
trol of a spacecraft or aircraft, of a chemical reaction, or of an industrial robot. Thereby,
the consideration of different constraints is very important when realistic models are to
be solved.

In this paper, we investigate the optimal control for the fractional evolution system (1)
with nonlocal conditions. The research has been managed as follows below. Section 2
refers to a variety of notations and beneficial notions for cosine family and fractional cal-
culus. In Sect. 3, this study is based on a changed hypothesis and, furthermore, it works
on a mild solution for the system (1) which is correlated with the probability density func-
tion and cosine families. In operator families, this paper will introduce an operator that
is different from some previously mentioned papers. Before going on to the next step, it
is mentionable that this operator is linear bounded. Furthermore, the study proves the
system is mildly solvable and mild solution is unique along with the continuous depen-
dence of data in Sect. 4. We will prove the existence of fractional optimal controls for the
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Lagrange problem in Sect. 5. Finally, an example is propounded for the presentation of
optimal control.

2 Preliminaries
Let U and V be two separable reflexive Banach spaces, equipped with the norms | · | and
| · |v, respectively. L(U , V ) illustrates the space of all bounded linear operators from U to V
equipped with the norm ‖ · ‖L(U ,V ). In particular, when U = V , we set L(U , V ) = L(U) and
‖·‖L(U ,V ) = ‖·‖L(U). Typically, we put forward the fractional power operator Gα

b (0 < α < 1
2 )

(see [32]) having a dense domain D(Gα
b ) which is provided with graph norm ‖ · ‖α to be a

fractional power space Uα . Then Uβ ↪→ Uα for 0 < α < β < 1
2 . It is easy to see that Uα is

separable from the separability of U . Moreover, Gα
b has the following basic properties.

For S > 0, denote � = [0, S]. Let C(�, Uα) be the Banach space of continuous functions
from � to Uα with the usual sup-norm. For brevity we denote C(�, Uα) simply by C0,S,α

and its norm is given by ‖ · ‖0,S,α . We shall also make use of ‖J‖Lp(�,R+) to denote the
Lp(�, R+) norm of J whenever J ∈ Lp(�, R+) for some p with 1 < p < ∞. We denote the
resolvent set of G by ρ(G) and the resolvent of G by R(μ, G) = (μI + GE–1)–1 ∈ L(U).

Recalling the definitions and properties of fractional calculus, we refer to [1, 2].
The fractional integral of order γ ∈ R+ with the lower limit zero for a function u is

defined as

Iγ
0+w(t) = (gγ ∗ w)(t) =

1
�(γ )

∫ t

0
(t – s)γ –1w(s) ds,

provided the right-hand side is point-wise defined on [0,∞), where � is the Euler gamma
function, the symbol ∗ denotes convolution,

gγ (t) =
tγ –1

�(γ )
, if t > 0; gγ (t) = 0, if t ≤ 0.

At the origin, the Dirac measure is denoted by g0(t) = δ(t), when γ = 0.
The Riemann–Liouville fractional derivative of order γ ∈R+ for a function w : [0,∞) →

R is defined by

L
0Dγ

t w(t) =
dn

dtn (gn–γ ∗ w)(t), t ≥ 0, n – 1 < γ < n,

and the Caputo derivative of order γ ∈R+ for a function w : [0,∞) → R is defined by

c
0Dγ

t w(t) = L
0Dγ

t

(

w(t) –
n–1∑

k=0

w(k)(0)
k!

tk

)

, t ≥ 0, n – 1 < γ < n.

Lemma 2.1 (See [19, Lemma 2.8]) A measurable function X : � → U is a Bochner integral
if ‖X‖ is Lebesgue integrable.

Lemma 2.2 (See [33, Lemma 1.2]) Suppose that for w ∈ C0,S,α we have the following in-
equalities:

∥
∥w(t)

∥
∥

α
≤ c + d

∫ t

0
(t – y)z–1∥∥w(y)

∥
∥

α
dy, t ∈ �,
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with constant c, d ≥ 0. Then there exists a constant M∗ > 0 independent of c such that

∥
∥w(t)

∥
∥

α
≤ M∗(c), for all t ∈ �.

Lemma 2.3 (See [34, Problem 23.9]) For each ϕ ∈ Lp(�, U) with 1 ≤ p < +∞, we have

lim
h→0

∫ S

0

∥
∥ϕ(t + h) – ϕ(t)

∥
∥p dt = 0,

where ϕ(y) = 0 for y not belonging to �.

We briefly examine the concept and few properties of the cosine family. One can find
more information in [35–37]. We use the following definition of the cosine family.

Definition 2.1 A one-parameter family {C(t)}t≥0 of bounded linear operators mapping
the Banach space U into itself is called a strongly continuous cosine family if and only if
C(0) = I (the identity operator), C(s + t) + C(s – t) = 2C(s)C(t) for all s, t ≥ 0 and C(t)x is
continuous in t on [0,∞) for each fixed point x ∈ U .

The strongly continuous sine family {S(t)}t≥0 associated with the cosine family is defined
by

S(t)x =
∫ t

0
C(s)x ds, x ∈ U , t ≥ 0.

Assumption 2.1 ([32, Assumption 1, p. 2]) Let b > ω. Then S(t)U ∈ D(G
1
2
b ), and G

1
2
b S(t)

is a strongly continuous function of the argument t on –∞ < t < +∞

Theorem 2.4 ([32, Lemma (1–3), Theorem 1]) For any α ∈ [0, 1
2 ] there exists Cα > 0 such

that, for every t ≥ 0, ‖S(t)‖α = ‖Gα
bS(t)‖ ≤ Cα(1 + t)eωt .

3 Existence and uniqueness
In this section, the existence and uniqueness of the system (1) will be proved. For this
purpose, we suppose that GE–1 is the infinitesimal generator of a strongly continuous co-
sine family of uniformly bounded linear operators {C(t)}t≥0 in a separable reflexive Banach
space U , that is, there exists M ≥ 1 such that ‖C(t)‖L(U) ≤ M, for t ≥ 0. For convenience,
we also set z = γ /2 with γ ∈ (1, 2).

We make use of the following assumptions:
(H1) The function J : � × Uα → U satisfies:

(i) for each w ∈ Uα , t → J(t, w(t)) is measurable;
(ii) for arbitrary ζ1, ζ2 ∈ Uα satisfying ‖ζ1‖α ,‖ζ2‖α ≤ σ , there exists a constant

LJ (σ ) > 0 such that

∥
∥J(t, ζ1) – J(t, ζ2)

∥
∥ ≤ LJ (σ )

(‖ζ1 – ζ2‖α

)
, for all t ∈ �;

(iii) there exists a constant CJ > 0 such that

‖J(t, ζ‖ ≤ CJ
(
1 + ‖ζ‖α

)
, for all ζ ∈ Uαt ∈ �.
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(H2) g : C(�, Uα) → U is
(i) for arbitrary ζ1, ζ2 ∈ Uα satisfying ‖ζ1‖α ,‖ζ2‖α ≤ σ , there exists a constant

Lg(σ ) > 0 such that

∥
∥g(t, ζ1) – g(t, ζ2)

∥
∥ ≤ Lg(σ )‖ζ1 – ζ2‖C for all t ∈ �;

(ii) continuous and compact function, and there exist constant Ng1, Ng2 such that

∥
∥g(ζ )

∥
∥ ≤ Ng1‖ζ‖C + Ng2 for ζ ∈ C

(
�, Uα

)
.

(H3) K ∈ Lb(Lp(�, V ), Lp(�, U)), 1 < p < ∞.
(H4) Pad = Lp(�, V ).
By virtue of the method of [2], one can find that Eq. (1) has the following representation:

Ew(t) = E
(
w0 + g(w)

)
+ Ew1t

+
1

�(γ )

∫ t

0
(t – y)γ –1[–Gw(y) + a(y)J

(
y, w(y)

)
+ K(y)v(y)

]
dy, t ∈ �, (2)

provided the right-hand side of the above equation holds.
In the sequel, we will use the probability density function ϑz(θ ) defined on ]0,∞[ as

ϑz(θ ) =
1

zθ (1+1/z) �z
(
θ–1/z) ≥ 0, z ∈ (0, 1),

�z(θ ) =
1
π

∞∑

n=1

(–1)n–1(θ )–zn–1 �(nz + 1)
n!

sin(nπz). (3)

Lemma 3.1 If Eq. (2) holds, then for t ∈ �, z = γ /2

w(t) = SE(t)E
(
w0 + g(w)

)
+ χE(t)Ew1 +

∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w(y)

)
dy (4)

+
∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy, t ∈ �,

where

SE(t) =
∫ ∞

0
E–1ϑz(θ )C

(
tzθ

)
dθ ,

χE(t) =
∫ t

0
SE(y) dy,

PE(t) = z
∫ ∞

0
E–1θϑz(θ )S

(
tzθ

)
dθ .

Proof For μ > 0. Applying the Laplace transform to (2), we get

El(μ) =
1
μ

E
(
w0 + g(w)

)
+

1
μ2 Ew1 –

1
μγ

Gl(μ) +
1

μγ
m(μ) +

1
μγ

n(μ),
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where

l(μ) =
∫ ∞

0
e–μyw(y) dy, m(μ) =

∫ ∞

0
e–μya(y)J

(
y, w(y)

)
dy, and

n(μ) =
∫ ∞

0
e–μyK(y)v(y) dy,

this implies

E
(
μγ I + GE–1)l(μ) = μγ –1E

(
w0 + g(w)

)
+ μγ –2Ew1 + m(μ) + n(μ).

Therefore, by the relationship between resolvent and cosine function, i.e., for Reμ > 0,

μR
(
μ2; G

)
x =

∫ ∞

0
E–1e–μtC(t)x dt, R

(
μ2; A

)
x =

∫ ∞

0
E–1e–μtS(t)x dt, x ∈ U ,

we first have

El(μ) = μγ –1(μγ I + GE–1)–1E
(
w0 + g(w)

)
+ μγ –2(μγ I + GE–1)–1Ew1

+
(
μγ I + GE–1)–1m(μ) +

(
μγ I + GE–1)–1n(μ)

= μ
γ
2 –1

∫ ∞

0
E–1e–μ

γ
2 yC(y)E

(
w0 + g(w)

)
dy + μ–1μ

γ
2 –1

∫ ∞

0
E–1e–μ

γ
2 yC(y)Ew1 dy

+
∫ ∞

0
E–1e–μ

γ
2 yS(y)m(μ) dy +

∫ ∞

0
E–1e–μ

γ
2 yS(y)n(μ) dy.

As z = γ /2 ∈ (1/2, 1), so we take

l(μ) = μz–1
∫ ∞

0
E–1e–μzyC(y)E

(
w0 + g(w)

)
dy + μ–1μz–1

∫ ∞

0
E–1e–μzyC(y)Ew1 dy

+
∫ ∞

0
E–1e–μzyS(y)m(μ) dy +

∫ ∞

0
E–1e–μzyS(y)n(μ) dy. (5)

Now consider the one-sided probability density function given in (3) whose Laplace trans-
form is

∫ ∞

0
e–μθ�z(θ ) dθ = e–μz

, z ∈ ]0, 1[, (6)

from (5) and using (6), we have

μz–1
∫ ∞

0
E–1e–μzyC(y)E

(
w0 + g(w)

)
dy

=
∫ ∞

0
μz–1E–1e–(μt)zC

(
tz)ztz–1E

(
w0 + g(w)

)
dt

=
∫ ∞

0
z(μt)z–1E–1e–(μt)zC

(
tz)E

(
w0 + g(w)

)
dt

=
∫ ∞

0

–1
μ

d
dt

E–1(e–(μt)z)C
(
tz)E

(
w0 + g(w)

)
dt
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=
∫ ∞

0

∫ ∞

0

–1
μ

d
dt

(
e–μtθ�z(θ )

)
E–1C

(
tz)E

(
w0 + g(w)

)
dθ dt

=
∫ ∞

0
e–μt

∫ ∞

0
E–1�z(θ )C

(
tz

θ z

)

E
(
w0 + g(w)

)
dθ dt

=
∫ ∞

0
e–μt

∫ ∞

0
E–1 1

zθ (1+1/z) �z
(
θ–1/z)C

(
tzθ

)
E
(
w0 + g(w)

)
dθ dt

=
∫ ∞

0
e–μt

∫ ∞

0
E–1ϑz(θ )C

(
tzθ

)
E
(
w0 + g(w)

)
dθ dt

=
∫ ∞

0
e–μt[SE(t)E

(
w0 + g(w)

)]
dt

= L
[
SE(t)E

(
w0 + g(w)

)]
(μ), (7)

where L stands for the Laplace transform. Furthermore, since L[g1(t)](μ) = μ–1, by the
Laplace convolution theorem, one can get

μ–1μz–1
∫ ∞

0
E–1e–μzyC(y)Ew1 dy = L

[
g1(x)

]
(μ).L

[
SE(t)Ew1

]
(μ)

= L
[
(g1 ∗ SE)(t)Ew1

]
(μ). (8)

Similarly

∫ ∞

0
E–1e–μzyS(y)m(μ) dy

=
∫ ∞

0
e–μt

[

z
∫ t

0

∫ ∞

0
E–1�z(θ )S

(
(t – y)z

θ z

)

a(y)J
(
y, w(y)

) (t – y)z–1

θ z dθ dy
]

dt

= L
[

z
∫ t

0
(t – y)z–1

∫ ∞

0
E–1�z(θ )S

(
(t – y)z

θ z

)

a(y)J
(
y, w(y)

) 1
θ z dθ dy

]

(μ)

= L
[∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w(y)

)
dy

]

(μ). (9)

And also similarly

∫ ∞

0
E–1e–μzyS(y)n(μ) dy = L

[∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy

]

(μ). (10)

Together with Eqs. (7), (8), (9) and (10), we get the desired result. Thus one accomplishes
the proof. �

Definition 3.1 For any v ∈ Lp(�, V ) (1 ≤ p ≤ ∞), if there exists w ∈ C(�, Uα) that satisfies
for t ∈ �

w(t) = SE(t)E
(
w0 + g(w)

)
+ χE(t)Ew1 +

∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w(y)

)
dy (11)

+
∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy,

then the system (1) is said to have a mild solution with respect to v on [0, S].



Niazi et al. Advances in Difference Equations        (2021) 2021:142 Page 9 of 22

Lemma 3.2 There exist an operatorSE(·), χE(·) andPE(·) endowed with the following qual-
ities:

(i) For any fixed t ≥ 0, SE(t), χE(t) and PE(t) are linear and bounded operators, i.e., for
any w ∈ U , it follows that

∥
∥SE(t)w

∥
∥ ≤ M

∥
∥E–1∥∥‖w‖,

∥
∥χE(t)w

∥
∥ ≤ Mt

∥
∥E–1∥∥‖w‖,

∥
∥PE(t)w

∥
∥ ≤ M‖E–1‖

�(2z)
tz‖w‖.

{SE(t)}t≥0, {χE(t)}t≥0 and {PE(t)}t≥0 are strongly continuous.
(ii) {SE(t), t ≥ 0}, {χE(t), t ≥ 0} and {PE(t), t ≥ 0}, are strongly continuous.

(iii) For every t > 0, SE(t), χE(t) and PE(t) are also compact operators if S(t) is compact.
(iv) For any w ∈ U , β ∈ (0, 1

2 ) and α ∈ (0, 1
2 )

GbPE(t)w = G1–β

b PE(t)Gβ

b w, t ∈ �,

∥
∥Gα

bPE(t)
∥
∥ ≤ Cα

∥
∥E–1∥∥

(
1

�(z)
+

1
�(2z)

tz
)

‖w‖, 0 < t ≤ S.

(v) For any fixed t ≥ 0 and w ∈ Uα , ‖SE(t)w‖α ≤ M‖E–1‖‖w‖α ,
‖χE(t)w‖α ≤ Mt‖E–1‖‖w‖α and ‖PE(t)w‖α ≤ M‖E–1‖

�(2z) tz‖w‖α .

Proof (i) For any fixed t ≥ 0. Since E–1 and C(t) are linear operators, we can easily see that
SE(t), χE(t) and PE(t) are also linear operators.

From [27], for any w ∈ U and fixed t ≥ 0,

∥
∥SE(t)w

∥
∥ ≤

∫ ∞

0
ϑz(θ )

∥
∥E–1∥∥

∥
∥C

(
tzθ

)
w

∥
∥dθ ≤ M

∥
∥E–1∥∥‖w‖,

from which one deduces immediately that

∥
∥χE(t)w

∥
∥ ≤ Mt

∥
∥E–1∥∥‖w‖

and we have

∥
∥PE(t)w

∥
∥ ≤

∫ ∞

0
zθϑz(θ )

∥
∥E–1∥∥

∥
∥S

(
tzθ

)
w

∥
∥dθ

≤
∫ ∞

0
zθϑz(θ )

∫ tzθ

0

∥
∥C(T )w

∥
∥dT dθ

≤ Mz
∥
∥E–1∥∥‖w‖tz

∫ ∞

0
θ2ϑz(θ ) dθ =

M‖E–1‖
�(2z)

‖w‖tz.

(ii) For every w ∈ U , since {C(t)}t∈R is strongly continuous, i.e., for any ε > 0 and t, y ∈R,
there exists δ > 0 with |t –y| < δ, such that ‖C(t)w–C(y)w‖ < ε, we thus get, for any t′, t′′ ≥ 0
with |t′′ – t′| < δ,

∥
∥SE

(
t′′)w – SE

(
t′)w

∥
∥ ≤

∫ ∞

0
E–1ϑz(θ )

∥
∥
(
C
((

t′′)z
θ
)

– C
((

t′)z
θ
))

w
∥
∥dθ < ε,
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which means that ‖SE(t′′)w – SE(t′)w‖ → 0 as t′′ → t′. Furthermore,

∥
∥χE

(
t′′)w – χE

(
t′)w

∥
∥ =

∥
∥
∥
∥

∫ t′′

t′
Cz(y)w dy

∥
∥
∥
∥ ≤ M‖w‖∥∥E–1∥∥

∣
∣t′′ – t′∣∣ → 0, as t′′ → t′,

and finally we get

∥
∥PE

(
t′′)w – PE

(
t′)w

∥
∥ ≤

∫ ∞

0
qθE–1ϑz(θ )

∥
∥
(
S

((
t′′)z

θ
)

– S
((

t′)z
θ
))

w
∥
∥dθ

≤ M
�(2z)

‖w‖∥∥E–1∥∥
∣
∣
(
t′′)z –

(
t′)z∣∣ → 0, as t′′ → t′.

(iii) Already [38] SE(t) and PE(t) are compact. Now for χE(t) for each positive constant
k, set {w ∈ V : ‖w‖ ≤ k}. Then Vk is clearly a bounded subset of V . We prove that V (t) :=
{∫ t

0
∫ ∞

0 E–1ϑz(θ )C(yzθ )w dθ dy, w ∈ Vk} is relatively compact in V for any positive constant
k and t ≥ 0. From (i) we know χ1(t) : V → V are also linear and bounded. So they map Vk

into a bounded subset of V . Then V (t) = E–1χ1(t)(Vk) is relatively compact in V for any
K > 0 and t ≥ 0 due to the compactness of E–1 : V → U .

(iv) For any w ∈ U , β ∈ (0, 1
2 ), α ∈ (0, 1

2 ], we have

GbPE(t)w = z
∫ ∞

0
E–1θϑz(θ )GbS

(
tzθ

)
w dθ

= z
∫ ∞

0
E–1θϑz(θ )G1–β

b S
(
tzθ

)
Gβ

b w dθ

= G1–β

b PE(t)Gβ

b w,

∥
∥Gα

bPE(t)w
∥
∥ =

∥
∥
∥
∥z

∫ ∞

0
E–1θϑz(θ )Gα

bS
(
tzθ

)
w dθ

∥
∥
∥
∥

≤ ‖z‖∥∥E–1∥∥‖w‖
∫ ∞

0
θϑz(θ )

∥
∥Gα

bS
(
tzθ

)‖dθ
∥
∥,

by Theorem 2.4

∥
∥Gα

bPE(t)w
∥
∥ ≤ z

∥
∥E–1∥∥‖w‖

∫ ∞

0
θϑz(θ )Cα

(
1 + tzθ

)
dθ

≤ zCα

∥
∥E–1∥∥

(∫ ∞

0
θϑz(θ ) dθ + tz

∫ ∞

0
θ2ϑz(θ ) dθ

)

‖w‖

≤ Cα

∥
∥E–1∥∥

(
1

�(z)
+

1
�(2z)

tz
)

‖w‖.

(v) For fixed t ≥ 0 and w ∈ Uα

∥
∥SE(t)w

∥
∥

α
≤

∫ ∞

0

∥
∥E–1∥∥ϑz(θ )

∥
∥Gα

bC
(
tzθ

)
w

∥
∥dθ

≤
∫ ∞

0

∥
∥E–1∥∥ϑz(θ )

∥
∥C

(
tzθ

)∥
∥
∥
∥Gα

b w
∥
∥dθ

≤ M
∥
∥E–1∥∥

∫ ∞

0
ϑz(θ )

∥
∥Gα

b w
∥
∥dθ

≤ M
∥
∥E–1∥∥‖w‖α .
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Now

∥
∥χE(t)w

∥
∥

α
≤

∫ t

0

∫ ∞

0

∥
∥E–1∥∥ϑz(θ )

∥
∥Gα

bC
(
yzθ

)
w

∥
∥dθ dy

≤
∫ t

0

∫ ∞

0

∥
∥E–1∥∥ϑz(θ )

∥
∥C

(
yzθ

)∥
∥
∥
∥Gα

b w
∥
∥dθ dy

≤ M
∥
∥E–1∥∥

∫ t

o

∫ ∞

0
ϑz(θ )

∥
∥Gα

b w
∥
∥dθ dy

≤ Mt
∥
∥E–1∥∥‖w‖α

and similarly we have

∥
∥PE(t)w

∥
∥

α
≤ z

∫ ∞

0

∥
∥E–1∥∥θϑz(θ )

∥
∥Gα

bS
(
tzθ

)
w

∥
∥dθ

≤ z
∫ ∞

0

∥
∥E–1∥∥θϑz(θ )

∥
∥
∥
∥Gα

b

∫ tzθ

0
C(T ) dT w

∥
∥
∥
∥dθ

≤ z
∫ ∞

0

∥
∥E–1∥∥θϑz(θ )

∥
∥
∥
∥

∫ tzθ

0
C(T ) dT

∥
∥
∥
∥

∥
∥Gα

b w
∥
∥dθ

≤ zM
∥
∥E–1∥∥tz

∫ ∞

0
θϑz(θ )

∥
∥Gα

b w
∥
∥dθ

≤ M‖E–1‖
�(2z)

tz‖w‖α .

Thus one accomplishes the proof. �

Theorem 3.3 Assume that (H1), (H2), (H3) and (H4) hold. Then, for each v ∈ Pad , the
system (1) is uniquely and mildly solvable on the closed interval [0, S] with respect to v.

Proof (I) Local existence.
Let S1 ≤ S and C0,S1,α := C([0, S1], Uα) be provided with the usual sup-norm and set

B(λ, S1) =
{

h ∈ C0,S1,α : max
y∈[0,S1]

∥
∥h(y) –

(
w0 + g(w)

)
– yw1

∥
∥ ≤ λ

}
; λ ≥ 0.

Then B(λ, S1) ⊆ C0,S1,α is a closed convex subset of C0,S1,α . In relation to (H1)(i) and (H1)(ii),
it can be easily seen that J(y, h(y)) is a measurable function on [0, S1]. Let h ∈ B(λ, S1), there
exists a constant σ ∗ := ‖Gα–β

b ‖‖w0‖ + ‖Gα–β

b ‖‖w1‖S1 + λ such that

‖h‖0,S1,α ≤ σ ∗.

Using (H1)(iii), for t ∈ [0, S1], we have

∥
∥J

(
y, h(y)

)∥
∥ ≤ CJ

(
1 +

∥
∥h(y)

∥
∥

0,S1,α

) ≤ CJ
(
1 + σ ∗) ≡ K for t ∈ [0, S1]. (12)
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By the use of Lemma 3.2(iv), the Hölder inequality and (12) we obtain

∫ t

0
(t – y)z–1∥∥PE(t – y)a(y)J

(
y, h(y)

)∥
∥

α
dy

≤ KCα

∥
∥E–1∥∥

(
1

�(z)
S

z– 1
p1

1 +
1

�(2z)
S

2z– 1
p1

1

)

‖a‖LP1 [0,b]

Thus, |(t – y)z–1PE(t – y)a(y)J(y, h(y))| is Bochner integrable with respect to y ∈ [0, t] for all
t ∈ [0, S1].

On the other hand, by Lemma 3.2(iv) and the Hölder inequality, we see that

∫ t

0
(t – y)z–1∥∥PE(t – y)K(y)v(y)

∥
∥

α
dy ≤ Cα

∥
∥E–1∥∥

(
1

�(z)
S

z– 1
p

1 +
1

�(2z)
S

2z– 1
p

1

)

‖Kv‖LP�.

Thus (t – y)z–1PE(t – y)K(y)v(y) is also Bochner integrable with respect to y ∈ [0, t] for all
t ∈ [0, S1]. Now for 0 ≤ t ≤ S1, we define F : B(λ, S1) → C0,S1,α as follows:

(Fh)(t) = SE(t)E
(
w0 + g(w)

)
+ χE(t)Ew1 +

∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, h(y)

)
dy

+
∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy.

By the properties of Sz(·), χz(·), Pz(·) and (H1), one can prove that F is a contraction map
on B(λ, S1) with suitable chosen S1 > 0. Indeed, for t ∈ [0, S1], the following inequality can
easily be obtained:

∥
∥(Fh)(t) –

(
w0 + g(w)

)
– tw1

∥
∥

α

≤ ∥
∥SE(t)E

(
w0 + g(w)

)
–

(
w0 + g(w)

)∥
∥

α
+

∥
∥χE(t)Ew1 – tw1

∥
∥

α

+
∫ t

0
(t – y)z–1∥∥PE(t – y)a(y)J

(
y, h(y)

)∥
∥

α
dy

+
∫ t

0
(t – y)z–1∥∥PE(t – y)K(y)v(y)

∥
∥

α
dy (13)

≤ ∥
∥Gα–μ

∥
∥
∥
∥SE(t)EGμ

(
w0 + g(w)

)
– Gμ

(
w0 + g(w)

)∥
∥

+
∥
∥Gα–μ

∥
∥
∥
∥χE(t)EGμw1 – Gμtw1

∥
∥

+ KCα

∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p1 +
1

�(2z)
S

2z– 1
p1

1

)

‖a‖LP1 [0,b]

+ Cα

∥
∥E–1∥∥

(
1

�(z)
S

z– 1
p

1 +
1

�(2z)
S

2z– 1
p

1

)

‖Kv‖LP�.

Since {SE(t)}t≥0 and {χE(t)}t≥0 are strongly continuous operators in U , we can select ε = λ
3

such that

∥
∥SE(t)EGμ

(
w0 + g(w)

)
– Gμ

(
w0 + g(w)

)∥
∥ ≤ λ

3‖Gα–μ‖ and

∥
∥χE(t)EGμw1 – Gμtw1

∥
∥ ≤ λ

3‖Gα–μ‖ .
(14)
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Let

S11 = min

{
λ

3
,
(

�(z)�(2z)
3Cα‖E–1‖[(�(z) + �(2z))[K‖a‖LP1 [0,b] + ‖Kv‖Lp�]]

) p
2zp–1

}

.

Then, for all t ∈ [0, S11], we obtain from (13) and (14)

∥
∥(Fh)(t) –

(
w0 + g(w)

)
– tw1

∥
∥ ≤ λ.

Hence

B
(
B(λ, S1)

) ⊆ B(λ, S1).

Let h1, h2 ∈ B(λ, S1) and ‖h1‖0,S1,α ,‖h2‖0,S1,α ≤ σ ∗. Denote

P1(y) = J
(
y, h1(y)

)
and P2(y) = J

(
y, h2(y)

)
.

For t ∈ [0, S1], using Lemma 3.2(iv) and (H1)(iii), we obtain

∥
∥(Fh1)(t) – (Fh2)(t)

∥
∥

α
≤

∫ t

0
(t – y)z–1∥∥PE(t – y)a(y)

(
P1(y) – P2(y)

)∥
∥

α
dy

≤ Cα

∥
∥E–1∥∥LJ

(
σ ∗)(

1
�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥h1(y) – h2(y)

∥
∥

α
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥h1(y) – h2(y)

∥
∥

α
dy),

which implies that

∥
∥(Fh1)(t) – (Fh2)(t)

∥
∥

≤ Cα

∥
∥E–1∥∥LJ

(
σ ∗)

(
1

�(z)
tz– 1

p1 +
1

�(2z)
t2z– 1

p1

)

‖a‖Lp1 [0,b]‖h1 – h2‖0,S1,α .

Thus

‖Fh1 – Fh2‖0,S1,α

≤ Cα

∥
∥E–1∥∥LJ

(
σ ∗)

(
1

�(z)
Sz– 1

p1 +
1

�(2z)
S2z– 1

p1

)

‖a‖Lp1 [0,b]‖h1 – h2‖0,S1,α .

Let S12 = 1
2 ( �(z)�(2z)

Cα‖E–1‖(�(z)+�(2z))‖a‖Lp1 [0,b]LJ (σ∗) )
p1

2zp1–1 ;S1 = min{S11, S12}. Then F is a contraction
map on B(λ, S1). It follows from the contraction mapping principle that F has a unique
fixed point h ∈ B(λ, S1), and the unique and mild solution of the system (1) is h with respect
to v on the close interval [0, S1]. �

Proof (II) Global existence.
If a mild solution of the system (1) is w with respect to v on the closed interval [0, S],

then w satisfies (12). Using (H1)(iii), (H2)(ii) Lemma 3.2(iv) and the Hölder inequality, we
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obtain

∥
∥w(t)

∥
∥

α
≤ ∥

∥SE(t)E
(
w0 + g(w)

)∥
∥

α
+

∥
∥χE(t)Ew1

∥
∥

α

+
∫ t

0
(t – y)z–1∥∥PE(t – y)a(y)J

(
y, w(y)

)∥
∥

α
dy

+
∫ t

0
(t – y)z–1∥∥PE(t – y)K(y)v(y)

∥
∥

α
dy

≤ M
∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖‖w0‖ + M

∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖∥∥g(w)

∥
∥

+ N
∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖‖w1‖

+ Cα

∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)CJ

(
1 +

∥
∥w(y)

∥
∥

0,S,α

)
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)CJ

(
1 +

∥
∥w(y)

∥
∥

0,S,α

)
dy

)

Cα

∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1∥∥K(y)v(y)

∥
∥dy

+
1

�(2z)

∫ t

0
(t – y)2z–1∥∥K(y)v(y)

∥
∥dy

)

≤ M
∥
∥Gα–β

∥
∥‖w0‖ + MNg1

∥
∥Gα–β

∥
∥‖w‖C + MNg2 + N

∥
∥Gα–β

∥
∥‖w1‖

+ Cα

∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)CJ

(
1 +

∥
∥w(y)

∥
∥

0,S,α

)
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)CJ

(
1 +

∥
∥w(y)

∥
∥

0,S,α

)
dy

)

Cα

∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1∥∥K(y)v(y)

∥
∥dy

+
1

�(2z)

∫ t

0
(t – y)2z–1∥∥K(y)v(y)

∥
∥dy

)

≤ a + b + CαCJ
∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥w(y)

∥
∥

0,S,α dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥w(y)

∥
∥

0,S,α dy
)

,

where

a + b = M
∥
∥Gα–β

∥
∥‖w0‖ + MNg1

∥
∥Gα–β

∥
∥‖w‖C + MNg2 + N

∥
∥Gα–β

∥
∥‖w1‖

+ CαCJ
∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p1 +
1

�(2z)
S2z– 1

p1

)

‖a‖Lp1 [0,b]

+ Cα

∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p +
1

�(2z)
S2z– 1

p

)

‖Kv‖LP�,

where N = MS. By Lemma 2.2, there exists a constant M∗ > 0 such that

∥
∥w(t)

∥
∥

α
≤ M∗(a) + M∗(b) = M∗(c), for t ∈ �.
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Let

S21 = S1 + S11, S22 = S1 + S12, �S = min{S21 – S1, S12} > 0.

In the same way, it can be verified that a unique mild solution exists for the system
(1) on [0,�S]. In regard to the procedure mentioned above in each interval [�S, 2�S],
[2�S, 3�S], . . . implementing the method of the above arguments, the existence of a mild
solution can easily be obtained for the system (1). �

4 Continuous dependence
In this section, we show that the mild solution of the system (1) shows a continuous de-
pendence on the initial value with respect to the control term.

Theorem 4.1 Assume that w1
0, w2

0 ∈ η where η is a bounded set. Let

w1(t, w1
0 + g

(
w1), w1

1, v
)

= SE(t)E
(
w1

0 + g
(
w1)) + χE(t)Ew1

1 +
∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w1(y)

)
dy

+
∫ t

0
(t – y)z–1PE(t – y)K(y)v(y) dy, 0 ≤ t ≤ S,

and

w2(t, w2
0 + g

(
w2), w2

1, u
)

= SE(t)E
(
w2

0 + g
(
w2)) + χE(t)Ew2

1 +
∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w2(y)

)
dy

+
∫ t

0
(t – y)z–1PE(t – y)K(y)u(y) dy, 0 ≤ t ≤ S.

Then there exists a constant C∗ such that

∥
∥w1(t, w1

0 + g
(
w1), w1

1, v
)

– w2(t, w2
0 + g

(
w2), w2

1, u
)∥
∥

≤ C∗(∥∥w1
0 – w2

0
∥
∥ +

∥
∥w1 – w2∥∥

C +
∥
∥w1

1 – w2
1
∥
∥ + ‖Kv – Ku‖LP�

)
, t ∈ �,

where

C∗ = max

{

N
∥
∥Gα–β

∥
∥, MLg(σ )

∥
∥Gα–β

∥
∥, M

∥
∥Gα–β

∥
∥,

Cα

∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p +
1

�(2z)
S2z– 1

p

)}

> 0.

Proof Since w1
0, w2

0 ∈ η, here η is a bounded set in U , using Theorem 3.3(II), there exists a
constant σ > 0 such that |w1|, |w2| ≤ σ . For t ∈ �, by Lemma 3.2, (H1)(ii), (H2)(i) and the
Hölder inequality we have

∥
∥w1(t, w1

0 + g
(
w1), w1

1, v
)

– w2(t, w2
0 + g

(
w2), w2

1, u
)∥
∥

α

≤ ∥
∥SE(t)E

((
w1

0 + g
(
w1)) –

(
w2

0 + g
(
w2)))∥∥

α
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+
∥
∥χE(t)E

(
w1

1 – w2
1
)∥
∥

α

+
∫ t

0
(t – y)z–1∥∥PE(t – y)a(y)

(
J
(
y, w1(y)

)
– J

(
y, w2(y)

))∥
∥

α
dy

+
∫ t

0
(t – y)z–1∥∥PE(t – y)

(
K(y)v(y) – K(y)u(y)

)∥
∥

α
dy

≤ M
∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖∥∥w1

0 – w2
0
∥
∥

+ M
∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖∥∥g

(
w1) – g

(
w2)∥∥ + N

∥
∥E–1∥∥

∥
∥Gα–β

∥
∥‖E‖∥∥w1

1 – w2
1
∥
∥

+ Cα

∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p +
1

�(2z)
S2z– 1

p

)

‖Kv – Ku‖LP�

+ CαLJ (σ )
∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥w1(y) – w2(y)

∥
∥

α
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥w1(y) – w2(y)

∥
∥

α
dy

)

,

which implies that

∥
∥w1(t, w1

0 + g
(
w1), w1

1, v
)

– w2(t, w2
0 + g

(
w2), w2

1, u
)∥
∥

≤ M
∥
∥Gα–β

∥
∥
∥
∥w1

0 – w2
0
∥
∥ + MLg(σ )

∥
∥Gα–β

∥
∥
∥
∥w1 – w2∥∥

C

+ N
∥
∥Gα–β

∥
∥
∥
∥w1

1 – w2
1
∥
∥ + Cα

∥
∥E–1∥∥

(
1

�(z)
Sz– 1

p +
1

�(2z)
S2z– 1

p

)

‖Kv – Ku‖LP�

+ CαLJ (σ )
∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥w1(y) – w2(y)

∥
∥

α
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥w1(y) – w2(y)

∥
∥

α
dy

)

and, using Lemma 2.2 again, we obtain

∥
∥w1(t, w1

0 + g
(
w1), w1

1, v
)

– w2(t, w2
0 + g

(
w2), w2

1, u
)∥
∥

≤ C∗(∥∥w1
0 – w2

0
∥
∥ +

∥
∥w1 – w2∥∥

C +
∥
∥w1

1 – w2
1
∥
∥ + ‖Kv – Ku‖LP�

)
, t ∈ �.

Thus one accomplishes the proof. �

5 Optimal control
In this section, we study the existence of optimal pairs for the fractional control system
(1). Firstly, we notice the following Lagrange problem:

(P) find a control v◦ ∈ Pad such that

J
(
v◦) ≤ J (v) for all v ∈ Pad,

where

J (v) =
∫ S

0
I
(
t, wv(t), v(t)

)
dt,

wv illustrates the mild solution of the system (1) corresponding to the control v ∈ Pad .
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For the existence of a solution for problem (P), we put forward the following assump-
tion:

(H5) (i) the functional I : � × U × V → R ∪ {∞} is Borel measurable;
(ii) I(t. · . · .·) is sequentially lower semi continuous on U × V for almost all t ∈ �;

(iii) I(t, w,ς .·) is convex on ς for each w ∈ C0,S , ς ∈ U and almost all t ∈ �;
(iv) there exist constant, e ≥ 0, j > 0, φ is nonnegative and φ ∈ L1(�,R) such that

I(t,ς , v) ≥ φ(t) + e|ς | + j‖v‖p
V .

Now, we can show the following results on the existence of fractional optimal control for
problem (P).

We are in dire need of a relevant lemma to obtain the existence of optimal control.

Lemma 5.1 ([19]) Suppose G has a compact resolvent. Then for some pz(1 – α) > 1 the
operator

R
(
l(·)) =

∫ ·

0
(· – y)z–1PE(· – y)l(y) dy, l(·) ∈ Lp�

is a compact operator from Lp(�, U) to C(�, Uα).

Theorem 5.2 Make the assumption of Theorem 3.3 and (H5). If G has a compact resolvent
then problem (P) admits at least one optimal pair.

Proof If inf{J (v)|v ∈ Pad} = +∞, nothing can be proved.
So assume that

inf
{
J (v)|v ∈ Pad

}
= ε < +∞.

Using the assumption (H5), we have ε > –∞. By the definition of an infimum, there exists
a minimizing sequence feasible pair

{(
wr , vr)} ⊂ Aad

:=
{

(w, v); w is a mild solution of the system (1) corresponding to v ∈ Pad
}

,

such that J (wr , vr) → ε as r → +∞. Since {vr} ⊆ Pad , r = 1, 2, . . . , {vr} is a bounded subset
of the separable reflexive Banach space Lp(�, V ), there exist a subsequence (we denote it
by {vr}) and v◦ ∈ Lp(�, V ) such that

vr → v◦ in Lp(�, V ).

Since Pad is closed and convex, owing to the Marzur lemma, we have v◦ ∈ Pad . It can be
estimated that wr ∈ C0,S,α illustrates the corresponding sequence of the solution of the
integral equation. We have

wr(t) = SE(t)E
(
w0 + g

(
w1)) + χE(t)Ew1 +

∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, wr(y)

)
dy

+
∫ t

0
(t – y)z–1PE(t – y)K(y)vr(y) dy, 0 ≤ t ≤ S.
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Due to Lemma 2.2 and 3.3(II) again, we can prove that there exists a σ > 0 such that

∥
∥wr∥∥

0,S,α ≤ σ where r = 0, 1, 2, . . . ,

where w◦ denotes the solution corresponding to v◦, that is,

w◦(t) = SE(t)E
(
w0 + g

(
w◦)) + χE(t)Ew1 +

∫ t

0
(t – y)z–1PE(t – y)a(y)J

(
y, w◦(y)

)
dy

+
∫ t

0
(t – y)z–1PE(t – y)K(y)v◦(y) dy, 0 ≤ t ≤ S.

Hence, for t ∈ � by condition (H1)(ii), (H2)(i) Lemma 3.2(i), (iv) and the Hölder inequality,
we obtain the following inequalities after an elementary calculation:

∥
∥wr(t) – w◦(t)

∥
∥

α

≤ ∥
∥SE(t)E(

(
g
(
wr) – g

(
w◦))∥∥

α

+
∥
∥
∥
∥

∫ t

0
(t – y)z–1PE(t – y)

[
J
(
y, wr(y)

)
– J

(
y, w◦(y)

)]
dy

∥
∥
∥
∥

α

+
∥
∥
∥
∥

∫ t

0
(t – y)z–1PE(t – y)

[
K(y)vr(y) – K(y)v◦(y)

]
dy

∥
∥
∥
∥

α

≤ MLg(σ )
∥
∥wr – w◦∥∥

C +
∥
∥R

(
K(y)vr(y)

)
– R

(
K(y)v◦(y)

)∥
∥

α
dy

+ CαLJ (σ )
∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥wr(y) – w◦(y)

∥
∥

α
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥wr(y) – w◦(y)

∥
∥

α
dy

)

:= ξ (1)
r + ξ (2)

r + ξ (3)
r .

By applying Lemma 5.1 we have ‖R(K(y)vr(y)) – R(K(y)v◦(y))‖C(�,Uα ) → 0 as r → ∞,
which implies that ξ

(2)
r → 0 as r → ∞. Moreover, we have

∥
∥wr(t) – w◦(t)

∥
∥

≤ ∥
∥ξ (2)

r
∥
∥

α
+ MLg(σ )

∥
∥wr – w◦∥∥

C

+ CαLJ (σ )
∥
∥E–1∥∥

(
1

�(z)

∫ t

0
(t – y)z–1a(y)

∥
∥wr(y) – w◦(y)

∥
∥

α
dy

+
1

�(2z)

∫ t

0
(t – y)2z–1a(y)

∥
∥wr(y) – w◦(y)

∥
∥

α
dy

)

.

By virtue of the Gronwall inequality again, there exists M∗ > 0 such that

∥
∥wr(t) – w◦(t)

∥
∥

α
≤ M∗∥∥ξ (2)

r
∥
∥

α
,

which yields

wr → w◦ in C0,S,α as r → ∞.
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Note that assumption (H5) implies Balder’s assumption. Hence, by Balder’s theorem, we
can jump to the conclusion that

(w, v) →
∫ S

0
I
(
t, w(t), v(t)

)
dt

is sequentially lower semi continuous in the weak topology of Lp(�, v) ⊂ L1(�, V ), and the
strong topology of L1(�, Uα). Hence, � is weakly lower semi continuous on Lp(�, V ), and
since, by (H5)(iv), � > –∞, � gets its infimum at v◦ ∈ Pad , i.e.,

ε = lim
r→∞

∫ S

0
I
(
t, wr(t), vr(t)

)
dt

≥
∫ S

0
I
(
t, w◦(t), v◦(t)

)
dt

= J (v◦)

≥ ε.

Thus one accomplishes the proof. �

We proceed to illustrate an example to show our results.

Example 5.3 Notice the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c
0Dγ

t Ew(t, s) – �w(t, s)

= a(y, t)w(t)(s) +
∫

�
L(s, y)v(y, t) dy, y ∈ �y ≤ t, 0 < t ≤ S,

w(t, s) = 0, s ∈ ∂�, t ∈ �,

w(0, s) –
∑n

i=1
∫

�
m(ξ , s)w(ti, ξ ) dξ = 0, w′(0, s) = 0, s ∈ �,

(15)

with the cost function

I
(
v(s, t)

)
=

∫ S

0

(∫

�

∣
∣wv(t, s)

∣
∣P ds +

∫

�

∣
∣v(s, t)

∣
∣P ds

)

dt,

where � ⊂ R
N is a bounded domain, ∂� ∈ CN , � is Laplace operator, v ∈ Lp(� × �,R),

h ∈ L1([0, S],R) and K : �̄ × �̄ → R is continuous. m(ξ , s) : � ×� → U is an LP-Lebesgue
integrable function.

Define

U = V = Lp(� × �,R), D
(
–GE–1) =

{
W 2,N (�) ∩ W 1,N

0 (�)
}

,

Gw = –�w for w ∈ D
(
–GE–1),

for w ∈ D(GE–1). Then –GE–1 can generate a strong continuous cosine family {C(t), t ≥ 0}
on U . Similarly, the fractional power operator Gα and the fractional power space Uα are
introduced. The controls are functions v : Cw(�) → R, such that v ∈ Lp(Cw(�)). It can be
claimed that t → v(·, t) going from � into V is measurable. Set

P(t) =
{

v ∈ V |‖v‖V ≤ χ
}

,
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where χ ∈ Lp(�,R+). We assume the admissible controls Pad to be all v ∈ Lp(Cw(�)) such
that ‖v(·, t)‖Lp(�) ≤ χ (t), a.e. Let 1

2 > α > 3
7 and p > 1

z(1–α) . One can obtain the insertion
relative to Uα ↪→ C′(�).

Define w(t)(s) = w(t, s),

K(t)v(t)(s) =
∫

�

L(s, y)v(y, t) dξ ,

and

a(t)J
(
t, w(t)

)
(s) = a(y, t)w(t)(s).

Taking γ = 3
2 , we have z = 3

4 . Let g : C(�, U) → U be given by g(w)(s) =
∑n

i=0 Lgw(ti)(s)
with Lgv(s) =

∫

�
m(ξ , s)v(ξ ) dξ for v ∈ U , s ∈ � (denoting that Lg : U → U is completely

continuous). Thus the assumption in (H5) holds. We have

I
(
t, wv(t), wv(t), v(t)

)
(s) =

∫

�

∣
∣wv(t, s)

∣
∣P ds +

∫

�

∣
∣v(t, s)

∣
∣p ds.

We can write the problem (15) as

⎧
⎨

⎩

c
0Dγ

t Ew(t) + Gw(t) = a(t)J(t, w(t)) + K(t)v(t), t ∈ �

w(0) = w0 + g(w), w′(0) = w1.

with the cost function

J (v) =
∫ S

0
I
(
t, wv(t), v(t)

)
dt.

Evidently, it confirms all the assumptions made in Theorem 5.2 that our findings can be
extended to Problem (15). Thus, problem (15) admits at least one optimal pairs.

6 Conclusion
Our manuscript is mainly focused on optimal control for fractional differential evolution
equations of order 1 < γ < 2. By using the results on fractional calculus, α-norms of cosine
and sine families on operators, an adequate definition of α-mild solutions is obtained and
the existence, uniqueness and continuous dependence of α-mild solutions for the pre-
sented control system are also established. The existence of optimal pairs of a nonlocal
fractional evolution system is also demonstrated under the construction of the Lagrange
problem. Then we develop our conclusions with a view on nonlocal conditions. Lastly, we
present theoretical applications to support the validity of the study. In the future, we want
to find controllability results for fuzzy fractional differential equations; we hope this will
open new ways for researchers.
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