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Abstract
We construct a Zika transmission model to investigate the effect of postponing
pregnancy on the infection intensity. We perform analytical and numerical
investigations for deterministic and stochastic analysis to obtain the basic
reproductive ratio, endemic state, probability of disease extinction, and the
probability of outbreak. The results indicate that by reducing the pregnancy rate the
mosquito-to-human ratio increases, and, consequently, the basic reproductive ratio
increases. Simultaneously, the probability of disease extinction decreases, and the
probability of disease outbreak increases. On the other hand, the endemic state of
infected infants initially increases with the decrease of the pregnancy recruitment
rate, up to a certain level, and decreases as the recruitment rate of pregnancy tends to
zero. This work highlights that postponing pregnancy that gives the individual
temporary protection for unexpected infected newborns may increase the
population infectivity.
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1 Introduction
Zika virus disease (ZIKV) has been known as an infectious disease that is transmitted
through the bite of Aedes type mosquitoes, including Aedes aegypti. The virus was first
identified in Uganda in 1947 in monkeys from the Zika forest. Further transmission in a
human was then reported in 1952 [1]. A large outbreak of Zika disease was first reported
in Micronesia in 2007 and transmitted to French Polinesia in 2012–2013 and to South
America in 2015 [2]. Since then, the disease has been identified in 34 countries [3]. The
incubation period for Zika is approximately 2–12 days [4], and most infected people do
not indicate symptoms. Simple symptoms that may appear are fever, itchy maculopapu-
lar rash, nonpurulent conjunctivitis, and arthralgia [5]. These simple symptoms are in-
distinguishable from those of other arbovirus diseases. The disease got worldwide atten-
tion after the report from Brazil in 2015, confirming 141 suspected microcephaly cases
among newborns, and the number is still growing [2]. This microcephaly disease has cre-
ated huge concern even in unaffected countries, especially among pregnant women who
plan to travel to high-risk countries [6]. WHO issued an interim report in September 2016
stating that “Couples or women planning a pregnancy and returning from Zika’s affected
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area are advised to wait at least six months before trying to conceive to ensure that possi-
ble Zika virus infection has cleared” [7]. This advice raises some questions regarding the
role of postponing pregnancy in the control and prevention of Zika transmission.

Simple mathematical models for Zika transmission have been developed recently. Due
to the similarity of the infection process to dengue, the authors in [8, 9] adopted SIR-SI
and SEIR-SEI models, which are commonly used in dengue cases for Zika. Another model,
given in [10], takes into account the infection process human–mosquito through mosquito
bites and human–human through sexual transmission route. Intervention strategy such
as reducing contacts between humans and mosquitoes can be well accommodated in the
model as shown in [11]. In those models, the main goal is to obtain an expression for the
basic reproductive ratio R0.

For practical application, the interest is how to estimate R0. In the case of dengue, in
which daily incidence data are available in most affecting countries, estimation of R0 can
be well estimated from the data during the early infection period [12, 13], in which the
exponential growth still took place. With limited Zika data, estimation of R0 in endemic
countries significantly varies. Using dengue information, the authors in [14] estimated that
R0 for Zika in French Polynesia was comparable with dengue and chikungunya. Using a
similar dengue model and surveillance data for Zika, the authors in [15] and [16] show dif-
ferent estimates for R0. These differences are understandable due to various assumptions
and limited and less accurate data being used in the estimation. The basic reproductive
ratio R0 is important and so far is “the only” existing biological indicator for identifying
the potential occurrence of an endemic state at the early stages of an outbreak. However,
more indicators are needed to give a comprehensive understanding of the intensity of dis-
ease transmission. In the present work, we construct a dynamical model for Zika disease,
in which compartments for pregnant women and infected infants are considered.

2 The model
Simple models for vector-borne diseases have been developed from the simple dengue
transmission model SIR-SI [17]. In this model the basic reproductive ratio R0 is obtained
as an endemic indicator representing the average number of secondary infections result-
ing from a “single” infection entering an all-susceptible population [18]. It is well known
that when R0 ≤ 1, the disease-free equilibrium is stable and becomes unstable if R0 ≥ 1, fol-
lowed by the appearance of a stable endemic state. More elaborate structures involving dif-
ferent compartments such as with multistrain dengue virus [19] and involving antibody-
dependent enhancement (ADE) [20, 21], age structure [22] or gender division [10] can be
constructed. In the case of Zika, this SIR-SI model is not sufficient to describe the compli-
cated dynamics of disease transmission and the effects of infection on newborns. In the
following subsection, we construct a deterministic model for Zika transmission.

2.1 Deterministic model
We consider Zika transmission in a closed human–mosquito population in which preg-
nant women and infected infants are grouped into separate compartments, and newborns
are delivered only from pregnant woman compartments. Let Sh(t), Ih(t), and Rh(t) be sus-
ceptible, infectious, and recovered (nonpregnant) human subpopulations at time t, re-
spectively. Let Sp(t), Ip(t), and Rp(t) be the numbers of susceptible, infectious, and re-
covered pregnant women at time t, respectively, and let B(t) denote the number of in-
fected infant subpopulation at time t. We assume that infected infants remain infected
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throughout their life. In this context, infection of an infant is considered to be micro-
cephaly and never recovered. With this assumption, the dynamic of B(t) is decoupled
from the rest of the states. Let Sv(t) and Iv(t) denote the susceptible and infectious vec-
tor subpopulations at time t, respectively. The total host and vector populations are
Nh(t) = Sh(t) + Ih(t) + Rh(t) + Sp(t) + Ip(t) + Rp(t) + B(t) and Nv(t) = Sv(t) + Iv(t), respec-
tively. The total population of pregnant women is given by Np(t) = Sp(t) + Ip(t) + Rp(t).
The recruitment rate Av > 0 for mosquitoes (vectors) is assumed to be constant, and the
mosquito death rate is μv > 0. The average lifespan for humans is 1/μh, so that μh > 0 is
the natural mortality rate for humans. There is no available data on the average lifetime
of microcephaly persons. We assume that the average lifetime of microcephaly person is
less than the average lifetime of nonmicrocephaly, that is, 1

μm
< 1

μh
. After being bitten by

an infectious mosquito, susceptible humans (Sh or Sp) become infectious. We assume that
this transmission is frequency dependent with transmission parameter βh > 0. Infectious
humans may recover from infection at rate γh > 0. Susceptible mosquitoes become infec-
tious after feeding on an infectious host. This transmission is assumed to be frequency de-
pendent with transmission parameter βv > 0. We assume that infected infants are isolated
during their infectious period for treatment and are not capable of transmitting infection
for their entire lifetime.

Let the pregnant women give birth at rate α > 0, whereas pregnant women who are
infectious or recovered (Ip or Rp) have the possibility of giving birth to an infected infant
with probability ρ ∈ [0, 1]. The recruitment rate of pregnancy is assumed to be a constant
W > 0, and the rate at which pregnant women revert to a state of nonpregnancy is δ > 0.
It is natural to take δ = α as it is done in the simulation. Throughout this manuscript, we
assume that μh < α, so that the total host population is positive. A description of the state
variables and parameters, along with their dimensions, is given in Table 1.

The deterministic model is formulated by the following ordinary differential equations:

dSh

dt
= αSp + (1 – ρ)α(Ip + Rp) – βh

Sh

Nh
Iv – μhSh + δSp – W ,

dIh

dt
= βh

Sh

Nh
Iv – (γh + μh)Ih + δIp,

dRh

dt
= γhIh – μhRh + δRp,

dSp

dt
= W – βh

Sp

Nh
Iv – (μh + δ)Sp,

dIp

dt
= βh

Sp

Nh
Iv – (γh + μh + δ)Ip,

dRp

dt
= γhIp – (μh + δ)Rp,

dB
dt

= ρα(Ip + Rp) – μmB,

dSv

dt
= Av – βvSv

Ih + Ip

Nh
– μvSv,

dIv

dt
= βvSv

Ih + Ip

Nh
– μvIv.

(1)
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Table 1 Variables and parameters involved in the system.

Variables &
parameters

Description Dimension

Nh Total human population human
Nnp Nonpregnant human population human
Np Pregnant population human
Nv Vector population human
Sh Susceptible (nonpregnant) humans humans
Ih Infected (nonpregnant) humans humans
Rh Recovered (nonpregnant) humans humans
Sp Susceptible pregnant women humans
Ip Infected pregnant women humans
Rp Recovered pregnant women humans
B Infected infants humans
Sv Susceptible mosquitoes mosquitoes
Iv Infected mosquitoes mosquitoes
α Birth rate ·day–1
ρ Probability of vertical transmission dimensionless
βh Host transmission rate humans·mosquito–1·day–1
μh Host death rate day–1

μm Infected infant death rate day–1

δ Loss of pregnancy rate day–1

W Pregnancy recruitment rate humans·day–1
γh Recovery rate day–1

Av Vector recruitment rate mosquitoes·day–1
βv Vector transmission rate day–1

μv Vector death rate day–1

The total populations satisfy

dNh

dt
= αNp – μhNh – (μm – μh)B,

dNp

dt
= W – (μh + δ)Np,

dNv

dt
= Av – μvNv.

(2)

For simplification of the dynamical analysis, we assume that infected infants remain in
infected status for the rest of their life and that the population sizes Np and Nv are constant
in time. Note that in our simulation, we take α = δ = 1/270. Under this assumption, we have

Np =
W

μh + δ
, (3)

Nv =
Av

μv
.

2.1.1 Dynamical analysis
We write the deterministic model (1) in the form

dX
dt

= F
(
X(t)

)
(4)

with X = (Sh, Ih, Rh, Sp, Ip, Rp, B, Sv, Iv)T and F : � → �, � = {X ∈R
9, xi ≥ 0}. Note that with

the biological restriction (3), we conclude that 〈F(X(t), ei〉 ≤ 0, which implies that � is
positively invariant.
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Equations (4) have a unique disease-free equilibrium (DFE) given by

(Sh, Ih, Rh, Sp, Ip, Rp, B, Sv, Iv) = (S̃h, 0, 0, S̃p, 0, 0, 0, S̃v, 0), (5)

where

S̃h =
W (α – μh)
(μh + δ)μh

, (6)

S̃p =
W

δ + μh
, (7)

S̃v =
Av

μv
, (8)

Ñh =
Wα

(μh + δ)μh
. (9)

With the constant subpopulations (3), we can write the first equation in (2) as

dNh

dt
= μh(N̄h – Nh) – (μm – μh)B. (10)

We conclude that the total human population remains bounded and not larger than N̄h.
As a consequence, the solutions of (1) are bounded in �. Noting that infected infants do
not produce any secondary infections, there are only three infectious compartments Ih,
Ip, and Iv.

Linearizing the system at DFE for these infectious variables, we obtain the Jacobian ma-
trix

J =

⎡

⎢
⎣

–(γh + μh) δ
βh(α–μh)

α

0 –(γh + μh + δ) βhμh
α

βvAvμh(μh+δ)
μvαW

βvAvμh(μh+δ)
μvαW –μv

⎤

⎥
⎦ .

Rewrite the Jacobian matrix in the form J = F – V [23], where

F =

⎡

⎢
⎣

0 0 βh(α–μh)
α

0 0 βhμh
α

βvAvμh(μh+δ)
μvαW

βvAvμh(μh+δ)
μvαW 0

⎤

⎥
⎦ ,

V =

⎡

⎢
⎣

γh + μh –δ 0
0 γh + μh + δ 0
0 0 μv

⎤

⎥
⎦ .

(11)

The next-generation matrix NGM for Equations (1) is

NGM = FV –1 =

⎡

⎢
⎣

0 0 βh(α–μh)
μvα

0 0 βhμh
μvα

βvAv(μh+δ)μh
μvWα(γh+μh)

βvAv(μh+δ)μh
μvWα(γh+μh) 0

⎤

⎥
⎦ . (12)
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The basic reproduction ratio R0 is obtained from the spectral radius of the next-generation
matrix NGM:

R0 =

√
βvμhβhAv(μh + δ)
αμ2

v(γh + μh)W
. (13)

In a more concise form, we can rewrite

R0 =

√
βhβvπ

(γh + μh)μv
, (14)

where π = Nv/N̄h is the mosquito–human ratio before the infection takes place. This
threshold is exactly the basic reproductive ratio of host-vector dengue type [17]. Note
that R0 increases as the rate of pregnancy W decreases. This is a direct consequence of
reducing the total human population, which increases the mosquito–human ratio π .

To analyze the existence of endemic equilibrium, we rewrite Equation (4) in the form of
a linear perturbation problem:

dX
dt

= H(X; ε) = H(X) + εBe, (15)

where e is the unit vector with eB = 1, ej = 0, j �= B, and 0 < ε 	 1. It is natural that DFE be-
comes unstable and a unique endemic equilibrium EE = (S̄h, Īh, R̄h, S̄p, Īp, R̄p, B̄, S̄v, Īv) exists
for R0 > 1. The proof of this statement can be referred to [23].

We first consider the unperturbed case of Equation (15), that is, for ε = 0. We further
will analyze the relation between the basic reproductive ratio R0 and the endemic state of
infected infants B̄ for the case of ε = 0. By eliminating the equilibrium state (1) we obtain
the endemic equilibrium in terms of B̄:

ĒE =
(
S̄h(B̄), Īh(B̄), R̄h(B̄), S̄p(B̄), Īp(B̄), R̄p(B̄), S̄v(B̄), Īv(B̄)

)
, (16)

where B̄ satisfies the equation

G(B̄) = σ2B̄2 – σ1B̄ + σ0 = 0 (17)

with

σ2 = βvμh(μh + δ + βhπ )π2μ2
v , (18)

σ1 = –
(
βhμhβv(1 + ρ)π + μh(μh + δ)βv + δμv(γh + μh)

)
Avπμv,

σ0 = (–μhμv – γhμv + βhβvπ )A2
vμhρ.

Note that from the equilibrium B̄ in Equation (1) the existence of the endemic state B̄ has
to satisfy

B̄ =
ρα(Īp + R̄p)

μh
≤ ραNp

μh
= B0 =

Wαρ

μh(μh + δ)
. (19)
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Figure 1 Graphs of R0 and π asW increases (left) and B̄ (right), with parameter values α = 1
270 , δ = 1

270 ,
γh = 1/10, Av = 200, βh = 0.2, βv = 0.4, μh = 1

70·365 , and μv = 1/30.

Substituting B0 into Equation (17), we have G(B0) < 0. Hence from (17) and (19) we obtain
the unique endemic equilibrium

B̄ =
σ1

2
–

√
σ 2

1 – 4σ2σ0

2
. (20)

The graphs of B̄ for different values of ρ are given in Fig. 1.
Figure 1 shows that as the recruitment rate of pregnant women decreases, the basic

reproductive ratio R0 increases, and the endemic state of infected infants B̄ increases but
eventually decreases as W → 0. This phenomenon shows that the basic reproductive ratio
as an endemic threshold only provides an early measurement at the start of the infection
process and is not a good representation for measurement of the size of the endemic state.

The existence of a unique endemic equilibrium for the unperturbed system (15) is shown
by using the implicit function theorem. With the restriction within two manifolds Np and
Nv in (3), it suffices to reduce the dynamics of (Sh, Ih, Rh, Sp, Ip, Iv) in the six-dimensional
space. Note that the dynamic of B can be decoupled from the system. In this reduced form
the determinant of the Jacobian of (15) at the endemic equilibrium ĒE is given by

Det = D1(B̄)D2(B̄), (21)

where, under condition (19),

D1(B̄) �= 0. (22)

The equation for D2(B̄) is given by

D2(B̄) = C3B̄3 + C2B̄2 + C1B̄ + C0 (23)

with

C3 = π3βv
2μh

2μv
2(μh + δ)(βhπ + μh + δ),
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C2 = –(βhπ + μh + δ)π2Avβvμhμv
[
2μh(μh + δ)βv

+ μv(γ + μh)(2δ – βhπ + μh)
]
,

C1 = πAv
2 [

δ(gm + μh)2(μh + δ)μv
2 (24)

+ βvμh
((

βh(1 – 3ρ)μh + δβh(1 – ρ)
)
π + (1 – ρ)μh

2 + δ(3 – ρ)μh

+ 2δ2 – 2π2ρβh
2)(gm + μh)μv + βv

2μh
2(μh + δ)(βhπ + μh + δ)

]
,

C0 = ρAv
3(βhπ + μh)(γ + μh)

(
ρβhβvμhπ + (γμv + μhβv + μvμh)(μh + δ)

)
.

Let S(D2(B), G(B)) be the Sylvester matrix of the two polynomials D2(B) and G(B). Then
we have the determinant of S(D2(B), G(B)),

det
(
S
(
D2(B), G(B)

))
= S1(B)(S2(B) + S3(B), (25)

where

S1(B) =μv
5μh

2βv
2βh

2Av
6ρπ8(βhπ + μh + δ)(μh + δ)(βhπ + μh)

× (γμv + μhμv + βvμh – ρβvμh)2(γ + μh),

S2(B) = 2μhμv
(
δμh + δβhπ + 2μ2

hρ + δ2 + 2βhμhρπ + 2μhρδ + βhδρπ
)

× (γ + μh)βv + δ2μv
2(γ + μh)2, (26)

S3(B) = μh
2(δ + μh – ρπβh + βhπ )2βv

2.

From (25) and (26) we have that det(S(D2(B), G(B))) > 0. We conclude that the Sylvester
matrix S(D2(B), G(B)) has a full rank and {D2(B), G(B)} has no common denominator [24].
Using the implicit function theorem, we conclude that the perturbed system (15) has a
unique endemic equilibrium for relatively small ε. Here we use numerical simulation of
the unperturbed system to represent the dynamical behavior for 0 < ε 	 1.

In the next subsection, we develop and analyze a stochastic model to compute the prob-
ability of disease extinction prior to a relatively large outbreak.

2.2 Stochastic model
2.2.1 Continuous-time Markov chain
Consider a discrete-valued random vector

X(t) =
(
Sh(t), Ih(t), Rh(t), Sp(t), Ip(t), Rp(t), B(t), Sv(t), Iv(t)

)
,

where the components Sh(t), Ih(t), Rh(t), . . . , Iv(t) are discrete-valued random variables
for the numbers of susceptible humans, infectious humans, recovered (nonpregnant) hu-
mans, . . . , and infectious vectors at time t, respectively. We construct a continuous-time
Markov chain (CTMC) model of Zika transmission with the transitions in the stochastic
process {X(t)|t ∈ [0,∞)} during a small time period �t. The possible transitions and their
corresponding rates are given in Table 2.
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Table 2 State transitions and rates describing the CTMC Zika dynamics.

Description State Transition Rate

Pregnancy (Sh , Sp)→ (Sh – 1, Sp + 1) W
Death of Sp Sp → Sp – 1 μhSp
Infection of Sp (Sp , Ip)→ (Sp – 1, Ip + 1) βhSpIv/Nh

Death of Ip Ip → Ip – 1 μhIp
Recovery of Ip (Ip ,Rp) → (Ip – 1,Rp + 1) γhIp
Loss of Sp (Sp , Sh)→ (Sp – 1, Sh + 1) αSp
Loss of Ip (Ip , Ih) → (Ip – 1, Ih + 1) αIp
Loss of Rp (Rp ,Rh) → (Rp – 1,Rh + 1) αRp
Birth of Sh Sh → Sh + 1 αSp + α(1 – ρ)(Ip + Rp)
Death of Sh Sh → Sh – 1 μhSh
Infection of Sh (Sh , Ih) → (Sh – 1, Ih + 1) βhShIv/Nh

Death of Ih Ih → Ih – 1 μhIh
Recovery of Ih (Ih ,Rh)→ (Ih – 1,Rh + 1) γhIh
Death of Rh Rh → Rh – 1 μhRh
Birth of B B → B + 1 ρα(Ip + Rp)
Death of B B → B – 1 μhB
Vector recruitment Sv → Sv + 1 Av
Death of Sv Sv → Sv – 1 μvSv
Vector infection (Sv , Iv ) → (Sv – 1, Iv + 1) βvSv (Ih + Ip)/Nh

Death of Iv Iv → Iv – 1 μv Iv

2.2.2 Branching process approximation
As in [25, 26], the nonlinear CTMC dynamics is approximated near the DFE using a mul-
titype branching process. The only sources of infection for our model are the states Ih, Ip,
and Iv. Therefore we apply the branching process approximation only to these infectious
states, and the numbers of susceptible humans, pregnant women, and mosquitoes are as-
sumed to be near the DFE: Sh(0) ≈ S̄h, Sp(0) ≈ S̄p, and Sv(0) ≈ S̄v. We begin by constructing
an offspring probability generating function (p.g.f ) fi : [0, 1]3 → [0, 1], i = 1, 2, 3, for each
of the infectious states. Here we use the variables u1, u2, and u3 as “dummy” variables
representing the three types of infectious states.

If Ih(0) = 1, Ip(0) = 0, and Iv(0) = 0, then the offspring p.g.f. for Ih is given by

f1(u1, u2, u3) =
β̂vu1u3 + μh + γh

β̂v + μh + γh
, (27)

where β̂v = βvN̄v/N̄h. The term β̂v/(β̂v + μh + γh) represents the infection probability per
contact between an infectious host Ih and a susceptible vector Sv. The term (μh +γh)/(β̂v +
μh + γh) represents the probability that an infectious host dies or recovers before causing
any secondary infections.

If Ih(0) = 0, Ip(0) = 1, and Iv(0) = 0, then the offspring p.g.f. for Ip is given by

f2(u1, u2, u3) =
αu1 + αu2 + β̂vu2u3 + μh + γh

2α + β̂v + μh + γh
. (28)

The term α/(2α + β̂v + μh + γh) represents the probability that an infectious pregnant
woman loses her baby and is considered an infectious host. The term β̂v/(2α + β̂v +μh +γh)
represents the infection probability that an infectious pregnant woman infects a suscep-
tible vector. The term (μh + γh)/(2α + β̂v + μh + γh) represents the probability that an in-
fectious pregnant woman dies or recovers before causing any secondary infections.
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If Ih(0) = 0, Ip(0) = 0, and Iv(0) = 1, then the offspring p.g.f. for Iv is given by

f3(u1, u2, u3) =
β̃hu1u3 + β̂hu2u3 + μv

β̃h + β̂h + μv
, (29)

where β̃h = βh(α –μh)/α and β̂h = βhμh/α. The term β̃h/(β̃h + β̂h +μv) represents the prob-
ability that an infectious vector infects a susceptible host. The term β̂h/(β̃h + β̂h + μv) rep-
resents the probability that an infectious vector infects a susceptible pregnant woman.
The term μv/(β̃h + β̂h + μv) represents the probability that an infectious vector dies before
causing any secondary infections.

The expectation matrix for the branching process is the nonnegative 3 × 3 matrix M =
[mij], where mij = ∂fj

ui
, and the partial derivatives are evaluated at (u1, u2, u3) = (1, 1, 1), that

is, the mij entry represents the average number of type i infectious individuals produced
by one infectious individual of type j. In particular,

M =

⎡

⎢
⎢⎢
⎣

β̂v
β̂v+μh+γh

δ

2α+β̂v+μh+γh

β̃h
β̃h+β̂h+μv

0 α+β̂v
2α+β̂v+μh+γh

β̂h
β̃h+β̂h+μv

β̂v
β̂v+μh+γh

β̂v
2α+β̂v+μh+γh

β̃h+β̂h
β̃h+β̂h+μv

⎤

⎥
⎥⎥
⎦

. (30)

If ρ(M) > 1, then the offspring p.g.f.s have a unique fixed point (q1, q2, q3) ∈ (0, 1)3 [26].
The term q1 represents the probability of disease extinction within the nonpregnant hu-
man population, q2 represents the probability of disease extinction within the pregnant
human population, and q3 represents the probability of disease extinction within the vec-
tor population. Thus, for ρ(M) > 1, we have the probability of ultimate disease extinction

P0 = qIh(0)
1 qIp(0)

2 qIv(0)
3 , (31)

and the probability of an outbreak can be defined as 1 – P0, where an outbreak refers to
anything other than disease extinction. Although the spectral radius of M cannot be ob-
tained explicitly, there is a relationship between ρ(M) and the basic reproductive ratio R0

given by the threshold theorem of Allen and van den Driessche [26]. Since M is irreducible,
the matrix F in (11) is nonnegative, the matrix V in (11) is a nonsingular M-matrix, and
ρ(M) > 1 if and only if R0 > 1.

The coordinates of the fixed point (q1, q2, q3) ∈ (0, 1)3 of the offspring p.g.f.s are given by

q1 =
βh + μv

βh + R0
2μv

, (32)

q2 =
βh + μv

βh + R0
2μv

, (33)

q3 =
βh

βh + μv

1
R0

2 +
μv

βh + μv
. (34)

Note that q1 = q2, which implies that introducing one infectious nonpregnant human into
the population will result in the same probability of disease extinction as introducing one
infectious pregnant woman.
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Table 3 Model parameters used for numerical simulation.

Parameter Description Value

W Recruitment rate of Sp 0.0197
μh Host death rate 1

70×365
βh Host transmission rate 0.1
γh Recovery rate 0.1
δ Loss of pregnancy 1

270
α Birth rate 1

270
ρ Probability of vertical transmission 0.5
Av Vector recruitment rate 25
μv Vector death rate 1

30
βv Vector transmission rate 0.2

3 Numerical simulations
Basic reproductive ratio and probability of disease extinction are important indicators for
a comprehensive measure in the field applications. We perform numerical simulations for
the deterministic and stochastic systems with the parameter values taken from Table 3
and compare the results. We use Euler’s method and Gillespie’s algorithm [27] to obtain a
numerical solution of the deterministic model and to simulate sample paths for the CTMC
model, respectively.

3.1 Probability of disease extinction
Using the values of parameters in Table 3, we obtain the basic reproductive ratio R0 ≈ 3.0.
Solutions of the deterministic model exhibit a major outbreak in both host and vector
populations. It is shown that there is either a major outbreak followed by disease extinction
or a rapid disease extinction prior to a major outbreak for sample paths of the CTMC
model. In the case of an outbreak the sample path agrees well with the ODE solution. The
ODEs solution and one sample path of the CTMC model are given in Fig. 2.

The probability of extinction P0 is calculated for various initial conditions using the val-
ues of parameters in Table 3. The results are compared to the numerical approximation
(Approx.) calculated from the proportion of 10,000 sample paths of the CTMC model
with Ih(t) + Ip(t) + Iv(t) = 0 (disease extinction) before reaching an outbreak size of 20. If
Ih(t) + Ip(t) + Iv(t) ≥ 20, then it is considered an outbreak. The results are summarized in
Table 4.

3.2 Comparison of deterministic and stochastic models
In Table 5, it is shown that reducing the pregnancy rate W directly increases the vector–
human population ratio π , which then increases the basic reproductive ratio R0 and the
probability of an outbreak 1 – P0. On the other hand, the endemic level of infected infants
B̄ increases up to a certain level and decreases as W → 0.

4 Conclusions
In this paper, we presented a mathematical model for Zika disease transmission to in-
vestigate the effect of postponing pregnancy on the transmission intensity. The model
considers separate compartments for pregnant women and infected infants as well as the
recruitment rate of pregnancy as a control parameter. By exploiting the deterministic and
stochastic models we are able to perform analysis of important indicators, that is, the ba-
sic reproductive ratio, endemic states of infected infants, probability of disease extinction,
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Figure 2 Comparison of one sample path of the CTMC dynamics (solid line) and the ODE dynamics (dashed
line). Parameter values are taken from Table 3 for given initial conditions Sh(0) = 994, Ih(0) = 1, Rh(0) = 0,
Sp(0) = 4, Ip(0) = 1, Rp(0) = 0, B(0) = 0, Sv (0) = 749, and Iv (0) = 1. The probability of disease extinction is
P0 = 0.0368.

Table 4 Probability of disease extinction P0 and results of numerical approximation (Approx.) using
10,000 sample paths of the CTMC model for parameter values taken from Table 3.

Ih(0) Ip(0) Iv (0) P0 Approx.

1 0 0 0.3325 0.3310
0 1 0 0.3325 0.3308
0 0 1 0.3330 0.3338
1 1 1 0.0368 0.0356
2 0 0 0.1105 0.1097
0 2 0 0.1105 0.1106
0 0 2 0.1109 0.1114

Table 5 Variation of endemic indicators for different values of the pregnancy rateW . Parameter
values are given in Table 3, with the exception ofW , which varies over the indicated range. The initial
conditions used to calculate P0 are Ih(0) = 1, Ip(0) = 0, and Iv(0) = 0.

W π R0 B̄ P0 1 – P0

0.005 5.93 5.97 15 0.1037 0.8963
0.01 2.97 4.22 18 0.1924 0.8076
0.02 1.48 2.98 19 0.3363 0.4429
0.04 0.74 2.11 17 0.5571 0.3485
0.1 0.30 1.33 10 0.8370 0.1630

and probability of disease outbreak. It is clear that postponing pregnancy only is not al-
ways an ideal control for the total population. Although this model is restricted to several
assumptions, we believe that this study contributes an important insight to understand
the complicated Zika transmission process.
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