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1 Introduction

We consider the nonlinear system of fractional differential equations

D§ x(t) +f(t,x(t), y(t),lgix(t),lgiy(t)) =0, te(0,1),

o (S)
DY y(0) + g(t,2(8), y(0), 12x(2), I2¥(1)) = 0, ¢ € (0,1),
with the coupled nonlocal boundary conditions
20)=2/(0) = =2"2(0)=0,  DPx(1) = Y2, fy Dy.y() dHie), 50)
§(0)=y(0)=---=y"2(0)=0,  DPy(1) =L, fo Dyx(t)dKi(2),

where a, e R, a e (n—1,nl,Bem—-1,ml,nnmeN, n>2 m=>2,6,0,01,00 >0,
pgeN,yieRforali=0,...,p,0<y1<yr<---<yp<B-11el0,a—-1),5cRforall
i=0,...,4,0<81 <8< <fy<a—1,8€[0,6-1), D{;+ denotes the Riemann—Liouville
derivative of order k (for k = «, B8, v0,Vi,i = 1,...,p0, 80,810 = 1,...,9), Ig+ is the Riemann—
Liouville integral of order ¢ (for ¢ = 0y, 01,6,,03), f and g are nonlinear functions, and the
integrals from the boundary conditions (BC) are Riemann-Stieltjes integrals with H; for
i=1,...,pand K; for i = 1,...,q functions of bounded variation.
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In this paper, we show the existence and uniqueness of solutions for problem (S)—(BC),
by applying standard fixed point theorems. We prove the existence of a unique solution
by using the Banach contraction mapping principle, and five existence results by applying
the Leray—Schauder alternative theorem, the Krasnosel'skii theorem for the sum of two
operators (for two results), the Schauder fixed point theorem, and the nonlinear alterna-
tive of Leray—Schauder-type, respectively. The methods used for proofs are standard, but
their applications in this framework of systems of coupled Riemann—Liouville fractional
boundary value problems are new.

In the last decades, many authors investigated the existence of positive solutions for
Riemann-Liouville fractional differential equations and systems of Riemann-Liouville
fractional differential equations, subject to nonlocal boundary conditions. For example,

the existence and multiplicity of positive solutions for the equation
D, u(t) +f(t,u(t)) =0, te€(0,1), (E)

with the nonlocal boundary conditions
mooel
u(0) = (0)=-=u"20)=0, Du(l)=) / DS u(t) dH,(), (BCy)
i=1 Y0

wherea e R,oe(n-1Ln,n,meN,n>3,8,ecRforalli=0,...,m0< 1 <fa<---<
Bm < Bo < a — 1, and where the function f may change sign and be singular in the points
¢t = 0,1 and/or in the space variable i, was studied in the paper [1]. In the proof of the main
results of [1], the authors used various height functions of the nonlinearity of the equation
defined on special bounded sets, some properties of the corresponding Green functions,
and two theorems from the fixed point index theory. Equation (E) with a positive param-
eter ), supplemented with the boundary conditions

w(0)=1/(0)=---=u"2(0)=0,  Df,u(1)=_ aDf,u(&), (BC))
i=1

where §; eR,i=1,...,m,0<& <--- <&, <1, pgeR, pe[l,n-2], q€[0,p], was in-
vestigated in [16]. In this paper, the nonlinearity f changes sign and it is singular only for
t = 0,1, while the authors used the Guo—Krasnosel’skii fixed point theorem to prove the
existence of positive solutions when the parameter belongs to various intervals. For some
recent results on the existence, nonexistence, and multiplicity of solutions for fractional
differential equations and systems of fractional differential equations subject to various
boundary conditions, we refer the reader to the monographs [15, 38] and the papers [1-
6,14, 17-19, 23-25, 30, 35—37]. We also mention the books [8-10, 20, 21, 29, 31, 32], and
the papers [7, 11-13, 2628, 33], for applications of the fractional differential equations in
various disciplines.

The main features of the present work are the following. Firstly, the system and the cou-
pled boundary conditions contain Riemann-Liouville fractional derivatives, and secondly,
the nonlinearities in the system depend not only on the unknown functions x and y, but
also on the Riemann—-Liouville fractional integrals of x and y. Thirdly, the obtained solu-
tion (x,y) is a general one which can change sign. Section 2 contains an auxiliary lemma
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which is important to establish our main theorems, some notations, and the operator as-
sociated to our problem. The main existence results are presented in Sect. 3, and in Sect. 4

we give some illustrative examples.

2 Auxiliary results

We consider here the system of fractional differential equations

‘Dgﬁrx(t) v h(t) =0, te(01), o

Db y(t) +k(t) =0, te(0,1),

with the boundary conditions (BC), where &, k € C(0,1) N L!(0,1). We denote by

» q
Bt IO ot 3 s r [,

. r@re
F(@—0)T (B~ d0)

- A1 A

By using similar arguments as those used in the proof of Lemma 2.1 from [34], we obtain
the following result.

Lemma 2.1 IfA #0, then the unique solution (x,y) € C[0,1] x C[0, 1] of problem (1)—(BC)
is given by

_ L ‘ _ ool
x(t)__F(oz)/o(t $)““h(s)ds

_ -1
[wa T 5- 50)/ A

14

B I'(B) 1 1( s IV d)d |
F(ﬁ—So);F(ﬂ—m)/o /0(5 ke v | dHG)

/ (1 - s)f~%"Lk(s) ds

tot—l

F(ﬂ 50)
q . .
(B g [ ([o-or o) axo) |
i=1 i
€[0,1],
| (2)
[ — _ 1371
o) = 1"(/3)/ (t—9)""k(s)ds
th-1 M«
t |:F(a VO)F(,B 50)/ (1 S),B 30— lk(S)ds

F(a) q aé,l
T-w) r(a 5)/(/ h(f)df>d1<()

f s)evo- lh (s)ds
[(a - Vo)

Page 3 of 25
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15

14 1 s
- Ay (; ﬁ fo (fo (s— t)ﬁ*Viflk(‘L’) dt) dHi(S))], te[0,1].

Remark 2.1 If u € C[0, 1] then for x >0 we have

’1g+ t)| — F( )’

vt e [0,1],

where [lu]| = sup,¢(o1; [u(?)].

We introduce now the assumption (/1) for problem (S)—(BC) that will be used in our

main results.

J1) o,BeR,aem-1,n,em-1,m,nmeN,n>2,m=>2,6,0,,01,00>0,p,q €
N,y;eRforalli=0,...,p,0<y1 << ---<y<B-1Lyel0,-1),5 R for
alli=0,...,4,0<81 <8< <§g<a-1,8€[0,0—-1),H;:[0,1] > R,i=1,...,p
and K;: [0,1] — R,j=1,...,q are functions of bounded variation, and A #0.

We introduce the following constants:

1 1 1
M=+ o7y M=ty 3T T T+ 1)
M4, = 1 + 71 3 M5 = max{Ml,Mz}, M6 = max{Mg,M4},
F(O’z + 1)
[P r()
"TT(e+1)  |AIT(@ -y + DB -8)
1 (s~ T8 /1 poyict
— 7 i1 dH,
* |A|<; r@-wlh ° )
! 1 ! a—5;
8 ;F(a—8i+l)’/o k)] )
M, = 1 ')

FB+D " TAT (- 7T (B 5+ 1)
. ﬁ (il % /0 1 k)
" (Z R, e
Mo e i Sl ¢ o
" AN (@ - Yo+ 1) (Xq: F(Z((j)&-)

1
/ 277 gKG(s)
n 0

re) b
Mo = Ar(s- So)ZF(ﬂ y,+1)'/ " AHi(s)

1 — T
"TAT(B— 80+ 1) (Zl -

) 3)
)

)
)

1
/ P dH ()
0
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1 1

Mpy=My— ———  My=Mg— ——.
T T e+ 1) P T T

We consider the Banach space X = C[0, 1] with the supremum norm |[|x[| = sup,(g1; [*(£)],
and the Banach space Y = X x X with the norm ||(x, ) ||y = |||l + ||¥]|. We introduce the op-
erator Q: Y — Y defined by Q(u, v) = (Q1 (¢, v), Q2(u, v)) for (1, v) € Y, where the operators
Q1,Qz: Y — X are given by

Quxy)(®) = —m / (6= 51 o (5)ds

. toz—lr(ﬁ
AT (o = y0)T'(B = 80)

tI0(B) L4 1 1( s P— )
- - ! X' d d i
A3 o TG Jy ([, 6= dotde ) ari)

tot—lAl
+ _—
AT (B ~80) Jo

t(x lAl . R
A ( F(Ol 8:) / (/ 5-71) ; xy(f)d":) d[(,-(s)),

Qi )(0) = —%ﬂ) / (£ 913, (5)ds

[ (1 - 571 (s) ds

1
(1 -s)f=01g, (s)ds

(4)

AT (@)  B-fo-1
Y AT(@— o) (B = 80)/ (=87 &y 5)ds

tﬁ_lr(a) q a—§;—-1
_AF(a—yo); (a 5 f(/ (s=7) xy(f)df>d1<(s)

tB1A, 1
+ —_—
AT (@ - y0) Jo

tﬂ—lAz p 1 1 s bt )
i - =15 () dt | dH(s) |,
A (121: F(IB_Vi)./o (/0 (s =) gy(t) dr | dHi(s)

for t € [0,1] and (x,y) € Y, where fxy(s) =f(s,%(s), y(s),Ig}rx(s),Igi ¥(5)), 8y(s) = g(s,x(5), ¥(s),
122 x(s), I72y(s)) for s € [0, 1].

By using Lemma 2.1, we see that (x, y) is a solution of problem (S)—(BC) if and only if
(%,) is a fixed point of operator Q.

(1 - )% 1, (s)ds

3 Existence of solutions

In this section we will give some existence results for the solutions of our problem (S)-
(BC).

Theorem 3.1 Assume that (J1) and

(J2) The functions f,g : [0,1] x R* — R are continuous and there exist Ly, Ly > 0 such
that

4

|f (& w1, 2, s, ua) = f (8, v1,v2,v3,va)| < Ly Z |ui = vil,
i-1
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4

Ig(t, uy, uy, Uz, ug) — (&, v1,va, v3, V4)| <L Z lui = vil,
i=1

forallt €[0,1], u;,vieR,i=1,...,4,
hold. If B := LiM5(M7 + M) + LoMe(Mg + Mio) < 1, then problem (S)—(BC) has a unique
solution (x(t),y(t)), t € [0,1], where Ms, ..., M are given by (3).

Proof We consider the positive number r given by
~ -1
r = [Mo(M7 + Mo) + Mo(Ms + Mo) |[1 — LiMs(M7 + Ms) — LyMe(Ms + Myo) |,

where M, = SUD;c[0,1] If(¢,0,0,0,0)|, Mo = SUPycio1 |g(£,0,0,0,0)|. We define the set B, =
{(%,9) € Y, ||(x,9)|ly <r}and show firstly that Q(B,) C B,. Let (x,y) € B,. By using (J2) and
Remark 2.1, for _}A’xy(t) we deduce the following inequalities:

@] < f (&%), 9(0), Ig:x(2), Ig13(2)) - £(£,0,0,0,0)| + |£(£,0,0,0,0)|

< Li(|x@] + [y®)] + |[I:x0)] + |I7y()]) + Mo

<Ll + i+ =2 Yy
F(91+1) F((71+1)

= Li(Mllx]| + Mallyll) + Mo

< LiMs|(x,p) |, + Mo < LiMsr + Mo, Vit e [0,1].
Arguing as before, we find

800 < |g(tx(2), y(®), I3 %(t), I2y(t)) - g(£,0,0,0,0)| + |g(£,0,0,0,0)]

< Lo(|x(@)] + y@)] + |20 + [152y(0)]) + Mo

<Ll + o+ =2 Y g,
- F(92 + 1) F(Oz + 1)

= Ly(Mslx]l + Mallyll) + Mo

< LyMe| (%) ||, + Mo < LysMer + Mo, ¥t € [0,1].
Then by the definition of operators Q; and Q,, we conclude

1 t
< m/() (¢ — $)* ML Msr + M) ds

. t7'0(B)
|AIT (e = yo)I'(

() &
TIAT (B - 50)ZF(/3 ¥i)

1 (S T(B)
" 1A] (Zl L)

1
5 50) /0 (1 - 8)* " YL, Msr + My) ds
1 s -
/ (/ (s — )P Y LoMer + Mo)dr) dH;(s)
o \Jo

1
/ sP 7 dH(s)
0
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1
/ (1 —8)P~20" YLy Mer + My) ds)

« (71
r'(B-80) Jo

o1 ( r F(ﬂ) /1 P
s dHl(S)
( / S(s — 1) N Mer + M) dr> dK;(s)
0

a\&TE-w

q 1 1
x (Z — 0 0
i=1

)

— L ! _ a1 ta_lr(ﬁ) ! a1
= (L1M5r+M0)[F(a)/O (t—s)"ds+ A 70 _50)/0 1-5s) ds
ta—l )4 F(ﬂ) 1 by
_ i~ dH;
N < ~T(B-7) /0 ’ “

d 1
x (Z i)
i=1 !

+ (L2M6}" + M0)|:

/01 (/OS(S —r)fnt d’) e
/ PV dH (s)

ta—l p F(ﬂ) ( 1 1 o )
—— | (1-s)f g
"l (;F(ﬂ—%) 0 F(ﬂ—5o)/o( S

o #-11(B)
Ca+1) [AIT(x—yo+1I(B - 8p)

)&l

- Ir(B) & 1
+(L2M6”M°)[|A|r(ﬁ SO)ZF(/@ v

=

1 s
; (‘/0 (s — 1) %1 dr) dKi(s)

alr p

|AIC(B - SO)ZF(ﬁ ¥i)

i=1

= (L Msr + M) |:

1
s*7% dK(s)

ta—l )4 F(ﬂ) 1 ey
i~ dH;
N < ~T(B-7) /0 ’ “

L 1

)

sPvi dH;(s)

)], Vvt e [0,1].

e Z. T(B) By
i d f
" TAT(B— 80+ 1) (Xl: L7 /o S A

Therefore we obtain

”Ql(x’y) ”

LI I'(B)
Fla+1)  [AI(a=yo+1I'(B - o)

1 ([« T(B)
+|A|<;F(ﬁ—m) 0 )

(Bl [ o)

~ rg) < 1
+(L2M6”M°)[|A|rﬁ ) TG,

< (LiMsr + M) |:

1
/ SPLAH (s)

1

$%7% dK(s)

P71 dH(5)

Page 7 of 25
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)

1
/ S dH (s)

1 L T(p)
TIAT (- %+1(§:Fﬂ ¥i)

=

= (L1M57‘ + MQ)M7 + (L2M67' + Mo)Ml().

In a similar manner, we deduce

| Q)|
< LM+ My)| —— & a 1 1‘*%11(()
< (L1Msr + My TN VO)Z s
! - F(a) ! a—8;-1
* AT (o — o + 1) (; T(a—-5)|/o s dK;(s)
Y 1 I'(e)
+(L2M6F+Mo)|:]"(,3+1) + AT (o — yo)T' (B =80 + 1) 6)

1
s27%1 K (s)
0

1 (& T
WA(?} 5
14
1
8 (; INCESZ

= (L1M57' + M())Mg + (L2M6}" +]VIO)M8.

)
)

1
sPYi dH;(s)

By relations (5) and (6), we conclude

1R, = Q| + | Qx|
< (LiMsr + Mo)(My + Mo) + (LyMgr + Mo)(Mg + M) = r,

for all (x,y) € B,, which implies that Q(B,) C B
Next we prove that operator Q is a contraction. For (x;,;) € B,, i = 1,2, and for each
t € [0,1], we have

|Q1(x1,51)(8) = Q1 (2, 92)(8) |

1 ! a-1|7 -
< % /(; (t—s) ey (8) —ﬁc2y2(5)} ds

. 711 (B)
| AT (ot = y0)T (B~ 80)
() Sl
|AIT(B = 80) = T(B - v)

i

/ (1 )a Y= llf;clyl(s) f;CZ)’Z(S)|dS

@)

1 s
</ (S - T)ﬂ7y571 |§x1y1 (T) _gxzyz (T)| dT) dHl(s)
0 0

ﬂ4<” r(p) )
+

|A| 1 F(ﬁ - )/i)
1 1 R A
) (m /0 (1 N S)ﬂ_(so_l |gx1y1 (S) —8xayn (S)| ds)

1
/ PN dH ()
0
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1
/ 5171 (s

(S T(B)
N (ZFﬁ Vi)

i=1

1 1
% (; Ca-46)

)

1 s n N
0 ( /0 —— m(r)—ﬁcm(w\dr) dKi(s)

Because

U(%U’l (s) _ﬁczyz (S){
< Ly (|x1(s) = 22(5)| + [31(5) = y2(5)]

+ ylgixl(s) —Igﬁrxg(s)’ + ylgiyl(s) —Igi_)/g(S)’)
<L |l I+ [ ! Il I ! I I
x1 =% + |ly1 =yl + —————|I%1 — %2 + —————||y1 —
=1 1— %2 y1—Y2 T +1) 1= %2 F(o; +1) Y1—)2

= Ly (Myll%1 — 22l + Mallyy = y2ll) < LiMs || Ger 1) — (%2, 72)

’gxlyl (8) = 8rays (5)|
< Ly(|x1(s) = x2(5)| + |y1.(8) = y2(9)]

+ |Igix1(s) —Igixz(s)| + [I5291(s) = Ig22(s)|)

1 1
<L - - _— - _— —
=< z(l|x1 %l + Il yz||+r(02+1)llx1 szI+F(02+1)IIy1 yzll)

= Ly (Msl|x1 — x| + Mallyr = y2ll) < LoMs || Ger, 1) — (%2,72)
the inequality (7) gives us

|Q1(x1,51)(8) = Q1 (2, 72)(8) |
< LiMs || e, y1) = (e, 30) ||
I . ta—lr(lB)
Cle+1)  |AIT(a—yo+ 1)T'(B o)

S TB) | [ g z
Y L 1 g
iy (Zl gy ), o a0 LT sD)

“'T(p) 1
+ LoMe | (%1,51) — (xz’yz)”"|:|A|F(ﬁ 50 Z TG 7,
i=1 ¢

1
/ sPriL dH (s)
0

1

! ~_T®)
TTAIN(B =80+ 1) Zl T -7

i|, vt e [0,1].

Therefore we obtain

Q11 71) — Quz, 30) |

<{L M 1 + ®)
=17 T+ 1) " AN @ —10 + DT(B = 8o)

vy ¥s€[0,1],

vy ¥s€[0,1],

s*7 K (s)

1
P dH;(s)

Page 9 of 25
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/1 B-vi-1 dH;(s) )
)

1
sP7Yi dH,(s)

. T
|A|<§Fﬂ Vi)
< 1 ! o—5;
X(;—F(Oé—55+l)‘,/os i dKi(s)

re) 1
+L2M6[|A|r(ﬁ 3 TG yie

1
/ P AH (s)
0

= (LiM5M; + LyMeMo) | (1, 51) — (%2,32) | -

1 ~ T(B)
TTAI(B =80+ 1) Zl )

j| } 1 91) = (x2,39) |,

In a similar manner, we deduce

1Qa(x1,71) = Qa2 92) |

dim 1 . ')

=17 T+ AT @ -y (B -0 + 1)
1 (L T
(Sl [ ass)
d 1

(S )]

() ! 1 Lo
+ LM s“dK;(s)
' 5[|A|F(a 70) Z

1
a—&i—l d]([(s)

1
sP7Yi dH;(s)

q

1 ')
' |A|r(a—yo+1),21: 5

i=

1
s27%1 K (s)
0

:| } | Gery1) = @2, 30) ||

= (LiM5Ms + LyMeMs) | (x1,y1) — (%2,2) | -

Then by using relations (8) and (9), we obtain

|| Qx1, 1) — Qx2,2) || Y
= | Qu(x1,31) — Qu®2,32)|| + || Qa(®1,31) — Qal2,72) |
< [LiM5(M7 + M) + LyMe(Ms + Mio) ||| (x1,91) — (2, 32) |,

= EH (%1,91) — (xz’y2)”1/‘

By using the condition E < 1, we deduce that operator Q is a contraction. By the Ba-
nach contraction mapping principle, we conclude that operator Q has a unique fixed point

(x,) € B,, which is the unique solution for problem (S)—(BC) on [0, 1]. O

Theorem 3.2 Suppose that (J1) and
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(J3) The functions f,g : [0,1] x R* — R are continuous and there exist real constants
apb;>0,i=0,...,4, and at least one of ay and by is positive, such that

4 4
|f (& w1, 2, 3, ua)| < a0 + Zﬂi|ui|: \g(t, w1, u, w3, ua)| < bo + Zbi|ui|r
i=1 i=1
forallte€[0,1,u; eR,i=1,...,4,

hold. If B, := max{Mlg,MM} <1, where M3 = (al + 0 +1 = ) (M7 + Mg) + (b1 + 0 +1 =—2—) (Mg +
Myg) and My = (ay + F(<71+1 )(M7 +Mo) + (ba + 75y oy +1 =) (Mg + M), then the boundary value
problem (S)—(BC) has at least one solution (x(t),y(t)), t € [0, 1].

Proof We show that operator Q is completely continuous. Because the functions f and g
are continuous, we deduce that the operators Q; and Q, are continuous, and then Q is
a continuous operator. We will prove next that Q is a compact operator, that is, it maps
bounded sets into relatively compact sets. Let 2 C Y be a bounded set. Then there exist
positive constants L3 and L4 such that [ﬁcy(t)| <Lz and |g,(¢)] < L4 forall £ € [0,1] and
(,y) € Q2. Hence we obtain as in the proof of Theorem 3.1 that

|Qi(x,9)(8)| < LsM7 + LaMyo, |Qa(x,9)(8)| < L3Ms + LaMs,
forall ¢ € [0,1] and (x,y) € Q2. So, we find

1Q. %), < Ls(M7 + Ms) + La(Ms + Myo), V(x,9) € L,
and then Q(f2) is uniformly bounded.

We show now that Q(£2) are equicontinuous. Let (x,y) € Q and 1, £, € [0, 1] with £; < t,.
Then we have

|Q1(%,9)(12) — Qu(x,7)(1)]

< ’—ﬁ /0 2(t2 - s)"“l;y(s) ds + /0 l(t1 - S)D‘_ley(S) ds

1
(o)
" = 2" H0(B) 1 .
T TAT (@ = 70)T (B =80) Jo (1—5)277 | ()| ds

B -5 & 1 ( S ) |
" IAIT =50 Zﬁ(ﬂ—w)/o /O‘S 077 gy (o) dr ) dHi(s)

57 -7 (TP
BTN (;F(ﬂ—m)

1
(s | -9 as)
; 1 ' ’ —§;—1
NCED) ) )| de ) dKi(
: (; —0i) [Jo (/ [fy )| 7) (s)

1
/ BV GH (s)
0

ttzx—l _ ttlx—l p F(IB) 1 By
i~ dH;
BTN (Zl LB -7) /0 ’ ©

)
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51
<1
I'(a) Jo

Lyt - hrg)  [*
+
[AIT (@ — yo)T'(B - 80) Jo

L4(Ti|lr2;?:1§$ - il S
L4(t‘§‘|1A—| ) (2”1: F(l;(f)yi
(e [ u-sra)
‘ Lg(tg-l: ) (il r<;(f)yi )

q 1 1 s 51
E IR —-1)*% " dt | dK;
X (il l A (/0‘ (S T) T) K(S) )

_ Ls o o a-1 a-1 F('B)
"T(+1) (5 —8) + La(5™ - )|:|A|1"(oc—)/o + 1) (B - 8o)

[(t2—9)* = (b —5)* V] ds + % *(ta — 5L ds

(1-s)* 7 1gs
1 s

) / (/ (s— t)ﬂ_”_ldr> dH;(s)
o \Jo

1
PV dH ()
0

1
P AH ()

1

1 (& 1B | [ s . 1 5
N i~ d f - o zd(l
' |A|<; w7 Lraosanly ~ O
p
a-1 _ ﬁ—i A
Pl [IAIF(;B 5T Ao

/ 81 G (s)

L3
= — (9 — %) + (LsMyy + LaMyo) (2271 — £271).
l"(oz+1)(2 1)+(3 11 +Lg 10)(2 1)

|

r'(B) o
TIAT (B - 50+1)ZF(/3 Vi)

Hence we infer
’Ql(x,y)(tz) - Ql(x,y)(tl)’ — 0, ast; — f;, uniformly with respect to (x,y) € Q.
In a similar manner, for (x,y) €  and t;, £, € [0, 1] with ¢; < £, we obtain

|Qa(x,9)(82) — Qa(x,p)(81)]

Ly 8 B-1 I'(a)
=@ 8 LT - )|:|A|F(Oé—7/o)r(,3—30+1)

1 [ T P 1 1
(e )(;m_y,. 0

+L (t‘3 —t’s1 L) i O‘_‘SidK-(s)
AT AN @ - ) 4 :

1
s27%7L K (s) sP7Yi dH;(s)

)
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il 1
I'(a) Z f k)
T IAT@—yo+ 1) T (a-5)

Ly

= B+ )(tﬁ tf) + (LaMio + L3M9)(t2‘3*1 _ tl,g,l)'

So we deduce
|Qa(x,9)(t2) = Qa(%,9)(t1)| — O, as &, — t,, uniformly with respect to (x,y) € Q.

Then Q;(£2) and Q,(£2) are equicontinuous, and so Q(2) is also equicontinuous. There-
fore, by Arzela—Ascoli theorem, we conclude that Q(2) is relatively compact, and then Q
is compact. We infer that operator Q is completely continuous.

Next we will show that the set U = {(x,y) € Y, (x,5) = vQ(%,9),0 < v < 1} is bounded.
Let (x,y) € U, that is, (x,9) = vQ(x,y). Then for any ¢ € [0, 1], we get x(¢) = vQ1(x,7)(£),
y(£) = vQa(x, y)(£). We denote the following functions:

Fy(s) = ao + a|x(s)| + az|y(s)| + a3|Igix(s)| raliys)], selo1],

ny(S) =by+ b, |9C(S)| + b2|y(S)| + b3|lgix(s)| + b4|102 c[0,1].

By (/3), we find
()| < |Qux2)(®)]
1 ! a-1
<@ /0 (£ - 9\, (5) ds

(=-11(B) v
_ q)¥ V0 Fx d
ARG SR J, - B

e )y ([ Byic1
|A|F(,3 So)zr(ﬂ Vi) /(/ (s—1)" ny(f)dl')dHi(s)

1
/ Sﬁ—Vi—l dHi(S)
0

(s~ )
+ _—
AT\ T(B-7)
/3 So— 1G ds
< T - 50)/ () )
- 3 G ' B-yi-1
i d ;
+|A|(§Fﬂ ) /S Hi(s)
q 1 1/ ps .
x (,;m A (/(; (s—1) ny(t)dr> dKi(s)
as ay
= (do +ay|lx]| + a2yl + TG+ 1) Il + Tors ”y”)

)

T N t(x—lr(ﬁ)
Fla+1) AT («-yo+1)I(B - o)

)

et ( L T(p)

1
R A — ff—l/i—ldHi
A\ &TE - /0 s (s)
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1
$*70 dK;(s)

)

b b
+<bo+b1||x||+b2||y||+ Sl + —— )nyn)

q
X<Zra 5+ 1)

i=1

F(@z + 1) F(O’z +1
T+ 1 .
i dH;
g [IAIF(ﬁ—So);F(ﬁ—m )
—~ T(B)

1
[t

" TAIN G- 80+1)Zr(ﬁ ) ] vt € [0,1].

Therefore we deduce

as ag
x| <|aog+ailx|| +a + x| + M
n n_( o +arlll + axlyl + = el F(01+1)||y||) ,

(10)
+ (o + bl + Ballyll + —2— el + —2— ) 1
0 N F 2T m ) N T Ty )
In a similar manner, we obtain
< M.
Iyl < (ﬂ0+ﬂ1||x||+ﬂ2||y||+ ro 0 Tors )||y||) ; o

b3 by
by+b b Ms.
+( o+ bl + Ballyl + s ||x||+r(62+1)||y||) ;

By (10) and (11), we infer

@y
= ||zl + Iyl < ao(M7 + M) + bo(Msg + M)

+ [ﬂl(M7 +Mo) + (M7 + Mo) + b1 (Mg + M)

as
F(@l + 1)

b3
+ ﬁ(Ms + Mlo)] [l

+ [ﬂz(M7 +Mo) + (M7 + Mo) + by(Mg + M)

_ M
F(Ul + 1)
by

+ W(MS + Mlo)] Iyl

= ao(M7 + Mo) + bo(Mg + M) + Mys|lx[l + Myallyll

< ao(M;7 + Mo) + bo(Msg + M) + E1 || (x,9) ] , -
Because Z; < 1, we find
x|, < [a0M7 + Ms) + bo(Ms + M1o)|(1 - E1)™',  V(x,y) € U.

So we deduce that the set U is bounded.
By using the Leray—Schauder alternative theorem, we conclude that operator Q has at
least one fixed point, which is a solution for our problem (S)—(BC). O

Page 14 of 25
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Theorem 3.3 Assume that (J1), (J2), and
(J4) There exist the functions Y1, Y, € C([0, 1], [0, 00)) such that

Lf(t’ ui, Uz, us, I/l4)i =< Wl(t); |g(t} Uy, Uz, U3, u4)| < Wz(t);

forallt€[0,1,u; €R,i=1,...,4,
hold. If B := LiMs ﬁ +LyMg % < 1, then problem (S)—(BC) has at least one solution
on [0,1].

Proof We fix r; > 0 such that r; > (M7 + Mo) ||y || + (Mg + M) || W2 |. We consider the set
B, = {(x,9) € Y, ||(x,9|ly < r}, and introduce the operators D = (Dy,D,) : B,, — Y and
E =(Ey,Ey):B,, — Y, where D1,D,,Ey,E, : B, — X are defined by

Di(y)(0) - ﬁ /0 (6= 5oy () ds,

- 1F IB)
AT (o = yo)T'(B = o)

N ail’ ; ! 1< ) _ \B-vi-1j ) :
M(ﬁ—%);ﬂﬂ—m)/o /o(s )7 gy (1) dr ) dHi(s)

- IAI
T AT(B-50)

tu_lAl a-8;-1%
TTa (Z; Ca-5) / (/ (5= D" o (e )dr)dK(s))

Do, )(0) = —%ﬂ) fo (6= 813y () ds,

Ei(xy)(0) = / (1= 5701, () ds

/(1 5)f-%- gfxy(s)ds

(12)

_ A1 (@) 1 Bso-1n
B0 = g [ -9 g 0 ds

tﬂ—lr(a) q a -
~ AT(e - ) F(a 3)/ (/0 oo r)dr) dK;(s)

tﬂ—lAz 1
+ e —
AT (a - y0) Jo

tﬂ 1A2 /3 Yi— > .
A ( 2 - m/ (oo taotera s ).

for all £ € [0,1] and (x,y) eEl, SoQy=D1+E;,Qy=Dy+Ey;and Q=D + E.
By using (J4), we find for all (x1, y1), (x2,¥2) € En as in the proof of Theorem 3.1 that

1- s)“_”o_lﬂy(s) ds

| D@1, 31) + E@,30) |
= ||D(x1,y1)||y + ||E(x2)y2)||y
= [ DiGer, y)|| + | DaCer y) || + | Exea,y2) || + | E2x2,32) |

¥ ll +

1 1
“Ta+1) g Vel + (Ml + Mol

Page 15 of 25
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+ (Mol|yn |l + Mua || )

= (M7 + Mo) [y || + (Mg + Myo) |yl <71

So D(x1,y1) + E(x2,¥2) € By, for all (x1,y1), (x2,52) € By,.
The operator D is a contraction because

| D1, 31) - Dl )

= | D1(er,y1) = Di(x2,90) | + | Da(x1,91) — Da(%2,92) |

1 1
<|LiMs——+LoMg——— - -
_( 1 5F(o¢+1) + Lo 6r(ﬂ+1))(”x1 22 + Iy J’2||)

= Ea| (v1,01) = (%2,9)| -

for all (x1,y1), (x2,%2) € El, and 2, < 1.
Because the functions f and g are continuous, we obtain that operator E is continuous
on B,,. We show next that E is compact. The functions from E are uniformly bounded on

B, because

|EGe,9)|, = [Ex@ )| + |E2(e, )| < M1y + Mo) (|9 || + (Mo + Mya) |92,

Y(x,y) € El.

We prove next that the functions from E(B,,) are equicontinuous. We denote by

n
v, =su tLxy,u, V), t €0, 1], x| <r,lyl <r, |y £ ————,
" P{lf( y,u,v)| [ ]II_1|y|_1||_r(91+1)

W< —t 1
- F(O’1+1)

(13)
®, = sup{ gt x,y,1,v)

n
,te [0, 1] x| <rplyl <1, U] £ ———,
(0,11l = iy < sl < o=

<—21 1
- F(O'2+1)

Then for (x,y) € E] and t1, t, € [0,1] with #; < £, we deduce

|E1(x,9)(t2) = Ex(x,9)(t1))

5 - (B)
~ |AIT (@ = ¥0)T(B - 80)

(657 - g~ 1
A LTG 7

1
/ (1— s>, ds
0
1 s
/0 (/0 (s-1)f e, dr) dH;(s)

i=1

57 -7 [~ _T(B)
BTN (ZF(ﬁ—m)

i=1

1 1
B—-80-1
X (7( 50) /0 1-9) (OFS ds)

1
/ sBYELgH (s)

0
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1
/ P11 (s )
1 s
\ (/0 (s - r)""‘si_lkllr1 dt) dK;(s)

— a-1 a-1 F(ﬂ)
=W, (557 -1 )|:|A|F(Ol =0+ I'(B - do)

1 (&~ TB) | s o 1
N it d f -
’ |A|<§ F6-7) /o S| |\ Lo T

a-1 a—1 F(,B) d 1
"On (7 -4 )[IAIF(ﬂ—So)gF(ﬁ—yﬁl) 0

/1 SPLGH (s) i|
0

= Mgy, (670 - £71) + Mio®y, (557 - 6671),

LB i r(g
1Al LB -

i=1

1 1
x <; Ca-46)

)

1
/ 27 dK(s)
0

1
sP7Yi dH,(s)

)

1 — T(B)
TTAIN(B =30+ 1) Zl (67

14

|Ex(x,9)(t2) — Ea (%, )(t1)|
" - ()
“ AT (o = yo)T'(B = 8o)

@ P (a) & 1
[AIT (o = o)

/(1 s)f-%-1@, L ds

i < /0 (s—1)* %y, dr) dK(s)

i=1
B-1_ -1

ty 1 1 ')

A (S )
1 ! a—-yo—1

X(F(oe—yo)/o(l_s) ! wflds)

B -t (K Tl)
BTN Zl 5

L bvi-1@, dr ) dH,

* ;F(ﬂ—%’)/o(/o oo on ’) ©

| )

B B-1 ﬁ— I'(a) a=s;
=¥all-h [mma 0 2T s +1)V )
+0, (8" -4 1)[ e

|AIT (o = y0)T'(B — 8o + 1)
1 [ T P 1 1
+|A|<.Z 5 )(;F(ﬁ—% 0

—Mg\lfyl (tZ _tl )+M12®y1( tf 1).

1
$27%L dKG (s)
0

1
$27%1 dKG(s)
0

1 . T(a)
' |A|F(W—V0+1);

1
s2731 dKG ()
0

sPYi dH;(s)

1
s2731 K (s)
0

)
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Therefore we infer

|E1(x,9)(t2) — E1(x,9)(t1)| — 0, |Ex(x,9)(t2) — Ea(x,)(t1)| = 0,

as t, — t;, uniformly with respect to (x,7) € B,,. Then E;(B,,) and E»(B,,) are equicontin-
uous, and so E(B,,) is also equicontinuous. By applying Arzela—Ascoli theorem, we con-
clude that the set E(B,,) is relatively compact. Hence E is a compact operator on B,,. By
using the Krasnosel'skii theorem for the sum of two operators (see [22]), we deduce that
there exists a fixed point of operator D + E(= Q), which is a solution of problem (S)—(BC).

Theorem 3.4 Suppose that (J1), (J2), and (J4) hold. If &3 := LiMs(Mg + M1) + LoMe(Myo +
Myi,) < 1, then problem (S)—(BC) has at least one solution (x,y) on [0,1].

Proof We consider again a positive number r; > (M7 + Mo) || Y1 || + (Mg + Mio)|| 2|l and
the operators D and E defined on B,, given by (12). As in the proof of Theorem 3.3, we
have D(x1,y1) + E(x2,2) € El for all (x1,y1), (%2,92) € El.

The operator E is a contraction because

|EGe1,31) - E(x2,90)]
= | Ex@e1,31) = Ex(er,31) || + | E2(®1,01) = Ea(%2,95) |
< (LiMsMyy + LoMeMyo) || (61, 1) — (x2,32) |,
+ (LiMsMs + LyMeMys) || (1, 31) = (%2,32) |,

= (LiM5(Mo + Myy) + LyMe(Mio + M12)) || (e, 31) — (x2,92) |,

= Esn(xbyl) - (xz,y2)| )
for all (x1,y1), (x2,%2) € Erw with E3 < 1.

In what follows, the continuity of functions f and g implies that operator D is contin-
uous on B,,. We prove now that D is a compact operator. The functions from D(B,,) are

uniformly bounded because

1 —
vl + Il Vxy) €Br,.

D@, = D16, 2)] + [ Do, T +1)

1
N = Tla+1)

Now we show that the functions from D(B,,) are equicontinuous. By using ¥,, and ©,,
defined by (13), we deduce that for (x,y) € El and t1,t, € [0,1] with #; < £, that

\Ijrl o o
[D1(2.2)(6) = Dy )(t)] = omigs (6 - 8),

0,
D2 )(e2) = Do o] = s (8 - 1)

Therefore we conclude

|D1(%,9)(t2) = D1(%,9)(01)| = 0, [Da(x,)(82) — Da(x,)(11)| — 0,
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as t — t1, uniformly with respect to (x,y) € B,,. We infer that D;(B,,) and Dy(B,,) are
equicontinuous, and so D(B,,) is equicontinuous. By using Arzela—Ascoli theorem, we
deduce that the set D(B,,) is relatively compact. Then D is a compact operator on B,,. By
using the Krasnosel’skii theorem, we conclude that there exists a fixed point of operator
D + E(= Q), which is a solution of problem (S)—(BC). O

Theorem 3.5 Assume that (J1) and
(J5) The functions f,g: [0,1] x R* — R are continuous and there exist the constants c; >
0,i=0,...,4 with at least one nonzero constant, the constants d; > 0,i=0,...,4 with

at least one nonzero constant, and l;; m; € (0,1),i=1,...,4 such that

4
lf(t’ uy, Uz, us, M4)| <co+ Zci“’ti'li,
i=1
4
\g(t ur, tp, 1z, 1) | < dlo + Z dilu|™,

i=1

forallt€[0,1,u; eR,i=1,...,4,
hold. Then problem (S)—(BC) has at least one solution.

Proof Let Bg = {(x,y) € Y, ||(x,9)|ly <R}, where

1 1
R> max{20c0M7, (201 M7) 0, (20c,M7) 12,

20c3 My 5 20ca M7 =
(C(6r + 1)) "\ (o7 + 1)) '
L 1
20do Mg, (20d1 M1o) =1, (20d, M) 72,
20d31\/110 % 20d4M10 %
(C(6y + 1))ms "\ (D(oy + 1)) ,

1

_1
2060M9, (2061M9) 1-n , (20C2M9) 1-h ,

20C3M9 ﬁ 2OC4M9 ﬁ
(61 + 1)) "\ (T(o7 + 1))k ’

L 1
20do Mg, (20d; M) 71, (20d,Mg) T2,

( 20dsMs )ﬁ ( 20d,Ms >ﬁ}
(T'(0 + 1)) "\ ([ (o3 + 1)) ’

We prove that Q : By — Bg. For (x,y) € By, we have

I b RB Rl
,IE) | < R R M
(@it <C°”1 T ”3(r<91+1>)ls+C4(r(ol+1))’4> ’

do + diR™ + dR™ +d R d K™
R™ +dyR™ Y
+ ( oA R B G+ Dy T Doy + 1))m4) N

IA
N
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! ) Rb R
()| < R? R? M
|Q2(”)()|‘<C°”1 e ”3<F<91+1>)ls”‘*(r(am)w) ’

R™3 R™
do + diR™ + dR™ + d d M
+< S (N ) o 4(F(<72+1))m4) 8

A

SR~

for all £ € [0, 1]. Then we obtain

QM ly = [Qix )| + Q@) <R V¥(x,9) €Bg,

which implies that Q(Bz) C Bg.

By using the fact that the functions f and g are continuous, we deduce that that operator
Q is continuous on By. Besides, the functions from Q(Bg) are uniformly bounded and
equicontinuous. Indeed, by using the notations (13) with r; replaced by R, we find for any
(x,9) € Br and t,t, € [0,1], t; < £, that

v
|Q1(%,9)(82) — Qi ¥)(81)| < I’(ﬁ (£5 — 1) + (WrMiy + OpMyo) (857" - £571),

1)

(S _ _
|Qa(%,9)(t2) - Q% y)(11)| < K (tf - tlﬂ) + (WMo + ®RM12)(t§’ todf 1)~
rp+1)

Therefore we obtain

|Q1(%,9)(12) - Qu(%,%)(11)| — 0, |Qa(x,9)(t2) — Qa(x,9)(11)| = 0, sty — 1,

uniformly with respect to (x,7) € Bg. By Arzela—Ascoli theorem, we conclude that Q(Bg)
is relatively compact, and then Q is a compact operator. By using the Schauder fixed point
theorem, we infer that operator Q has at least one fixed point (x, y) in Bg, which is a solution
of our problem (S)-(BC). a

Theorem 3.6 Suppose that (J1) and
(J6) The functions f,g : [0,1] x R* — R are continuous and there exist the constants p; >
0,i=0,...,4 with at least one nonzero constant, the constants q; > 0,i=0,...,4 with
at least one nonzero constant, and nondecreasing functions &;,n; € C([0,00), [0, 00))
i=1,...,4 such that

4

f (&, u1, 12, w3, ua)| < po + ZP:‘&(WJ),

i=1
4

|lg(t, ur, w2, uz, ua)| < qo + qui(|ui|),
i-1

forallt €[0,1l,u; €eR,i=1,...,4,
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hold. If there exists Eo > 0 such that

(Po + p151(Eo) + p262(Eo) +P3€3<% +P4€4<%))(M7 + M)

+ (%Hhm(Eo) + q212(E0) +q3n3(1“(T(11)> (14)

Eo
_ Mg + M Eo,
+q4774<r(02+1)>>( 8 + M) < Eg

then problem (S)—(BC) has at least one solution on [0, 1].

Proof We consider the set Eso ={(x9) € Y,|(x )|y < Eo}, where Ey is given in the the-
orem. We will show that Q: Eso — Eso. For (x,y) € Eso and ¢ € [0, 1], we obtain

| Q1% 2)(®)|
< (PO +p1£1(Eo) + p2£2(Eo) +p3‘§3(ﬁ) +p4“§4(%)>M7
Eo

+ (g0 + @ (Bo) + @ama(Bo) + @sns | ———— ) + quna ——— ) Mo,
F(Qz + 1) F(O’z + 1)

|Qa(x,9)(®)]

EO EO
- O 8 _=0 _ B \\u
- (po P (E) rpafa(E) +p353(r(91 + 1)) +p4$4<F(01 + 1))) ’
+ <(/IO+611771(50)+612172(E0)+q3n3<“4(l> +q4n4<;70))M8,

and then, for all (x, y) € Bg,, we find

[QE»ly

< (Po +p151(Eo) + p2£2(Eo) +P3§3(%) +P4§4(%)>(M7 + M)

+ (qo +q1m(Eo) + @2m2(Eo) + 6J3773<F(9“—0+1)>
2

=
o

0
_ Mg + M Eo.
+Q4’74<F(62+1)>)( 8 + M) < Eg

Hence Q(Bg,) C Bg,. Using a similar approach as in the proof of Theorem 3.5, we can
show that operator Q is completely continuous.

We suppose now that there exists (x,y) € dBg, such that (x,y) = vQ(x,y) for some v €
(0,1). Arguing as above, we deduce ||(x,9)|ly < [|Q(x, )|y < Eo, which is a contradiction,
because (x,y) € Bg,. Then by using the nonlinear alternative of Leray—Schauder type, we
conclude that operator Q has a fixed point (x,y) € Ego, and so problem (S)—(BC) has at

least one solution. O
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4 Examples

Leta:%(n=2),ﬂ=%(m=3),91=i,al_— 92— 4»02—§’l7—1 q= 2, )/0—6!7/1

80 = %1 81 = é) 82 = %y Hl(t) = {0>t € [0’%);3,t€ [2’1]}) 1<1(t) = _tz;t € [07 1]; I<2(t) - {O,te
[0,3);4,£ € [3,1]}.

We consider the system of fractional differential equations

Dyx(t) + £ (t, x(2), y(2), I x(2), IS y(t)) =0, t€(0,1),

(So)
DyPy() + g(t,2(6), y(8), 1] *2(6), I >y() = 0, € (0,1),
with the boundary conditions
x(0)=0,  Dyfx(1) =3D*y(:
© Lea(D) = 3DR4(3), -

¥(0) =y'(0) =0, D¥7y(1) = =2 fo D> x(t) dt + 4D1/3x( ).

We obtain A &~ —4.92715202 # 0. So assumption (/1) is satisfied. In addition, we have
M; =~ 2.10326265, M, ~ 1.90760368, M3 ~ 1.02839972, M, ~ 2.11984652, M5 = M,
Mg = My, M7 ~ 1.81109405, M1y ~ 0.68108088, My =~ 0.9999811, Mg ~ 1.12515265,
Mi1 ~ 1.05884127, and M1, ~ 0.76520198.

Example 1 We consider the functions

f(tr uy, Uz, Us, l/l4,)

1 t . 242 1 = £
= — — — arctan; + + SIN™ U3z — ——— COS Uy,
Jo+5 10 YT 241 jul) | 3(£+8) HEFET R

gt ur, uz,u3, Uq)

3¢ || 1 t ) 1
+ — s Uy + ——— COS” Uz — — arctan uy,
244 62+ |m)) t+24 12

forallt €[0,1], u; € R, i=1,...,4. We find the inequalities

V(tx u, us, Us, M4) _f(t’ V1,V2,V3, V4)|

<1| | 1| | 1|
—|uy —vi| + Vol + —lus—v
=Ml e 2 3=V3

1
+glus—val < 102% vil,

’g(t’ uy, us, us, u4-) _g(t! V1,V2,V3, V4)|

<1| | 1| | 2|
—ur —vil+ —lus—va| + —lus —v
= it Vit el = ol 4 oot — Vs

4

1 1
t =5 Z|Mi—Vi|,

for all t € [0,1], u;,v; € R,i=1,...,4. So we have L; = 10, Ly = ﬁ and E = LiMs(M; +
M) + LyMe(Mg + Mip) =~ 0.91032 < 1. Therefore assumption (J2) is satisfied, and, by The-

orem 3.1, we deduce that problem (Sy)—(BC)y) has at least one solution (x(¢), y(¢)), t € [0, 1].
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Example 2 We consider the functions

f(tuy,up, us,us) = ﬁ <2 sint + l cos u1> - ;uz ! arctan usz + 1 Sin Uy,
t2+5 5 (t+5)? 6 7
et 1, .
g(t,u1, U, us, uy) = i + 1 CcOS” Uy — = sin u3 + 5 arctan ug,

forall£€[0,1], u; € R,i=1,...,4. Because we have

11 1 1
v(ttul)ubu&u‘}) ==+ —|M2| + 8'”3' + 5'”4')

|(t )|_<—1+—| |+—1| |
S UL, U, U3, U u Uy,
g 1, U, U3, Uy 5 3 9 4

for all t € [0,1], u; € R,i = 1,...,4, the assumption (J3) is satisfied with ag = %, a; =0,
ay = 2—15, as = é, ag = %, bg = %, by =by =0, b3 = é, and by = %. In addition, we obtain
Mi3 ~0.52715168, M14 ~ 0.70166538, and E; = max{Mi3, M14} = M4 < 1. Then, by The-
orem 3.2, we conclude that problem (Sp)—(BCp) has at least one solution (x(t), y(¢)),t €

[0,1].

Example 3 We consider the functions

1
4 172
St u1, w2, u3,ua) = —§|M2|3/ + m arctan |uz|"'?,
e 1
4 .
8t u1, uz, u3, uy) = — ~uf® +sinul?,

1+ 3

forall £ €[0,1], u; € R,i=1,...,4. Because we obtain

1 1
[f(t; U1, U, M3,M4)| = g|bl2|3/4 + §|M3|1/2,

4/5 2/3

1
|g(t,M1,u2;l/l3,u4)| §1+§|M1| +|l/l4,| )
for all £ € [0,1],u; € R,i = 1,...,4, the assumption (J5) is satisfied with ¢ =¢; =0, ¢; =
érCBZ%;C4:O¢dO:Ld1:%,d2=d3=o,d4=1,12=%,lg:%,}ﬂlzg,andm4:§,
Therefore, by Theorem 3.5, we deduce that problem (Sy)—(BC)) has at least one solution

(®(8), y(2)), £ € [0,1].
Example 4 We consider the functions

t?) e—tulll tzui/s
t, Uy, Uy, Uz, Uy) = — + —
S, g, 3, u) = o 20(1+u2) 10

a-o _ l_tzuz_ iMZ/S
2 3
20 15 25

’

g(tr Uy, U, U3, M4) =
forall £ € [0,1],u; € R,i=1,...,4. Because we have

1/3
4| ’

[f(tu Uy, U u)|<i+i|u |4+i|u
yui, 3, U3, s =95 20 1 10
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1 1 1
£y, iy s, <+ —|us |25,
gt w1, 12, 13, 1a)| < 50 15wl + g lusl
forall t € [0,1],u; € R,i =1,...,4, the assumption (J6) is satisfied with py = %, p1= %,

Pr=p3=0,ps=%,q0=5,01=0, 02 =%, g3 = 5=, g4 = 0, £,(x) = x*, &(x) = '3,
n2(x) = 22, and n3(x) = x*° for x > 0. For & = 1, the condition (14) is satisfied because

3%+ 35+ 10(Fag) D M7 + Mo) + (55 + 15 + 35 (rpm) ) (Ms + Mig) ~ 0.75328 < 1.
Then, by Theorem 3.6, we conclude that problem (Sp)—(BCp) has at least one solution

(x(2), y(0)), £ € [0, 1].
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