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Abstract
In this paper, we study the oscillation of a class of fourth-order Emden–Fowler delay
differential equations with neutral term. Using the Riccati transformation and
comparison method, we establish several new oscillation conditions. These new
conditions complement a number of results in the literature. We give examples to
illustrate our main results.
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1 Introduction
In this paper, we study the oscillatory properties of solutions of the following fourth-order
neutral differential equation:

X ′
t + q(t)x(p2–1)(σ (t)

)
= 0, t ≥ t0, (1)

where Xt = a(t)(y′′′(t))(p1–1) and y(t) := x(t) + r(t)x(δ(t)). We make the following assump-
tions:

N1: r ∈ C[t0,∞), 0 ≤ r(t) < r0 < ∞,
N2: δ,σ , q ∈ C[t0,∞), q(t) > 0, δ(t) ≤ t, limt→∞ δ(t) = limt→∞ σ (t) = ∞,
N3: a ∈ C[t0,∞), a(t) > 0, a′(t) ≥ 0, and

∫ ∞

t0

1
a1/(p1–1)(s)

ds = ∞, (2)

N4: pi > 1, i = 1, 2, are constants, and

p1 :=

⎧
⎨

⎩
2 if p2 ≤ 2,

1 + 2β–1 if p2 > 2.

By a solution of (1) we mean a function x ∈ C3[t,∞), t ≥ t0, that has the property
a(t)(y′′′(t))α ∈ C1[t0,∞) and satisfies (1) on [t0,∞).

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-021-03299-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-021-03299-8&domain=pdf
http://orcid.org/0000-0002-7251-9608
mailto:o.bazighifan@gmail.com


Bazighifan and Almutairi Advances in Difference Equations        (2021) 2021:131 Page 2 of 12

The study of differential equations has been the object of many researchers over the
last decades. Different approaches and various techniques are adopted to investigate the
qualitative properties of their solutions. Recently, driven by their widespread applications,
the investigation of fourth-order differential equations has drawn significant attention.
The existence uniqueness, stability, and oscillation of solutions were the main features
that attracted consideration [1–3].

In spite of the increasing interest in the study of second-order differential equations, the
oscillation and nonoscillation of solutions for differential equations are still considered as
an open area to investigate [4–9]. Equations with neutral terms are of particular signif-
icance as they arise in many applications including systems of control, electrodynamics,
mixing liquids, neutron transportation, networks, and population models. In the qualita-
tive analysis of such systems, indeed, the oscillatory behavior of solutions of equations,
where the rate of the growth depends not only on the current and the past states but also
on the rate of change in the past, play an important role [10–14]. In the light of this mo-
tivation and justification, different results have been reported regarding the asymptotic
behavior of higher-order differential equations with neutral terms [15–18]. For relevant
results on the application of oscillation theory, the reader can consult [19–21]. In the past
20 years, there have been a lot of research results on the oscillation of differential equa-
tions. As a matter of fact, Eq. (1) is a natural of the half-linear/Emden–Fowler differential
equation (including the related differential equation), which arises in a variety of real-
world problems such as the study of p-Laplace equations, non-Newtonian fluid theory,
the turbulent flow of a polytrophic gas in a porous medium, and so on; see, for example,
the papers [22, 23] for more detail.

The authors in [24, 25] considered the equation

y(r)(t) + q(t)x
(
σ (t)

)
= 0

and proved that it is oscillatory if

lim inf
t→∞

∫ t

σ (t)
K(s) ds > 2(r–1)(r–2) (r – 1)

e
(3)

and

lim inf
t→∞

∫ t

σ (t)
K(s) ds >

(r – 1)!
e

, (4)

where K(t) := σ r–1(t)(1 – b(σ (t)))q(t), and r is an even.
In [26, 27] the authors proved that the equation

(
a(t)

(
y(n–1)(t)

)α)′ + q(t)xα
(
σ (t)

)
= 0

is oscillatory if

lim inf
t→∞

∫ t

δ–1(σ (t))

q(s)
a(s)

(
sn–1)α ds >

(
1
σ0

+
pα

0
σ0δ0

)
((n – 1)!)α

e
(5)
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and

lim inf
t→∞

∫ t

δ–1(η(t))

(
(τ–1(η(s)))n–1

a1/α(δ–1(η(s)))

)α

q(s)Pα
n
(
σ (s)

)
ds >

((n – 1)!)α

e
, (6)

where η ∈ C1([t0,∞),R) and q̂(t) := min{q(σ –1(t)), q(σ –1(δ(t)))}.
Li et al. [28] studied the oscillatory and asymptotic behavior of higher-order Emden–

Fowler neutral differential equations using the Riccati substitution together with integral
averaging technique. Bazighifan [29] established sufficient conditions for the oscillation of
all solutions of (1) and used the comparison method with second-order equations. Agar-
wal et al. [30] gave some results providing information on the asymptotic behavior of solu-
tions of fourth-order Emden–Fowler neutral differential equations. This time the authors
used the comparison method with first- and second-order equations. In [31] the authors
considered the equation

(
a(t)X

(
y(n–1)(t)

))′ + q(t)F
(
y
(
σ (t)

))
= 0,

where F = |s|p–2s, and obtained some new oscillation conditions.
In particular, there has been interest from many researchers to study the oscillatory be-

havior of this type of equation; see [32–39].
In this paper, we establish oscillatory properties of solutions of (1) and give some exam-

ples for applying the criteria.

2 Preliminaries
We first provide some notations which help us to easily display the results. Moreover, we
present some auxiliary lemmas.

Lemma 2.1 ([40]) If u(i)(t) > 0, i = 0, 1, . . . , j, and u(j+1)(t) < 0 eventually, then, for every
ε1 ∈ (0, 1), u(t)/u′(t) ≥ ε1t/j eventually.

Lemma 2.2 ([41]) Let u ∈ Cj([t0,∞), (0,∞)). Assume that u(j)(t) is of fixed sign and not
identically zero on [t0,∞) and that there exists t1 ≥ t0 such that u(j–1)(t)u(j)(t) ≤ 0 for all
t ≥ t1. If limt→∞ u(t) �= 0, then for every μ ∈ (0, 1), there exists tμ ≥ t1 such that

u(t) ≥ μ

(j – 1)!
tj–1∣∣u(j–1)(t)

∣∣ for t ≥ tμ.

Lemma 2.3 ([42, Lemmas 1 and 2]) Let m1, m2 ≥ 0. Then

(m1 + m2)β ≤
⎧
⎨

⎩
2β–1(mβ

1 + mβ
2 ) for β ≥ 1,

mβ
1 + mβ

2 for β ≤ 1.

For convenience, we impose the following hypothesis:
(H1) x is an eventually positive solution of (1).

3 Main results
Theorem 3.1 Assume that

(
σ –1(t)

)′ ≥ σ0 > 0 and δ′(t) ≥ δ0 > 0. (7)
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If

η′(t) +
1

(p1 – 1)

(
μt3

6a1/(p1–1)(t)

)(p2–1)(
σ0δ0

δ0 + r(p2–1)
0

)(p2–1)/(p1–1)

× q̂(t)η(p2–1)/(p1–1)(δ–1(σ (t)
)) ≤ 0 (8)

is oscillatory, where

q̂(t) := min
{

q
(
σ –1(t)

)
, q

(
σ –1(δ(t)

))}
,

then (1) is oscillatory.

Proof Let t be a nonoscillatory solution of (1) on [t0,∞). Then t > 0, and there exists t1 ≥ t0

such that x(t) > 0, x(δ(t)) > 0, and x(σ (t)) > 0 for t ≥ t1. Since a′(t) > 0, we have

y(t) > 0, y′(t) > 0, y′′′(t) > 0, y(4)(t) < 0, and
(
a(t)

(
y′′′(t)

)(p1–1))′ ≤ 0
(9)

for t ≥ t1. From (1) we get

1
(σ –1(t))′

(
a
(
σ –1(t)

)(
y′′′(σ –1(t)

))(p1–1))′ + q
(
σ –1(t)

)
x(p2–1)(t) = 0. (10)

By Lemma 2.3 and the definition of y we obtain

y(p2–1)(t) =
(
x(t) + r(t)x

(
δ(t)

))(p2–1)

≤ (p1 – 1)
(
x(p2–1)(t) + r(p2–1)

0 x(p2–1)(δ(t)
))

. (11)

From (10) and (11) we obtain

0 =
1

(σ –1(t))′
(
a
(
σ –1(t)

)(
y′′′(σ –1

j (t)
))(p1–1))′ + q

(
σ –1(t)

)
x(p2–1)(t)

+ r(p2–1)
0

(
1

(σ –1(δ(t)))′
(
a
(
σ –1(δ(t)

))(
y′′′(σ –1(δ(t)

)))(p1–1))′

+ q
(
σ –1(δ(t)

))
x(p2–1)(δ(t)

))

=
(a(σ –1(t))(y′′′(σ –1(t)))(p1–1))′

(σ –1(t))′
+ r(p2–1)

0
(a(σ –1(δ(t)))(y′′′(σ –1(δ(t))))(p1–1))′

(σ –1(δ(t)))′

+ q
(
σ –1(t)

)
x(p2–1)(t) + r(p2–1)

0 q
(
σ –1(δ(t)

))
x(p2–1)(δ(t)

)

≥ (a(σ –1(t))(y′′′(σ –1(t)))(p1–1))′

(σ –1(t))′
+ r(p2–1)

0
(a(σ –1(δ(t)))(y′′′(σ –1(δ(t))))(p1–1))′

(σ –1(δ(t)))′

+
1

(p1 – 1)
q̂(t)y(p2–1)(t),
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which, together with (7), gives

1
σ0

(
a
(
σ –1(t)

)(
y′′′(σ –1

j (t)
))(p1–1))′

+
r(p2–1)

0
σ0δ0

(
a
(
σ –1(δ(t)

))(
y′′′(σ –1(δ(t)

)))(p1–1))′ +
1

(p1 – 1)
q̂(t)y(p2–1)(t) ≤ 0. (12)

Since y′(t) > 0, we find limt→∞ y(t) �= 0, and by Lemma 2.2 we obtain

y(t) ≥ μ

6
t3y′′′(t). (13)

Combining (12) and (13), we see that

1
σ0

(
a
(
σ –1(t)

)(
y′′′(σ –1

j (t)
))(p1–1))′ +

r(p2–1)
0
σ0δ0

(
a
(
σ –1(δ(t)

))(
y′′′(σ –1(δ(t)

)))(p1–1))′

+
1

(p1 – 1)
q̂(t)

(
μ

6
t3

)(p2–1)(
y′′′(t)

)(p2–1) ≤ 0. (14)

Setting

η(t) :=
1
σ0

a
(
σ –1(t)

)(
y′′′(σ –1

j (t)
))(p1–1) +

r(p2–1)
0
σ0δ0

a
(
σ –1(δ(t)

))(
y′′′(σ –1(δ(t)

)))(p1–1),

we easily see that

η
(
δ–1(σ (t)

)) ≤
(

δ0 + r(p2–1)
0

σ0δ0

)
a(t)

(
y′′′(t)

)(p1–1).

From (14) we find

η′(t) +
1

(p1 – 1)

(
μt3

6a1/(p1–1)(t)

)(p2–1)(
σ0δ0

δ0 + r(p2–1)
0

)(p2–1)/(p1–1)

× q̂(t)η(p2–1)/(p1–1)(δ–1(σ (t)
)) ≤ 0,

which is a contradiction. �

Theorem 3.2 Assume that (7) holds. If

ϑ ′(t) +
1

(p1 – 1)

(
μt3

6a1/(p1–1)(t)

)(p2–1)(
σ0δ0

δ0 + r(p2–1)
0

)
q̂(t)ϑ (p2–1)/(p1–1)(σ (t)

) ≤ 0 (15)

is oscillatory, then (1) is oscillatory.

Proof It is known that (14) holds in the proof of Theorem 3.1. If we set

ϑ(t) := a
(
σ –1(t)

)(
y′′′(σ –1(t)

))(p1–1),

then ϑ is a positive solution of (15), which is a contradiction. �
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Corollary 3.1 Let p1 = p2, and let (7) hold. If a(t) ≤ t and

lim inf
t→∞

∫ t

a(t)

s3(p1–1)

a(s)
q̂(s) ds >

(
δ0 + r(p1–1)

0
σ0δ0

)
(p1 – 1)6(p1–1)

e
, (16)

where a(t) = δ–1(σ (t)) or σ (t), then (1) is oscillatory.

Theorem 3.3 Let r0 < 1 and σ (t) ≤ t. If for some μ ∈ (0, 1),

ψ ′(t) + (1 – r0)(p2–1)
(

μσ 3(t)
6a1/(p1–1)(σ (t))

)(p2–1)

q(t)ψ (p2–1)/(p1–1)(σ (t)
)

= 0 (17)

is oscillatory, then (1) is oscillatory.

Proof It is known that (9) holds in the proof of Theorem 3.1. By the definition of y we find

x(t) ≥ y(t) – r0x
(
δ(t)

) ≥ y(t) – r0y
(
δ(t)

)

≥ (1 – r0)y(t),

which, together with (1), gives

(
a(t)

(
y′′′(t)

)(p1–1))′ + q(t)(1 – r0)(p2–1)y(p2–1)(σ (t)
) ≤ 0. (18)

From Lemma 2.2 we obtain

y(t) ≥ μ

6
t3y′′′(t). (19)

Combining (18) and (19), we get

(
a(t)

(
y′′′(t)

)(p1–1))′ + q(t)(1 – r0)(p2–1)
(

μ

6
σ 3(t)

)(p2–1)(
y′′′(σ (t)

))(p2–1) ≤ 0.

If we set ψ := a(y′′′)(p1–1), then

ψ ′(t) + (1 – r0)(p2–1)
(

μσ 3(t)
6a1/(p1–1)(σ (t))

)(p2–1)

q(t)ψ (p2–1)/(p1–1)(σ (t)
) ≤ 0.

In view of [37, Corollary 1], equation (17) also has a positive solution, which is a contra-
diction. �

Corollary 3.2 Let p1 = p2, r0 < 1, and σ (t) ≤ t. If

lim inf
t→∞

∫ t

σj(t)

σ 3(p1–1)(s)
a(σ (s))

q(s) ds >
6(p1–1)

(1 – r0)(p1–1)e
, (20)

then (1) is oscillatory.
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Lemma 3.1 If (H1) holds, then

φ′
1(t) ≤ � ′

1(t)
�1(t)

φ1(t) – �1(t)q(t)(1 – r0)(p2–1)yp2–p2 (t)ε1

(
σj(t)

t

)3(p2–1)

– (p1 – 1)μ1
t2

2a1/(p1–1)(t)� 1/(p1–1)
1 (t)

φ

p1
(p1–1)

1 (t) (21)

for some μ1, ε1 ∈ (0, 1) and every M1 > 0, where

(t) := Mp2–p1
1 �1(t)q(t)(1 – r0)(p2–1)

(
σ (t)

t

)3(p2–1)

.

Proof Let (H1) hold. In the case where y′′(t) > 0, let

φ1(t) := �1(t)
a(t)(y′′′(t))(p1–1)

y(p1–1)(t)
> 0.

From (18) we find

φ′
1(t) ≤ � ′

1(t)
�1(t)

φ1(t) – �1(t)q(t)(1 – r0)(p2–1) y(p2–1)(σ (t))
y(p1–1)(t)

(22)

– (p1 – 1)�1(t)
a(t)(y′′′(t))(p1–1)

yp1 (t)
y′(t).

Using Lemma 2.1, we obtain y(t) ≥ t
3 y′(t), and hence

y(σj(t))
y(t)

≥ ε1
σ 3(t)

t3 . (23)

Using Lemma 2.2, we get

y′(t) ≥ μ1

2
t2y′′′(t) (24)

for all μ1 ∈ (0, 1). Thus by (22), (23), and (24) we obtain

φ′
1(t) ≤ � ′

1(t)
�1(t)

φ1(t) – �1(t)q(t)(1 – r0)(p2–1)yp2–p2 (t)ε1

(
σj(t)

t

)3(p2–1)

– (p1 – 1)μ1
t2

2a1/(p1–1)(t)� 1/(p1–1)
1 (t)

φ

p1
(p1–1)

1 (t).

This completes the proof. �

Lemma 3.2 If (H1) holds, then

φ′
2(t) ≤ –1(t) +

� ′(t)
� (t)

ϑ(t) –
1

� (t)
φ2

2 (t) (25)
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for some ε1 ∈ (0, 1) and every M2 > 0, where

1(t) :=
(
(1 – r0)ε1

)(p2–1)/(p1–1)
� (t)M(p2–p1)/(p1–1)

2

×
∫ ∞

t

(
1

a(t)

∫ ∞

t
q(s)

σ (p2–1)(s)
s(p2–1) ds

)1/(p1–1)

dt,

Proof Let (H1) hold. In the case where y′′(t) < 0, integrating (18) from t to t, we find

a(t)
(
y′′′(t)

)(p1–1) – a(t)
(
y′′′(t)

)(p1–1) ≤ –
∫ t

t
q(s)(1 – r0)(p2–1)y(p2–1)(σ (s)

)
ds. (26)

By Lemma 2.1 we get y(t) ≥ xy′(t), and hence

y
(
σ (t)

) ≥ ε1
σ (t)

t
y(t). (27)

For (26), letting t → ∞ and using (27), we get

a(t)
(
y′′′(t)

)(p1–1) ≥ (
(1 – r0)ε1

)(p2–1)y(p2–1)(t)
∫ ∞

t
q(s)

σ
(p2–1)
j (s)
s(p2–1) ds. (28)

Integrating (28) from t to ∞, we get

y′′(t) ≤ –
(
(1 – r0)ε1

)(p2–1)/(p1–1)y(p2–1)/(p1–1)(t)

×
∫ ∞

t

(
1

a(t)

∫ ∞

t
q(s)

σ (p2–1)(s)
s(p2–1) ds

)1/(p1–1)

dt (29)

for all ε1 ∈ (0, 1). Now we define

φ2(t) = � (t)
y′(t)
y(t)

.

Then φ2(t) > 0 for t ≥ t1. Using (32) and (29), we obtain

φ′
2(t) =

� ′(t)
� (t)

φ2(t) + � (t)
y′′(t)
y(t)

– � (t)
(

y′(t)
y(t)

)2

≤ � ′(t)
� (t)

φ2(t) –
1

� (t)
φ2

2 (t)

–
(
(1 – r0)ε1

)(p2–1)/(p1–1)
� (t)y(p2–1)/(p1–2)(t)

×
∫ ∞

t

(
1

a(t)

∫ ∞

t
q(s)

σ (p2–1)(s)
s(p2–1) ds

)1/(p1–1)

dt.

Thus we find

φ′
2(t) ≤ –1(t) +

� ′(t)
� (t)

ϑ(t) –
1

� (t)
φ2

2 (t).

This completes the proof. �



Bazighifan and Almutairi Advances in Difference Equations        (2021) 2021:131 Page 9 of 12

Theorem 3.4 Assume that r0 < 1 and σ (t) ≤ t. If there exist two positive functions �1,� ∈
C1([t0,∞)) such that

∫ ∞

t0

(
(s) –

2(p1–1)

pp1
1

a(s)(� ′
1(s))p1

μ
(p1–1)
1 s2(p1–1)�

(p1–1)
1 (s)

)
ds = ∞ (30)

and

∫ ∞

t0

(
1(s) –

(� ′(s))2

4� (s)

)
ds = ∞, (31)

then (1) is oscillatory.

Proof It is known that (9) and (18) hold in the proof of Theorem 3.3. From (9) we have
that y′′ is of one sign. From Lemma 3.1 we get that (21) holds.

Since y′(t) > 0, there exist t2 ≥ t1 and a constant M > 0 such that

y(t) > M (32)

for all t ≥ t2. From the inequality

Ew – Fw(α+1)/α ≤ αα

(α + 1)α+1 Eα+1F–α , F > 0,

with E = � ′
1(t)/�1(t), F = (p1 – 1)μt2/2a1/(p1–1)(t)� 1/(p1–1)

1 (t), and x = φ1, we get

φ′
1(t) ≤ –(t) +

2(p1–1)

pp1
1

a(t)(� ′
1(t))p1

μ
(p1–1)
1 t2(p1–1)�

(p1–1)
1 (t)

.

This implies that

∫ t

t1

(
(s) –

2(p1–1)

pp1
1

a(s)(� ′
1(s))p1

μ
(p1–1)
1 s2(p1–1)�

(p1–1)
1 (s)

)
ds ≤ φ1(t1),

which contradicts (30).
From Lemma 3.2 we get that (25) holds. This implies that

φ′
2(t) ≤ –1(t) +

(� ′(t))2

4� (t)
.

Then we obtain

∫ t

t1

(
1(s) –

(� ′(t))2

4� (t)

)
ds ≤ φ2(t1),

which contradicts (31). This completes the proof. �

Example 3.1 Consider the equation

(
x(t) + (7/8)x(t/e)

)(4) + q0u–4x
(
t/e2) = 0, u ≥ 1, (33)



Bazighifan and Almutairi Advances in Difference Equations        (2021) 2021:131 Page 10 of 12

Table 1 Conditions comparison

Condition (3) (4) (5) (6)

Criterion q0 > 113981.3 q0 > 3561.9 q0 > 3008.5 q0 > 587.93

where q0 > 0 is a constant, and

p1 = 2, a(t) = 1, r(t) = 7/8, δ(t) = u/e, q(t) = q0u–4, σ (t) = t/e2.

Applying conditions (3), (4), (5), and (6) to Eq. (33), we obtain Table 1.
Therefore we see that [27] enriched the results in [24–26]. Furthermore, we easily find

that the conditions for oscillation in [24–26] cannot be applied to (35) and (36). Therefore
our results are new.

Example 3.2 Consider the differential equation

(((
x + r0x(� t)

)′′′)(p1–1))′ +
q0

t3p1–2 x(λt) = 0, t ≥ 1, (34)

where � ,λ ∈ (0, 1] and r0, q0 > 0. Let a(t) = 1, r(t) = r0, δ(t) = � t, σ (t) = λt, and q(t) =
q0/t3p1–2. We easily see that

q̂(t) = q0λ
3p1–2 1

t3p1–2 .

By Corollary 3.1 equation (34) is oscillatory if

q0 ln
1
λ

> (p1 – 1)
(

� + r(p1–1)
0

�

)
6(p1–1)

λ3(p1–1)e
. (35)

By Corollary 3.2, if

q0 ln
1
λ

>
1

(1 – r0)(p1–1)
6(p1–1)

λ3(p1–1)e
, (36)

then (34) is oscillatory.
Finally, setting �1(s) := t3(p1–1) and � (t) := t2, we have

(t) = q0(1 – r0)(p1–1)λ3(p1–1) 1
s

and

1(t) :=
1
2

(
q0

3(p1 – 1)

)1/(p1–1)

(1 – r0)λ,

By Theorem 3.4 equation (34) is oscillatory if

q0(1 – r0)(p1–1)λ3(p1–1) > 2(p1–1)3p1

(
(p1 – 1)

p1

)p1

(37)
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and

q0 >
(

2
(1 – r0)λ

)(p1–1)

3(p1 – 1). (38)

4 Conclusion
In this paper, we consider the oscillation and asymptotic behavior of a class of fourth-
order Emden–Fowler neutral differential equations. Using the Riccati transformation and
comparison method, we establish new oscillation conditions for the solutions of fourth-
order neutral differential equations. Our results unify and extend some known results for
differential equations. In the future work, we will discuss the oscillatory behavior of these
equations by using comparing technique with second-order equations.
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