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Abstract

In this article, first, we present an example of fuzzy normed space by means of the
Mittag-Leffler function. Next, we extend the concept of fuzzy normed space to matrix
valued fuzzy normed space and also we introduce a class of matrix valued fuzzy
control functions to stabilize a nonlinear ¢-Hadamard fractional Volterra
integro-differential equation. In this sense, we investigate the Ulam-Hyers—Rassias
stability for this kind of fractional equations in matrix valued fuzzy Banach space.
Finally, as an application, we investigate the Ulam-Hyers—Rassias stability using matrix
valued fuzzy control function obtained through the Mittag-Leffler function.

MSC: Primary 28A80; 47H10; secondary 46510

Keywords: ¢-Hadamard fractional equation; Volterra integro-differential equation;
MVFB-space; Ulam-Hyers—Rassias stability; Fixed point method

1 Introduction and preliminaries

Fractional Calculus (FC) is considered as a branch of mathematical analysis which deals
with the investigation and applications of integrals and derivatives of arbitrary order.
Therefore, FC is an extension of the integer-order calculus that considers integrals and
derivatives of any real or complex order [1], i.e., unifying and generalizing the notions of
integer-order differentiation and n-fold integration.

Ulam—Hyers stability is one of the main topics in the theory of functional equations.
Generally a functional equation is said to be stable provided that, for any function f satis-
fying the perturbed functional equation, there exists an exact solution f; of that equation
which is not far from the given f. Based on this concept, the study of the stability of func-
tional equations can be regarded as a branch of optimization theory [2].

The origin of Ulam stability theory was an open problem formulated by Ulam, in 1940,
concerning the stability of homomorphism. The first partial answer to Ulam’s question
came within a year, when Hyers proved a stability result, for the additive Cauchy equa-
tion in Banach spaces. The result of the stability of Cauchy equations was further gen-
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eralized by Rassias. The first result on Ulam—Hyers stability of differential equations
was given by Obloza. Alsina and Ger investigated the stability of differential equations
¥y =y. The results of Alsina and Ger were extended by many authors to the stability of
the first order linear differential equation and linear differential equations of higher or-
der [3].

Here, we let G; = [0,&], with & > 0, G, = (0,00), G3 = (0,1], G4 = [0,00] and G5 = [0,1]
(note G2 = (0, 1) denotes the interior of Gs).

Suppose W is a vector space and ¢, € G,. We denote the set of fuzzy set (in short, F-set)
by V. Now & € )Y means % : W x G, — G satisfies the following conditions:

(C1) ¢ is continuous;

(Cy) ¥ (w,-) is non-decreasing, where w € W;

(C3) lim, 400 # (w,5) = 1, where w € W.

Definition 1.1 ([4-6]) A continuous binary operation * : G5 x G5 — Gs with the following
condition is said to be a continuous triangular norm (in short, CTN) if;
(1) FxH=HxFand F*x(P*xH)=(FxP)xHforall F,H,P € Gs;
(11) F*1=F forall F € Gs;
(trr) FxP <F %P when F < F'and P <P’ for every F,F',P,P" € Gs.

Here we present some CTNs.

(&1) F % H = FH (: the product CTN);

(&) F*x g4 H=A{F,H} (: the minimum CTN);

(&) FxgH=V{F+H-1,0} (: the Lukasiewicz CTN). Note that due to the continuity
of *, the above axioms (characterizing general triangular norms) can be relaxed, i.e.,
it is enough to require the associativity, O to be an annihilator of %, F x0=0%F =0
for any F € Gs, and 1 is an idempotent element of %, 1 % 1 = 1. For more details see

[5].

Definition 1.2 ([7]) Consider CTN x, the vector space VYV and the F-set & : W x G, — Gs.
Now W, .Z, %) is called a fuzzy normed space if:

(L1) L(w,&) >0 for every ¢, € Ga;

(L2) L (w,¢&) =1 forevery ¢, € Gy if and only if w = 0;

(£3) L(hw,,) = 2L (w, W) for every w € W and i € C with 1 #0;

(L4) L+, L +8)> L(w ) x L(,8]) for every w, 0’ € W and &, ¢! € Ga.

Now we will present an example of fuzzy normed space by means of Mittag-Leftler func-
tion, but before that we introduce the concept of Mittag-Leffler function.
The special function

00 k
z
E.(z) = kE:O m, ceC,N()>0,zeC, (1.1)
and its general form

’ ’31 ls" ’ ’ 1‘
Z d o ©4eCn@>0%d)>0zeC (1.2)
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are called Mittag-Leffler function, in which C and 3 are, respectively, the set of complex
numbers and the Gamma function.

Consider the one-parameter Mittag-Leffler function

ol © (= lel)k G W G
( ) Z“s(1+ck) cebnwe .l et

lel

Here, we want to show in the following four steps that (W, E.(— .

), *_4) isa fuzzy normed
space.
(L1) If c € G3, then E.(0) = 1 and lim,,_, _o, E.(w) = 0, therefore we can conclude that E,
is an increasing function for all ¢ € G, and also we have E, € Gs.
(L£y) Ttis straightforward to show EC(—”;’—O”) =1 for every ¢, € Gy, ifand only if w = 0.

(L3) For any w € W and ¢, € G,, we have

_ Ao )k

Iholl\ o 7%
EC(_ I )_;S(l+ck)

(L4) Let Ec(—%) < Ec(—”‘gﬂ). Then we have H?# < ”4%”, for any w,0’ € W and ¢,,¢. €
Gs. Now, if w = o', we have ¢, < ¢/. Thus, otherwise, we have

loll ol - ol e
> +
s s o &
w 104
I ||, 19 [ ||,
Lot8y Gt 8)
llw+ |l ']
— é‘o + ;/ ?
therefore ”;’” > ”Z:‘;’o” But — ”;’)” < - % and also
lloll )k Jlw+e || )k
CO‘*;/
1.3
X:“1+ck) Z\s(1+ck) (13)

which implies that

E (_ ||w||> - (_ ||w+w’||>
N /)7 gl )

Hence we have

E( ||w+w/||)> : { ( |le|> ( IIw’II)}
el ————— ) = min EC - ,EC - ’
o+ 82 ¢ o
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for any w,w’ € W and ¢, ¢! € G,. Therefore

g(wr go) = Ec(_ ”20” ),

defines a fuzzy norm and (W, .%Z, *_») is a fuzzy normed space, for any w € W, ¢, € G,

and ¢ € Gz; here W, | - ||) is a normed linear space.
Now we extend the concept of triangular norms mentioned above and [4, 6] on
diag M,,(Gs).
Let
&1
diag M,,(Gs) = = diaglg1,...,gul, €1, 81 € G5 ¢

&n

where diag M,,(Gs) is equipped with the partial order relation:

g :=diag[g1,...,gul, h := diag[hy, ..., h,] € diag M,,(Gs),

g=h < g<h foreveryj=1,...,n

Also, g < h denotes that g < h and g # h; g < h and g; < i for every j = 1,...,n. We
define g := diag|o, ..., 0] in diag M,,(Gs) where ¢ € Gs. For example, 1 = diag[1,...,1] and
0 = diag[o0,...,0].

Definition 1.3 A generalized triangular norm (in short, GTN) on diag M,,(Gs) is an op-
eration ® : diag. M,,(Gs) x diag M,,(Gs) — diag M ,,(G5) satisfying the following condi-
tions:
(1) (Vg ediagM,(G5))(g ® 1 = g) (boundary condition);

(11) (¥(g, h) € (diag M,,(G5))?)(g ® h = h ® g) (commutativity);

(1) (¥(g,h,v) € (diag M,,(G5))*)(g ® (h ® v) = (g ® h) ® v) (associativity);

(tv) (Y(g,h,v,k) € (diag M,,(G5))*)(g < h;andv < k = g ® v < h ® k) (monotonic-

ity).

For every g, h € diag M,,(Gs) and every sequences {g;} and {hi} converging to g and h
suppose we have

lim(g, ® h) =g ® h,

then ® on diag M,,(Gs) is continuous GTN (in short, CGTN). Now we present some ex-
amples of CGTN.
(1) Define ® 4 : diag M,,(Gs) x diag M ,(Gs) — diag M ,(Gs), such that

g®_ 4 h=diaglg,...,g.] ® 4 diaglhy,..., h,]

= diag[min{gl,hl}, . ..,min{gn,h,,}],

then ® 4 is CGTN (minimum CGTN).
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(£2) Define ® o : diag M,,(Gs) x diag M,,(G5) — diag M,,(G5), such that
g ® o h =diaglg,...,g,] ® » diaglhy, ..., h,] = diag[g1.ln,...,g,-h,],

then ®  is CGTN (product CGTN).
(£3) Define ® ¢ : diag M ,(Gs) x diag M,,(G5) — diag M,,(Gs), such that

g ®¢ h =diag(gy,...,g,] ®¢ diaglh,..., hy,]
= diag[max{gl +h; —1,0},...,max{g, + h, — 1,0}],
then ® ¢ is CGTN (Lukasiewicz CGTN).

Note that I_U'Zlgj =g ®---®gy,, forg,...,g, € Gs and ® 4 = /\. Now we present some
numerical examples:

di 6731 ® . di 2043
1a R ) 1a Y T
Bl 779w | P8 500 g

I
1
NI
N=1hN]|
W
$
(Al e}
o
N
I
o
s
&
Q
| —
|
L
|
| w
IS

—_
®|w

7
5 0 12 12 3
= 9 :d. )0; y |y
©2 lag[% 28 81|

ENEH
N

6 2
7 5
z 0 9 9 3
- 9 =di —,0,—,=|.
3| s lag[afs 28 8}
3
1 8
Then we get
d 3 l1l® 4d 0 43
14, R ] 14, Y TH o
879 o C1ag 7’8
o d 6 7 3 1] @0 di 2 0 4 3
14, s A ] 14, oY Ty O
Bl 779w |P7Me 5% 7y
o di 673 1] @ di 2 4 3
14, R R ) 1a Y, T
S A ] I A

Suppose W is a vector space and ? €(Gy) forneN, _g“) = (15-+-,¢n), in which ¢ € G,

- - —
forall j=1,...,n Note that 0 < ¢ ifandonlyif0<¢;, Vj=1,...,mand { —> oo is
equivalent to §; — oo, forall j=1,...,n.
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We denote the set of matrix valued fuzzy set (MVE-set) by W. Now v € ¥ means that
YW x (Go)" — diag M,,(G3) satisfies the following conditions:

(C1)  is continuous;

(C2) ¥ (w,-)is non-decreasing, where w € W;

(C3) hm?—>+oo w(a),?) =1, where w € W.

In ¥ we define < as follows:

_)—3

—
v 3Ix = w(w,?)ﬁx(w,é“'): VoeWand ¢, €(G)".

Definition 1.4 Consider the CGTN ®, a vector space YV and MVF-set % : W x (Gy)" —
diag M,,(Gs). In this case, we define a matrix valued fuzzy normed space (MVFN-space)
W, 7, ®) as
— - -
(81) S(w, ¢)=1,forall ¢ > 0 ifand onlyif w=0;
— —

(82) S(h, T) =S (o) foralloe W, T > G and heC with h70;

(S3) S+, T +0)> Flw, C)®.FW, ¢ ) forallw,0 e Wand 2, ¢ > 0.
(S lim S, T)=1,forallwe W,

A complete MVEN-space is called matrix valued fuzzy Banach space (or MVFB-space).
For example the MVF-set .7,

S ||w||> 0 ( ||w||) ( ||w||)}
S ) = diag| B (1), 82 o212l g (-1l ],
@ ¢) lag[ “( o ool UG

is a matrix valued fuzzy norm, where ? € (G2)*, Ex, R € G3, is the one-parameter Mittag
Leffler function and (W, ., ®_4) is an MVFN-space; here (W, | - ||) is a normed linear
space.

The approximation of functional equations was studied in MVEN-spaces, fuzzy metric
spaces and random multi-normed space [8]. Also stability results for stochastic fractional
differential and integral equations were considered in [2, 3, 9-14].

Theorem 1.5 (Alternative theorem [15, 16]) Let (®,8) be a complete Gy-valued metric
spaceand let T : & — O be a strictly contractive function with the Lipschitz constant g < 1.
Then, for a given element ¢ € P, either

(S(Fr(p, FT+1§0) = 00,

foreach v € N or there is 1y € N such that
(i) 8(I'Te,I'™*1g) < oo, for every T > 1;
(ii) the fixed point U* of T is the convergent point of the sequence {I'* p};
(iii) in the set @* ={U € ® | §(T'™p, V) < oo}, U* is the unique fixed point of T';
(iv) (1-9)3(5,0*) <8(6,TU) for every U € &*.

2 ¢-Hadamard fractional equations
In this section, we begin by introducing the definitions of the ¢-Hadamard-type fractional
integral and the ¢-Hadamard-type fractional derivative of Caputo type.

Finally, we introduce the concept of stability of Ulam—Hyers—Rassias (in short, UHR).
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Definition 2.1 Let (o, 8) be an interval on the real line R, and ¢(¢) be a non-decreasing
and positive monotone function on («, 8], having a continuous derivative ¢'(¢) (denote
first derivative as %(l)(g) on (a,B)). The left-side ¢p-Hadamard-type fractional integral
with order « > 0 and parameter ¥ > 0, of an integrable function 7(s), regarding ¢(¢), on
[a, B] is defined as

1 s
5+Igé)77(§) = % / Q(S‘rt)n(t) dt, (21)

where Q(c,t) = (%)”(log %)K’l %, ¢ € [a, B] and 3 is the Gamma function.
Definition 2.2 ([17]) Let n -1 < k < n with neN. Let J = [«, 8] be an interval such that
—00 <« < B <00,and let n,¢ € C"[a, B] be two functions such that ¢ is non-decreasing
and ¢'(¢) #0, for all ¢ € J. The ¢-Hadamard-type fractional derivative of Caputo type

ffng’(Z)n(g) of a function n of order ¥ > 0 and parameter ¥ > 0 is defined as

HDn(s) = LT Dyn(s), s €l B, (2.2)
where
d n
15 =00 (515 42 ) P )

Consider the ¢-Hadamard fractional Volterra integro-differential equation, defined by

S
Sﬁc%z)n(g)=u(§,n(g))+/o K(s,un) de, (2.3)

wherexk € G2, 0 eGsand u: Gy x W =W, K:G1 x G x W — W.
Let ¥ : W x (Gy)" — diag M ,,(G3) be a matrix valued fuzzy control function. The equa-
tion (2.3) is said to be UHR stable if 5(¢) is a given differentiable function, satisfying

HC ¢
y( ngl:)"(g)—ﬂ(g”?@))—/ ’C(g»un(t))dt»?> = (s, ),

0 0

for ¢ € G5, and we can find a solution 1'(¢) of equation (2.3) such that, for some 3 > 0,

R —
() -1'(c), T) = w(g, %)

Using the fixed point technique (Alternative theorem), we study HUR stability of
the ¢-Hadamard fractional Volterra integro-differential equation (2.3) in MVFB-space
(W,.7,®). Our results can apply to improve recent results [17] and by methods used in
this paper we can extend some fractional Volterra integro-differential equations in MVFB-
spaces [18-20].
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3 Best approximation of a ¢p-Hadamard fractional Volterra integro-differential
equation

In this section, we apply a fixed point technique derived from Theorem 1.5 to study HUR

stability of functional equation (2.3) for more details we refer to [21, 22]. Consider the

MVEB-space (W, ., ®) and MVF-set ¥ : W x (G,)" — diag M,,(G3). We set

@ :={n:G; — W, is differentiable}

and define a mapping é from ® x & to G, by

— —
s(mn') = inf{k € Gy L (DL n(s) - 4Dy (5), ¢ ) @ S (n(s) = n'(s), ¢)

—
%
il/f(S', %)rvnrn/eq)rgegl! é- e(gz)n}.

Theorem 3.1 (®,38) is a complete Gy-valued metric space.

Proof First, we show that (P, §) is a G4-valued metric space.
We show that §(n,7") = 0 if and only if n = . Let 8(n, ) = 0. Then we have

)0 S (n(e)—1'(c), T

)

inf{x € G 7 (HDE n(e) ~HEDEL o (),

—

¢ / - n
i’ﬁ(s‘:T);VTLU ECD,gegl, C G(gz) }ZO;

and so

—
K K / g / - ;
LD () —EDE 0 (), ¢ ) @ L ((5) =), ¢ ) = (g, 7)
for all A € G,. Letting A tend to zero in the above inequality, we get
— —
LD () =D (6), £ ) @ L (0(s) =1 (), ¢ ) =1
and so

S (n(s) - n/(g),?) =1,

thus n(¢) = n'(¢) for every ¢ € Gi, and vice versa. It is straightforward to show §(»,n’) =
8(n',n) for every n,n" € ®. Now let 8(n, p) = £1 € Gy and 8(p, ') = €3 € G5. Then we have

—
?) ®.0 L (n(s) - p(s), ?) =y (g, i)

0 0
y(gicpg(g)ﬁ(g) —gﬂCDZ(zg)P(S'), 0

and

— —
LD () = 8D (), §) @ S (p(S)=1(S) ¢ ) = 9 (g, —>‘

Page 8 of 21
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Then we have

y(é‘icpg’(’i)n(g) —0H+CDZ;’(ZZ)77/(§)7 (01 + Z2)_4“)) ®_u y(n(g) -17'(¢), (0 + Zz)?)
—
z [5’(3?732@)'7@)—fﬂc%’é)p(s),ﬁl )
—
®.u (0 Diinyp(&) =0 Dy (), 42 ¢ )]
— , —
®.u [L ()= p() 1) @0 L (p(s) -1 (5), 2 )]
— —

—
=1ﬂ(§, ¢ ),

and so 8(n,n') < £y +4£,. Thus, §(n,n’) < 8(n, p) + 8(p,n’). Now we are ready to prove (P, §)
is complete. Let {ni}x be a Cauchy sequence in (®,§). Let ¢ € G; be fixed. Assume that

o € (G2)" and Q € G¢ are arbitrary and consider ? € (G,)" such that W(g,?) -1-Q.

- =
Fore ¢ < o choose k” € N such that
o) <&, Yk K =K'

Then

L (FDS ni(6) = DL e (), @) @ S (n(s) =1/ (5), 7 )

— —
= L (0 Dyiym(s) =D (s),e ¢ ) @ S (n(s) = m'(s),e )
—
=v(s ¢)
>1-Q.

Then

—_—
L (D) - Dy e (5), @) = 1-Q

and

y(’?k(g) - nk’(g)) ?) >1- Q’
i.e., the sequence both {n:(s)}x and {gﬂCD;’(z)nk(g)}k are Cauchy in complete space
W, 7, ®) on compact set Gy, so they are uniformly convergent to the mapping n : G; —
W and g{cDg’(Z)n, respectively. The uniform convergence leads us to the fact that 7 is dif-

ferentiable, i.e., an element of ® and then (®, §) is complete. O

Now we are ready to study UHR stability of the ¢p-Hadamard fractional Volterra integro-
differential equation (2.3) and get the best approximation with better estimate for the

pseudo-¢-Hadamard fractional Volterra integro-differential equation.
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Theorem 3.2 Let (W,.,®) be an MVFB-space and ®,, ©,, O3, Q4 and & be posi-
tive constant such that max[®1, 9,03, ©104, ©,0304] < 0.5. Assume that the continuous
mappings L : Gy X W - W, K: G x Gi x W — W with MVF-set ¢ : W x (Gy)" —
diag M,,(Gs) satisfy

N
S (1(s:n(s)) - (s, n'(s)), ?) > Y(n(g) -17'(s), %) (3.1)
N —
F(K(60n0) = K(c,6n'©), T ) = y(mz) —70), @iz) <q (3.2)
. > £C
nty0,0) = w(;, ®—3), (3.3)
and
— — — 7
S E) = T, impliesthat #(ET00. ) = A (0.5 ) G

foreveryc € Gi,n,n : G — Wand ? € (Go)". Let y : Gy — W be a differentiable function
satisfying

S
y(ﬁcpzk’i)y(g)—u(g,y(g))—/0 K(s,ty () dt,?) = y(c, 7 ), (3.5)

forevery ¢ € G, and ? € (G2)". Then we have a unique differentiable function y, : G; — W
such that

S
1D 6 = s o) + [ Kol v ) de (36)
0
and
HC ykc,9 HC yic,9 g g
L0 Dyieyy(§) =0 Diyiyvo(), ¢ ) ®.r 7 (v(s) = wols), ¢ ) (3.7)

—
(1-2max[©, 0,03,0,04, O,0304]) ¢
max[1, ©4] ’

> I/f(g,

—_—
forevery ¢ € Gy and ¢ €(Gy)".
Proof We set

® := {n: G — W, uis differentiable}

and introduce the G;-valued metric on ® as
AN . HC k0 HC -y, % 7 e ’ g
8(mn') =infyr € Go: 7 (G- Dyilyn(s) =6 Dy (6), &) @ < (n(s) =1/ (5), ¢)
—
¢ / g p
i w<§, T)rvr)in S (Drg S gl! g € (g2) }

By Theorem 3.1, we have (®, ) is a complete G,-valued metric space.

Page 10 of 21
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Now we define the mapping I" from & to ® by
s
L (n(s) = 0 Ty (1(60©)) + 6 Ty, (fo K(,@,n(@)) dw), (3.8)

wherek € G2, 9 € G5, u: G1 x W = W, K:G1 x Gy x W — W. We prove I is a strictly
contractive mapping. Let n,n" € ®, A € G, and §(n, ') < €, then we have

— —
L (FEDSL () = DL (6)e &) @.a S (n() =1 (S),€ ¢ )
> 1//(5"?)’ Vnr n/ € q>; g € gl)? € (QZ)H-
Using properties (S2) and (S3) of Definition 1.4 and (3.8), we have
—
S (DT (()) = (< Dyigy T ((5))), 2€ ¢ ) 39
—
®. 7 (C(1(5)) - T (n'(5)),2€ ¢)

s —
= Y([u«(g,n(g)) - 1(s.'(s))] +/0 [K(s,6n®) =K (s, 60" (0)] de,2€ ¢ )
5.0 (B3l 1(0) - (s (6)

50 ([ T(n0) - Klson0)] )26 )

=L (n(sn(s)) - u(g,n’(g))f?)
@%y(ﬁﬁnummm—ngm#mnmf?)
5. 7 (BT ({0 n0) = 107 )€ O )

®.0 Y(SIJZQ’Z) (/0 [K(6sn(s) - K(us,1'(6))] dg)f?)

In the last part of (3.9) there are four formulas, in the next steps we work on them to
get new formulas derived from the control function . Let 0= E; < B3 < --- < Eg = ¢,
AEi = E,‘ - Ei—l = i, i= 1,2,...,]1( and ||AE|| = maxlfifk(AE,').

Step one. From (3.1) we have

—
S (n(s:n(s)) - ul(s, n/(g)),E?) > 5”(77(;) -1'(s), %) (3.10)
(D)

Step two. Using (S2) and (53) of Definition 1.4, the continuity property of MVFE-set .,
(3.2) and (3.3), we get

S —
y(/o [K(s,un0) -K(s,un'()]due ¢ ) (3.11)

k —
- y(AléInnqo Z[’C(g, g,1(8)) -K(s, 8,1 (E) )A€ ¢ )
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k

= ”Alérlhy(Z[lc(g, g, 1(8)) - K(s, €, v(E))]|AE, )
j=1

—

¢

€

k
> ”Além_)o/\f([lC(g, g,1(8)) - K(s, 8 n'(E)]|AE: ?>
j=1

) ke g“
> alé’lgfl y<lc(§’ 6r 77(6)) - (§¢8 n (5)) %_ )

= z“52191“15’('7(3) n'(0), ®—2§>

Step three. Using (3.4) and (3.10), we get

—>

ST (1(60©) - 1L ©), € ) = w(; —®f®4). (3.12)
Step four. Using (3.4) and (3.11), we get
H . N
5”( I’ (/ [K(v.n(@)) —’C(t:w,n/(w))]dw)e ;) (3.13)
o+ 0

Form (3.9), (3.10), (3.11), (3.12) and (3.13), we have
—
7 (or Dy (1(9) = HEDEL T (1/(6)), 2€ € ) (3.14)
%
¢)
—
¢

7 7 7
= 1ﬁ<§, 0, >®// 'ﬁ(g, C) ®3> ®k/ﬂw<§’ ®1®4> B w@’M)

—

®. S (T(n(s)) -T(1'(5)),2€

v, J ’
- max[0;, 0,03, 0,04, ©20304]
and so
HC ~k, K, ’ g
7 (o Dy T (n(5)) = o< Dy T (' (6))e ¢ ) (3.13)

®.0 7 (T(1() -T(n(5))eC)

—

vl ‘ ’
- 2max[01, 0,603,004, 0,030,]

Page 12 of 21
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which implies that

8(T(n),T(n')) < 2max[O1, 0,03, 0104, ©,030,]¢, (3.16)
and so
S(F(n), F(n/)) < 2max[®1, @2@3, @1@4, @2@3@4]8(77, T],). (317)

Then I is a strictly contractive mapping with the Lipschitz constant 2max[®;, ®,03,
0104,0,030,].
Let y € @, we show that §(I'(y), y) < co. Using (3.4) and (3.5) we get

FED M) - 1) T ) &t Z(T((9) - 1(6), D)
< 5 —
= y(,u(g,y(g)) + /0 K(s,ty©)di— 5Dy v (o), ¢ )
®.4 y(SiI;e’; (1L @) +5 Ty, ( / Ko,y (@) dw)
BT 0.7

S
= Y(M(g,y(g)) +/0 K(s:tv@®) dt—éﬁCD;’(i)V(g),?)

L —
o (1T 1oy )+ [ Klomn v o) der 103710 ] 7 )
0
—

- ¢
EI/f(g, ¢ )®‘//l 1ﬁ<§,®—4)

—
> 1/,<§, S S ]), (3.18)

max[1, ®4
%
for every ¢ € (Gy)". Then we have §(I'(y), ¥) < max[1, ®4] < co.
Now Theorem 1.5 enables us to find an element y; in @ satisfying the following:
(1) yoisafixed point of T, i.e.,
10(s) = T'(v0(s)) (3.19)
L
= S{I&Z) ((L o)) + é{IgEZ) (/0 K(u @, yo(w)) dw),
which is unique in the set

* = {n € @:S(F(y),n) < oo}

Taking gﬂcD(’;’@) from (3.19) we get

9
HEDED 0(6) = (5, 10(9) + /0 K (et vo(0) o (3.20)
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wherek € G2, 9 €Gs, u:G1 x W =W, K:G1 x Gi x W — W.
(2) §(I'*(y),y0) > 0as T — oo.

1 max[1,04] .
(3) 8(¥, ) = Trmmer,0,05,01608:0500 0L (V) V) < Trmnor,0,05 01650050, Which
implies that
—
¢

FEHEDE? v () HE DL yo(6), T ) @ 7 (v(S) = 10(6), € ) (321)

S

%
(1 -2max[@,0,03,0104,0,030,]) ¢ )

= ]//(g’ max[1, ©,]

e
for every ¢ € Gy and ¢ €(Gy)".
Now we show that the fixed point in ®* is unique. Let y§ be an element of ® satisfying
(3.6) and (3.7), we prove that y; = ¥ and y; € *. From (3.6) we get

9
0Dy 15(6) = (s, v5(6)) + /0 K(suy50)de (322)
and so
Yo(s) = 6Ly 1 (6 v5(0) +{)’+I(,§;f.)/ Ko, yy(@)) dw =T (y(s)),
0

wherek € G2, 0 € G5, u: Gi x W—->W,K:G1 x G x W = W.
Now we show that

vo€{ne®:8(I(y).n) < oo},

1-2max[01,0203,0104,020304]

i.e, 8(T(y),yp) <o00. We set 6 = , from (3.7) we get

max[1,04]
FEDEL v (&) HEDEL yo(6), T ) ®oae S () - %), € ) (3.23)
—
>Y(s5,0¢),
%
for every ¢ € Gy and ¢ €(Gy)".
From (3.1) and (3.23) we get
—
/ g / ¢
S (s, v(9) - (s, 7(s)), ¢ ) = Y(y(g) - %) ®—1) (3.24)
7
i 1// (5‘; 9 ®_1> ]
also, from (3.2) and (3.23) we get
—
/ - ’ ;
S (607 0) - K(r010), T) = y(ﬂo e @—2) (3.25)

Page 14 of 21
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%
for every ¢ € G1,t < ¢ and ¢ € (Gy)". Now, using step two and (3.25), we get

9
‘ g T ¢
y(/g [K(s,6v7W) =K (s uv50)]du ¢ ) > w(g, ®2®3) (3.26)

7
> w<§,6’®2®3).

Using the triangular inequality (S3), (3.24) and (3.26) we get

S —
Y(M(s, () — (s, vo(s)) + /0 [K(s,6y®)-K(s,6v5(0)]dun2¢ >

= 7 (1(s, 7)) - (6 1(), T )

S
®.0 y( [l 70) - Klsirio)] e ?)

7 7
= w(g"g@_) ®“”(§’9®2®3>

¢
f‘”(“m)’ (3.27)

and so

s —
f(u(g,y(g)) - (s, 75()) +/0 [K(s,6v(0) - K(s,6vs0)]ds, g“)

—

¢
=¥ (9 smaioyer0m ) (3.28)
We apply (3.4) to get
7 (8258 e r00) - )] .

AT (/0 [K (i, (@) - Kb, yi@)] dw), ?)
ﬁ

¢
> ,0 )
- 1p<§ 2®4max[®1,®2®3]>

for every ¢ € Gy, < ¢ and ? € (Ga)".
Using (3.28) and (3.29) we get
(DY [T (v(9) - vo(9)], Yo (1) - ¥(6) € )

s —
= Y(M(g,y(g)) - (s, 7(s)) +/0 [K(s,6v©) -K(s,6v50)]de ¢ )

. f”(éﬂ:f;@) [14(0y @) = (6 750)]

Page 15 of 21
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+ {)izg(;) (/0 [IC(L,ZU, y(w)) - IC(L, w,yo/(w))] dw),?)

—
¢ ¢
= 1/’(g’ezxnax[@l,(92@3]> ®u w<§’92®4max[®1,®2®3]>

7
2max[®, ©,03](1 + @4))’

tl/f(g,@

which implies that §(I'(y), ) < w

< 00, then yj € &*. O

4 Best approximation of ¢p-Hadamard fractional Volterra integral equation
Now we are ready to study UHR stability of the ¢-Hadamard fractional Volterra integral

equation

n(s) = u(s,n(s)) + G Iyt K(s,1,n(), (4.1)

where k € G2, 0 € G5, u:Gi x W — W, K:G; x G x W — W and get the best ap-
proximation with better estimate for the pseudo-¢-Hadamard fractional Volterra integral

equation.

Theorem 4.1 Let (W,.”,®) be an MVFB-space and ©;, ©,, O3, ©O4 and & be posi-
tive constant such that max[®1, 0,03, 0104, O,0304] < 0.5. Assume that the continuous
mappings L : Gy x W — W, K: Gy x G x W — W with MVF-set ¢ : W x (Gy)" —
diag M,,(Gs) satisfy (3.1), (3.2), (3.3) and (3.4).

Let y : G1 — W be a differentiable function satisfying

—
¢

L(r()-n(sv() - STy K(s,uw®), ¢ ) = ¥(s, 7), (4.2)

—
forevery ¢ € Gyand ¢ € (Gy)". Then we have a unique differentiable function yy : Gy — W
such that

v0(s) = (s, v0(5)) + -T2 K (5,10 (1)) (4.3)

and

—
Z(v(s)=rl(s) ¢)

—
(1-2max[O1, 0203,010,, ©,0304]) ¢ >

= 1#(5‘, max|[1, O4]

forevery ¢ € Gy and ? € (Gy)".

Proof We set

® := {n:G; — W, is differentiable}
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and introduce the G,-valued metric on ® as
8(n,n')
—
. ! ﬁ C / ﬁ n
ZIDf{)\. Egz.y(n(g)—ﬂ (g), é- ) > lﬁ(s‘,T),Vﬂ;ﬂ € CD,S‘ € glx ; € (g2) }'

By Theorem 3.1, we have (®, ) is a complete G4-valued metric space.
Now we define the mapping I from & to ® by

F(’?(S‘)) = M(s‘, 77(5‘)) + {){I;EZ) (/C(;, L U(t)))» (45)

wherek € G2, 9 € G5, u: G1 x W =W, K:G; x Gy x W — W. We prove I is a strictly
contractive mapping. Let n,n" € ®, 1 € G, and §(n,1’) < €, then we have

S (n(s) - n’(g),e?) = U(, £) Y ed,ceG,C €G)

Using properties (52) and (53) of Definition 1.4, (3.1), (3.2), (3.3), (3.4) and (4.5), we have

ST (1)) - T (7<), 26 7 )
=7 ([1(s:m(6)) = (s,m'(5))]
+ S{Ig@)[lC(g, { n(L)) - /C(s‘, L n’(t))]» 26?)

—

=S (u(s,n(s)) - n(s, n’(;)),e?) ®.2 7 (K(s,un0)-K(s,,n'(),€¢)

¢ <
o) = v(s56)

—

Y

¢
iw<9;@aiiiéﬁ>
and so
R 7
AN TN ) =5 3 )

for every ¢ € Gy and ¢ € (Go)". Then
§(T(),T(n)) < 2max[O1, 0,04]¢,

and so
§(T(),T(n)) < 2max[O1,020415(n, 7).

Then T is a strictly contractive function with the Lipschitz constant 2 max[®;, ©,04].
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Let y € ®. Then we show that §(I'(y), ) < co. Using (4.2) we get

LT (y(s) - v(s) 7) = (s 7(9) + T K (s by (0) = v (5), Fe

)
—
>y¥(s, ¢)

9
for every ¢ €(Gy)". Then we have §(I'(y),y) < 1.
Now Theorem 1.5 enables us to find an element y; in @ satisfying the following:
(1) yoisafixed pointof T, i.e.,

¥0(s) = T (0(s))
= (s, 10(5)) + -T2 (K (5,1, 10(0)),

which is unique in the set

* = {77 € CID:S(F(y),n) < oo}

(2) 8('"(y),y0) => 0as T — oc;
(3) 8(y,y0) < mtﬁ(f‘(y),y) < m, which implies that

(€)= 10(s) €)= ¥ (s, (1 - 2max[©y, ©,04]) 7 ),

for every ¢ € G; and ? € (Gy)". |

5 Application

In this section, we apply the main results to solving some examples.

Example 5.1 Let (R,.,®) be an MVFB-space. Consider 7,1’ : G; — R and define
u(c,n(c)) = ln\/m . Let E.; be the two-parameter Mittag-Leffler function in which
M(c) >0and N(d) >0, define £: G; x G; x R — Ras K(s,,n(t)) = E.a(c —)n(t) for every
¢eGand <c¢.
Then we have
—
F(K(66n0) = K (60 ©), € ) = (Eaals - 0[n©) -], ¢

—

¢
y(”(‘)'”(‘) Eca(s )|)

=\ 0@ -, —)

)

L (1(5n(6) - (5,1 (9), T ) = (n/|n(e)] ~Iny/ ()], T

y<ln In(s)l ?)
7' (s)l

(e () )
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Y

y( In(s)] _1’?>
In'(s)l
zy<\/|n(g -VIn'(s) ’—>>

min(|n'(s)!)

- Y(n(g) (o), %)

for some A € G, and C € Gs. Consider the MVEF-set ¥ : G; x (G3)* — diag M4(Gs), that is
defined as follows:

- . [s] & [s] [s]
) :d E 1E - )
vie &) lag[ < 41) Rk exp( cs> “( gﬂ

%
forevery ¢ € Gy, ¢ €(G2)*and R € G.
Let y : G1 — R be a differentiable function satisfying

<HCDK”y(§ ~In/|y ()| / Ea(c—0y@)dy, ¢ >

= v(s, <: )

—
for every ¢ € G; and ¢ € (G,)*. Now Theorem 3.2 implies that, if max[C, A©3,00,,
AB®30,] < 0.5, we can find a unique differentiable function y, : G; — R such that

S
HEDED yo(c) = Iny/ o) + / Eou(s - )y0(0) do
0
and

S D () ~EDEL yo(6), T ) .0 7 (1(8) - 10(s), € )

o < (1—2max[C,A®3,E®4,A®3®4]) C )
=vis max[1, ®4] ’

%
foreveryc € Gy and ¢ € (Ga)*.

Example 5.2 Let (R,,®) be an MVFB-space. Consider 1,1’ : G; — R and define
u(c,n(c)) = ln\/m . Let E_; be the two-parameter Mittag-Leffler function, in which
R(c) >0and R(d) >0, define £ : G; x G x R — Ras K(s,t,n(t) = Ecqa(c — )n(t) for every
ceGiand <cg.
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Let ¥ : G, x (Gy)* — diag M4(G3) be defined as follows:

- I§I> & ( |§|> < lgl)}
y :d E -, ) - )E - )
vie &) 1ag|: R( 1) G+lgl P 3 " Ca

for every ¢ € Gy, _;) € (Gy)* and ¥ € Gs. Let y : G — R be a differentiable function satis-
fying

—_
¢

F(7(&) = Iny/|n(6)| - T Eeals 070, T ) = (s, D),

—
for every ¢ € G and ¢ € (G,)*. Now Theorem 4.1 implies that, if max[C, A®,] < 0.5, we

can find a unique differentiable function y, : G; — R such that

vo(s) =Iny/|n(5)] + £ Z5i Ecals — )y ()
and

—
¢

(1 -2max[E,A®4])?)

L(r(§)=rls), &)= W(g’ max|[1, O]

—
for every ¢ € Gy and ¢ € (Go)*.

6 Conclusions

In this paper, we presented an example of fuzzy normed space by means of the Mittag-
Leffler function. Next, we extended the concept of fuzzy normed space to a matrix valued
fuzzy normed space and also we applied the Alternative fixed point theorem to investigat-
ing Ulam—Hyers—Rassias stability of some fractional equations in MVFB-spaces. We de-
fined a class of matrix valued fuzzy control functions for stabilizing both the ¢-Hadamard
fractional Volterra integro-differential equation and the ¢-Hadamard fractional Volterra
integral equation in MVFB-spaces and we have obtained best approximation for this
kind of fractional equations. Finally, as an application, we investigated the Ulam—Hyers—
Rassias stability using a matrix valued fuzzy control function obtained through the Mittag-

Leffler function.

Acknowledgements
The authors are thankful to the area editor and referees for giving valuable comments and suggestions.

Funding
No funding.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the
sequence alignment, and read and approved the final manuscript.



Rezaei Aderyani and Saadati Advances in Difference Equations (2021) 2021:154 Page 21 of 21

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 9 January 2021 Accepted: 15 February 2021 Published online: 04 March 2021

References
1. Almeida, R, Tavares, D, Torres, D.F.M.: The Variable-Order Fractional Calculus of Variations. Springer Briefs in Applied
Sciences and Technology. Springer, Cham (2019)
2. El-Sayed, AM.A, Gaafar, FM.: Existence and uniqueness of solution for Sturm-Liouville fractional differential equation
with multi-point boundary condition via Caputo derivative. Adv. Differ. Equ. 2019, 46 (2019)
3. Jiang, J, O'Regan, D, Xu, J,, Fu, Z.: Positive solutions for a system of nonlinear Hadamard fractional differential
equations involving coupled integral boundary conditions. J. Inequal. Appl. 2019, 204 (2019)
4. Hadzic, O, Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its Applications, vol. 536.
Kluwer Academic, Dordrecht (2001)
5. Klement, EP, Mesiar, R, Pap, E.: Triangular Norms. Trends in Logic-Studia Logica Library, vol. 8. Kluwer Academic,
Dordrecht (2000)
6. Schweizer, B, Sklar, A.: Probabilistic Metric Spaces. North-Holland Series in Probability and Applied Mathematics.
North-Holland, New York (1983)
7. Serstnev, AN.: On the notion of a random normed space. Dokl. Akad. Nauk SSSR 149, 280-283 (1963)
8. Pap, E. Park, C, Saadati, R.: Additive o -random operator inequality and rhom-derivations in fuzzy Banach algebras.
Sci. Bull. “Politeh.” Univ. Buchar, Ser. A, Appl. Math. Phys. 82, 3-14 (2020)
9. Constantinescu, C.D,, Ramirez, J.M., Zhu, W.R:: An application of fractional differential equations to risk theory. Finance
Stoch. 23, 1001-1024 (2019)
10. Asaduzzaman, M, Kilicman, A., Ali, M.Z.: Presence and diversity of positive solutions for a Caputo-type fractional order
nonlinear differential equation with an advanced argument. J. Math. Comput. Sci. 23, 230-244 (2021)
11. Chaharpashlou, R, Saadati, R, Atangana, A.: Ulam-Hyers—Rassias stability for nonlinear W-Hilfer stochastic fractional
differential equation with uncertainty. Adv. Differ. Equ. 2020, 339 (2020)
12. Madadi, M., Saadati, R, Park, C,, Rassias, J.M.: Stochastic Lie bracket (derivation, derivation) in MB-algebras. J. Inequal.
Appl. 2020, 141 (2020)
13. Jung, S, Rassias, M.T.,, Mortici, C.: On a functional equation of trigonometric type. Appl. Math. Comput. 252, 294-303
(2015)
14. Park, C, Rassias, M.T.. Additive functional equations and partial multipliers in C*-algebras. Rev. R. Acad. Cienc. Exactas
Fis. Nat,, Ser. A Mat. 113, 2261-2275 (2019)
15. Cadariu, L, Radu, V.: Fixed points and the stability of Jensen’s functional equation. J. Inequal. Pure Appl. Math. 4, 1
(2003)
16. Diaz, J.B, Margolis, B.: A fixed point theorem of the alternative, for contractions on a generalized complete metric
space. Bull. Am. Math. Soc. 74, 305-309 (1968)
17. Sousa, J.V.da C, Fabio, G.R, de Oliveira, E.C.: Stability of the fractional Volterra integro-differential equation by means
of W-Hilfer operator. Math. Methods Appl. Sci. 42, 3033-3043 (2019)
18. El-Sayed, AM.A, Al-Issa, S.M.: Existence of integrable solutions for integro-differential inclusions of fractional order;
coupled system approach. J. Nonlinear Sci. Appl. 13, 180-186 (2020)
19. Khan, O, Aradi, S, Saif, M.: Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler
function. J. Math. Comput. Sci. 20, 122-130 (2020)
20. Sene, N.: Global asymptotic stability of the fractional differential equations. J. Nonlinear Sci. Appl. 13, 171-175 (2020)
21. Cadariu, L, Radu, V.: Fixed point methods for the generalized stability of functional equations in a single variable.
Fixed Point Theory Appl. 2008, Article ID 749392 (2008)
22. Mihet, D, Radu, V: On the stability of the additive Cauchy functional equation in random normed spaces. J. Math.
Anal. Appl. 343, 567-572 (2008)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Best approximations of the phi-Hadamard fractional Volterra integro-differential equation by matrix valued fuzzy control functions
	Abstract
	MSC
	Keywords

	Introduction and preliminaries
	phi-Hadamard fractional equations
	Best approximation of a phi-Hadamard fractional Volterra integro-differential equation
	Best approximation of phi-Hadamard fractional Volterra integral equation
	Application
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Publisher's Note
	References


