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Abstract
The main aim presented in this article is to provide an efficient transferred Legendre
pseudospectral method for solving pantograph delay differential equations. At the
first step, we transform the problem into a continuous-time optimization problem
and then utilize a transferred Legendre pseudospectral method to discretize the
problem. By solving this discrete problem, we can attain the pointwise and
continuous estimated solutions for the major pantograph delay differential equation.
The convergence of method has been considered. Also, numerical experiments are
described to show the performance and precision of the presented technique.
Moreover, the obtained results are compared with those from other techniques.

MSC: 35R11; 76M60

Keywords: Pantograph delay differential equations; Transferred Legendre
pseudospectral method; Convergence analysis

1 Introduction
Many dynamical problems, in various sciences such as economics, medicine, biology,
robotics, physics, control systems and other industrial applications, include a system
of differential equations with initial or boundary conditions. Therefore, in dealing with
these problems, there is a need for analytical or numerical solution of differential equa-
tions. Most cases of differential equations cannot be solved analytically and therefore re-
searchers have sought to provide effective numerical methods to solve them. So far, nu-
merous numerical methods have been proposed for differential equations, including ho-
motopy methods, spectral and pseudospectral methods, tau methods, finite difference
methods, finite element methods, and methods utilizing polynomial approximations, in
particular, Hermit, Laguerre, Bernstein, Taylor, Bernoulli, and Jacobi approximations can
be mentioned. To get acquainted with some of these techniques and methods, the reader
can refer to the works [11, 15, 22, 25, 37–40].

Among the differential equations, there are some that include time-delay and are known
as delay differential equations. In fact, the behavior of unknown variable in the differential
equation, in this class of equations, at a given time depends on the behavior of the variable
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at previous times and a kind of time-delay in the system can be seen. This class of differ-
ential equations has been considered by many researchers, and they have been looking for
numerical and approximate solutions. Moreover, in the category of delay differential equa-
tions, functional differential equations or pantograph delay differential equations (PDDEs)
have received much attention. At first, PDDEs have originated from the work of Ockendon
and Tayler [23]. Some applications of PDDEs can be found in [1, 6, 9, 23].

After the emergence of pantograph delay differential equations and their many appli-
cations, their numerical solution has been considered by many researchers. We want
to mention some of the proposed methods. In [2], Boubaker polynomials were used to
solve PDDEs. Sedaghat et al. [30] presented a numerical method based on the transferred
Chebyshev polynomials for a pantograph equation. Also, [36] focused on the Chebyshev
polynomial method for PDDEs. In [29], a sequence of functions based on the variational it-
eration method was given for the generalized PDDEs. A compound technique, incorporat-
ing the perturbation method with an iteration algorithm, was suggested for solving PDDEs
by Cevik [4]. Exponential polynomials were applied to approximate the solution of high-
order PDDEs in [5, 45]. In [28], the Bessel polynomials were utilized to gain the estimated
solution of a generalized pantograph equation with variable coefficients. The authors of
[24] gave the multistage homotopy perturbation method for DDEs. In [27], the reproduc-
ing kernel was applied for a neutral functional differential equation. Tohidi et al. [34] and
Akyuz-Dascioglu and Sezer [3] used the Bernoulli collocation method to solve generalized
pantograph equations. Moreover, Jacobi rational Gauss collocation method was given to
solve generalized pantograph equations in [8]. In [41, 47], the Runge–Kutta methods were
presented for a class of neutral infinite delay-differential equations with different propor-
tional delays. In [18, 20], Bernstein polynomials have been applied to approximately solve
the generalized pantograph equations. Also, the Hermite polynomials were proposed in
[43] to achieve approximate solutions of a generalized pantograph equation with variable
coefficients. The authors of [12, 46] discussed the stability of θ -methods for the solution
of a generalized pantograph equation. The Chebyshev polynomials and the tau method
were suggested to solve pantograph equations in [36]. Xu and Huang [13, 42] found the
discontinuous and continuous Galerkin solutions for the PDDEs. In [6], the trapezoidal
rule discretization was investigated for numerical solution of the PDEs. In [8, 19], rational
functions were applied to approximate a generalized pantograph equation on a semiinfi-
nite interval. Furthermore, Taylor polynomials were used to estimate the solution of the
pantograph equations in [21, 31, 32].

Despite the techniques mentioned above, there is a need for an efficient and conver-
gent numerical method with high accuracy and less complexity to solve PDDEs. In re-
cent decades, spectral and pseudospectral methods have been considered as some of the
high-precision methods for numerical solution of continuous-time problems involving
dynamical systems. The main reason for using spectral and pseudospectral methods is the
exponential convergence rate of these methods in approximating analytical and smooth
functions [7, 33, 35]. These methods usually deal with two steps: selecting a polynomial
space to approximate the solution of problem and transferring the problem (or differen-
tial equation) into the polynomial space. The orthogonal polynomials such as those of
Legendre and Chebyshev are utilized to approximate the solution that have derivatives of
any order. Also, a set of points, as collocation or interpolating points, are considered to
discretize the equations.
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In this paper, we propose a transferred Legendre pseudospectral method to solve a class
of PDDEs. The proposed method has the ability to be extended to all DDEs. We focus on
the following PDDE:

⎧
⎨

⎩

ẇ(r) = α(r)w(r) + β(r)w(qr) + χ (r), 0 ≤ r ≤ R,

w(0) = γ ,
(1)

where α(·), β(·), and χ (·) are given differentiable functions, 0 < q < 1 is a constant, γ is
a given vector, and w : Rn → R is an unknown continuously differentiable function. We
assume that equation (1) has a unique solution w(·). Here we suggest a new transferred
Legendre PS method for numerical solution of equation (1). The collocation is commu-
nicated to the transferred Legendre–Gauss–Lobatto (LGL) nodes. After discretization of
the problem in these nodes, we have a nonlinear programming (NLP) problem. So, we
estimate the solution of the major PDDEs. The convergence of estimate solutions is given,
and the performance of technique by solving four test problems and a comparison of the
method with other numerical techniques are presented.

2 Description of the technique
At the first step, we transform DDE (1) into the following CTO problem:

Minimize I =
∥
∥w(0) – γ

∥
∥2

2

subject to ẇ(r) = α(r)w(r) + β(r)w(qr) + χ (r), 0 ≤ r ≤ R.
(2)

The accurate solution of equation (1) is an optimal solution to the problem (2). Since
equation (1) has a unique solution, problem (2) is feasible and has a unique optimal solu-
tion. We estimate the solution of problem (2) as follows:

w(r) � wM(r) =
M∑

j=0

w̄jLj(r), 0 ≤ r ≤ R, (3)

where w̄j, j = 0, 1, . . . , M are unknown coefficients and Lj(·), j = 0, 1, . . . , M are the interpo-
lating Lagrange polynomials, defined by

Lj(r) =
M∏

i=0,i�=j

r – ri

rj – ri
, j = 0, 1, . . . , M. (4)

The transferred LGL points, {rj}M
j=0 on [0, R] are the roots of the polynomials (1 – ( 2

R r –
1)2) dQM(r)

dr where QM(·) is the transferred Legendre polynomial of order M defined on [0, R]
by the following recurrence relation:

⎧
⎨

⎩

Q0(r) = 1, Q1(r) = 2
R r – 1,

Qj+1(r) = ( 2j+1
j+1 )( 2

R r – 1)Qj(r) – ( j
j+1 )Qj–1(r), j = 1, 2, . . . , M.

(5)

We note that

Lj(rk) =

⎧
⎨

⎩

1, j = k,

0, j �= k.
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So,

w(rk) � wM(rk) = w̄k . (6)

Now, by using relations (3) and (6), we discretize CTO (2) into the NLP problem

Minimize I = ‖w̄0 – γ ‖2
2 (7)

subject to
M∑

j=0

w̄jHkj = α(rk)w̄k + β(rk)
M∑

j=0

w̄jLj(qrk) + χ (rk), k = 1, 2, . . . , M,

where Hkj = L̇j(rk), and we can display that

Hkj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

QM(rk )
QM(rj)

· 1
rk –rj

, k �= j,
2
R · –M(M+1)

4 , k = j = 0,
2
R · M(M+1)

4 , k = j = M,

0, otherwise.

(8)

We note that

d
dr

w(rk) � dwM

dr
(rk) =

M∑

j=0

w̄jL̇j(rk) =
M∑

j=0

w̄jHkj. (9)

Having solved NLP problem (7), we attain the pointwise estimated solution w̄∗ = (w̄∗
0, w̄∗

1,
. . . , w̄∗

M). Also,

wM(r) =
M∑

j=0

w̄∗
j Lj(r), 0 ≤ r ≤ R, (10)

is a continuous estimate solution for the CTO problem (2) (or the major equation (1)).

3 Convergence of method
In this part of the article, we present the convergence theorem of the presented method
for PDDEs. Suppose V n,q, n ≥ 2 is a Sobolev space containing all functions ρ : [0, R] →R

n

such that ρ(j), 0 ≤ j ≤ n, is in Lq equipped with the norm

‖ρ‖vn,q =
n∑

j=0

(∫ R

0

∥
∥ρ(j)(r)

∥
∥q

q

) 1
q

.

Lemma 1 ([7]) For any given function ρ(·) ∈ V n,∞, there is a polynomial p(·) ∈ PM such
that

∥
∥ρ(r) – p(r)

∥
∥∞ ≤ CC0M–n, 0 ≤ r ≤ R,

where C is a fixed constant independent of M and C0 = ‖ρ‖V n,∞ .
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To guarantee the feasibility of problem (7), we convert it into the following one:

Minimize I = ‖w̄0 – γ ‖2

subject to

∥
∥
∥
∥
∥

M∑

j=0

w̄jHkj – α(rk)w̄k – β(rk)
M∑

j=0

w̄jLj(qrk) – χ (rk)

∥
∥
∥
∥
∥∞

≤ (M – 1)
3
2 –n, k = 1, 2, . . . , M.

(11)

Theorem 1 Suppose that w(·) ∈ V n,∞, n ≥ 2 is a possible solution to the problem (2). There
is a positive integer M1 such that for any integer M > M1, problem (11) has a feasible solu-
tion w̄ = (w̄0, w̄1, . . . , w̄M) satisfying

∥
∥w(rk) – w̄k

∥
∥∞ ≤ L(M – 1)1–n, k = 0, 1, . . . , M,

where {rk}M
k=0 are the collocation points and L is a positive constant, independent of M.

Proof There is a polynomial p(·) ∈ PM–1 and fixed C1 independent of M, such that

∥
∥ẇ(r) – p(r)

∥
∥∞ ≤ C1(M – 1)1–n.

Define

wM(r) =
∫ r

0
p(ζ ) dζ + w(0), r ≥ 0.

So we have

ẇM(r) = p(r), wM(0) = w(0).

Hence,

∥
∥w(r) – wM(r)

∥
∥∞ =

∥
∥
∥
∥

∫ r

0

(
ẇ(z) – p(z)

)
dz

∥
∥
∥
∥∞

≤
∫ r

0

∥
∥ẇ(z) – p(z)

∥
∥∞ dz

≤ C1(M – 1)1–n
∫ r

0
df ≤ C1R(M – 1)1–n.

(12)

By (12), w(rk) and w̄k for k = 0, 1, . . . , M are in a dense set as 	 ⊆ R
n. On the other hand,

wM(·) ∈ PM is a polynomial. For any polynomial w(·) ∈ PM , its derivative at the transferred
LGL nodes r0, r1, . . . , rM can be computed accurately with differential matrix H . Therefore
we get

M∑

j=0

w̄jHkj = ẇM(rk). (13)

So by (12) and (13), for k = 1, 2, . . . , M, we have

∥
∥
∥
∥
∥

M∑

j=0

w̄jHkj – α(rk)w(rk) – β(rk)w(qrk) – χ (rk)

∥
∥
∥
∥
∥∞

≤ ∥
∥ẇM(rk) – ẇ(rk)

∥
∥∞ +

∥
∥α(rk)wM(rk) – α(rk)w(rk)

∥
∥∞
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+
∥
∥β(rk)wM(qrk) – β(rk)w(qrk)

∥
∥∞

≤ ∥
∥ẇM(rk) – ẇ(rk)

∥
∥∞ +

∥
∥α(rk)

∥
∥∞

∥
∥wM(rk) – w(rk)

∥
∥∞

+
∥
∥β(rk)

∥
∥∞

∥
∥wM(qrk) – w(qrk)

∥
∥∞

≤ C1(M – 1)1–n + N1C1R(M – 1)1–n + N2C1R(M – 1)1–n

= C1(M – 1)1–n(1 + N1R + N2R),

where N1 and N2 are upper bounds for continuous functions a(·) and b(·) on the interval
[0, R]. Thus by selecting M1 ∈N such that C1(1 + N1R + N2R) ≤ (M1 – 1) 1

2 , we get

∥
∥
∥
∥
∥

M∑

j=0

w̄jHkj – α(rk)w(rk) – β(rk)w(qrk) – χ (rk)

∥
∥
∥
∥
∥∞

≤ (M – 1)
3
2 –n, k = 1, 2, . . . , M, (14)

for all integers M ≥ M1. �

Let (w̄∗
0, w̄∗

1, . . . , w̄∗
M) be an optimal solution to problem (11) defined by

w∗
M(r) =

M∑

k=0

w̄∗
kLk(r), r ∈ [0, R], (15)

where Lk(·), k = 0, 1, . . . , M are the Lagrange interpolating polynomials. We have a se-
quence of direct solutions {w̄∗

0, w̄∗
1, . . . , w̄∗

M}∞M=M1
and corresponding sequences of inter-

polating functions {w∗
M(·)}∞M=M1

.

Assumption 1 It is supposed that the sequence {w̄∗
0, ẇ∗

M(·)}∞M=M1
has a subsequence that

uniformly converges to {w∞
0 , q(·)} where q(·) is a continuous function and w∞

0 ∈R.

Theorem 2 Let {w̄∗
0, w̄∗

1, . . . , w̄∗
M}∞M=M1

be a sequence for optimal solutions of problem (11)
and {w∗

M(·)}∞M=M1
be their interpolating sequence satisfying Assumption 1. Then,

w∗(r) =
∫ r

0
q(ζ ) dζ + w∞

0 , 0 ≤ r ≤ R, (16)

is an optimal solution to the problem (2).

Proof Under Assumption 1, there exists a subsequence {ẇ∗
Mi

(·)}∞i=1 of sequence
{ẇ∗

M(·)}∞M=M1
such that limi→∞ Mi = ∞ and limi→∞ ẇ∗

Mi
(·) = q(·). From (16) and Assump-

tion 1, we get

lim
i→∞ ẇ∗

Mi
(·) = ẇ∗(·).

In the first step, we demonstrate that w∗(·) is a feasible solution for problem (2). In the
second step, we show that w∗(·) is an optimal solution for the problem (2).

Step 1. Suppose that w∗(·) does not satisfy the restriction of problem (2). There is a time
r̄ ∈ [0, R] such that

ẇ∗(r) – α(r)w∗(r) – β(r)w∗(qr) – χ (r) �= 0.
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Since nodes {rk}∞k=0 are dense in [0, R] (see [10]), there exists a subsequence kMi such that
0 < kMi < Mi, limi→∞ rkMi

= r̄. Thus,

ẇ∗(r̄) – α(r)w∗(r) – β(r)w∗(qr) – χ (r)

= lim
i→∞

(
ẇ∗

Mi
(rkMi

) – α(rkMi
)w∗

Mi
(rkMi

) – β(rkMi
)w∗

Mi
(qrkMi

) – χ (rkMi
)
) �= 0.

(17)

On the other hand, limi→∞(Mi – 1) 3
2 –n = 0, so that for problem (11), we obtain

lim
i→∞

(
ẇ∗

Mi
(rkMi

) – α(rkMi
)w∗

Mi
(rkMi

) – β(rkMi
)w∗

Mi
(qrkMi

) – χ (rkMi
)
)

= 0,

which is a contradiction to (17). So, w∗(·) is a possible solution to problem (2).
Step 2. Let w∗∗(·) ∈ V n,∞, n ≥ 2 be an optimal solution to the problem (2). In view of

Theorem 1, there exists a sequence of possible solutions {w̃ = (w̃∗
0, w̃∗

1, . . . , w̃∗
M)}∞M=M1

for
problem (11) which converges uniformly to w∗∗(·). With optimality of w∗∗(·) and w̄∗ =
(w̄∗

0, w̄∗
1, . . . , w̄∗

M), we obtain

0 =
∥
∥w∗∗(0) – γ

∥
∥2 ≤ ∥

∥w∗(0) – γ
∥
∥2 = lim

i→∞
∥
∥w∗

Mi
(0) – γ

∥
∥2

=
∥
∥w̄∗

0 – γ
∥
∥2 ≤ ∥

∥w̃∗
0 – γ

∥
∥2 =

∥
∥w∗∗(0) – γ

∥
∥2 = 0.

So ‖w∗(0) – γ ‖2 = 0. Therefore, w∗(·) is an optimal solution for problem (2). �

4 Test problems
In this part of the article, in order to illustrate the performance and precision of presented
method, we solve four PDDEs.

Example 1 Consider the following PDDE:

⎧
⎨

⎩

ẇ(r) = 1
2 w(r) + 1

2 e r
2 w( r

2 ), 0 ≤ r ≤ R,

w(0) = 1.

The accurate solution of this pantograph equation is w(r) = er . We assume that R = 1. The
estimated and accurate solutions with M = 9 are illustrated in Fig. 1. The absolute errors
of estimated solutions with M = 6, 9, 12 in Fig. 2 are given in Table 1. It appears that when
M increases, the absolute errors vanish and the obtained estimated solutions converge
to the accurate solution. Also, in Table 1 we compare the absolute error of the obtained
estimated solution with that found using Taylor methods in [31]. It can be seen that our
method is more accurate.

Example 2 Consider the following PDDE:

⎧
⎨

⎩

ẇ(r) = aw(r) + bw(qr) + cos(r) – a sin(r) – b sin(qr), 0 ≤ r ≤ R,

w(0) = 0.

The accurate solution of this pantograph equation is w(r) = sin(r) for any a, b ∈R, 0 < q < 1.
We assume that a = –1, b = 0.5, q = 0.5, and R = 1. The estimated and accurate solutions
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Figure 1 The accurate and estimated solutions
with M = 9 for Example 1

Figure 2 The absolute errors for Example 1

Table 1 Comparison of the absolute errors for Example 1

r Taylor method
withM = 9

Taylor method
withM = 12

presented method
withM = 9

presented method
withM = 12

0.2 0.70× 10–14 2.22× 10–16 4.9× 10–13 2.22× 10–15

0.4 0.10× 10–10 2.22× 10–15 3.36× 10–12 3.553× 10–15

0.6 0.29× 10–9 2.22× 10–13 2.504× 10–11 2.22× 10–16

0.8 0.38× 10–8 1.33× 10–12 4.553× 10–11 4.44× 10–16

1 0.29× 10–7 5.01× 10–10 4.886× 10–11 2.665× 10–15

Figure 3 The accurate and estimated solutions
with M = 9 for Example 2

Figure 4 The absolute errors for Example 2

are shown with M = 9 in Fig. 3. Also, the absolute errors of estimated solutions for M =
5, 7, 9 are illustrated in Fig. 4. It can see that when M increases, the absolute error tends
to zero. In Table 2 we compare the maximum of absolute errors of the presented method
with discontinuous Galerkin (DG) method [14]. The results of the presented method are
better than those of DG method for this example.
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Table 2 Comparison of the maximum absolute errors for Example 2

M Piecewise constant DG
withM = 64

Piecewise linear DG
withM = 64

Piecewise quadratic DG
withM = 16

Presented method
withM = 5

max E(r) 1.4032× 10–2 2.1429× 10–5 1.4643× 10–6 3.8567× 10–7

Figure 5 The accurate and estimated solutions
with M = 8 for Example 3

Figure 6 The absolute errors for Example 3

Table 3 Comparison of the maximum absolute errors for Example 3

M Method of [17]
for q = 0.5

Method of [17]
for q = 0.99

Presented method
for q = 0.5

Presented method
for q = 0.99

6 1.351× 10–4 7.362× 10–7 3.5007× 10–8 3.7109× 10–8

8 1.102× 10–6 1.891× 10–9 5.0088× 10–10 8.8818× 10–16

10 5.662× 10–9 3.598× 10–12 3.2419× 10–14 4.6384× 10–8

14 1.854× 10–13 4.441× 10–16 0.00 3.8858× 10–16

16 5.551× 10–16 4.441× 10–16 5.8842× 10–15 3.9413× 10–15

Example 3 Consider the following PDDE:

⎧
⎨

⎩

ẇ(r) = 1
2 w(qr) – w(r) – 1

2 e–qr , 0 ≤ r ≤ R,

w(0) = 1.

The accurate solution of this pantograph equation is w(r) = e–r , 0 < q < 1. We illustrate the
accurate and estimated solutions for M = 8 and q = 0.5 in Fig. 5. The absolute errors of
the estimated solutions with M = 8, 10, 12 and q = 0.5 are given in Fig. 6. By increasing M,
the absolute errors decrease. In Table 3 we compare the maximum errors of the presented
method and see that the error of the presented method is less than that of the method of
[17].

Example 4 Consider the following nonlinear PDDE:

⎧
⎨

⎩

ẇ(r) = –w(r) – w(0.8r),

w(0) = 1, 0 ≤ r ≤ 1.
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Figure 7 The estimated solutions for Example 4

Figure 8 The absolute errors for Example 4

Table 4 Estimated solutions of other methods for Example 4

r WS method
of [26] for
m = 64

LS method
of [16] for
N = 20

TS method
of [32] for
N = 8

HSC method
of [43] for
N = 8

BP method
of [20] for
N = 6

BC method
of [3] for
N = 6

MCC method
of [44] for
N = 6

0.0 1.000000 0.999971 1.000000 1.000000 1.00000000 1.00000000 1.00000000
0.2 0.665621 0.664703 0.666469 0.664691 0.66469078 0.66469052 0.66469101
0.4 0.432426 0.433555 0.433561 0.433561 0.43356098 0.43356055 0.43356077
0.6 0.275140 0.276471 0.276482 0.276482 0.27648212 0.27648223 0.27648233
0.8 0.170320 0.171482 0.171484 0.171484 0.17148433 0.17148362 0.17148412
1 0.100856 0.102679 0.102744 0.102670 0.10267077 0.10268323 0.10267013

So far, no researchers have reported the exact solution to this equation. But, several au-
thors [3, 16, 20, 26, 32, 43, 44] have presented some numerical solutions. Hence, we also
apply our method to numerically solve this equation and compare the obtained results
with those of others. The obtained numerical solutions for different M are given in Fig. 7.
It can be seen that the solutions are stable and tend to the specified function (which can be
a solution for the equation). Also, in Fig. 8 we show the residual errors for different vales of
M. By increasing M, the residual errors decrease. So our numerical solutions are accept-
able. Moreover, for further confirmation, we compare the results of the Walsh series (WS)
method [26], Laguerre series (LS) approach [16], Taylor series (TS) scheme [32], Hermit
series collocation (HSC) approach [43], Bernstein polynomial (BP) method [20], Bernoulli
collocation (BC) method [3], and modified Chebyshev collocation (MCC) technique [44].
Tables 4 and 5 indicate that our results are close and consistent with the solutions of oth-
ers. Furthermore, Table 5 shows that, by increasing M, our estimated solutions come close
to some constants and are more trustworthy.

5 Conclusions and suggestions
In this manuscript, we presented a transferred Legendre pseudospectral method for
PDDEs. The feasibility and convergence of obtained estimated solutions have been dis-
cussed. The technique has been successfully utilized for solving some pantograph DDEs.
A comparison of the obtained results with those of other techniques showed that our
method is more precise than some existing approaches. One of the advantages of this
method is that by selecting a small number of points, an acceptable accuracy can be
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Table 5 Estimated solutions of the presented method for Example 4

r N = 4 N = 5 N = 6 N = 7 N = 8 N = 9

0.0 0.9999818772 0.9999998976 0.9999999966 0.9999999956 0.9999999940 0.9999999920
0.2 0.6643600291 0.6646736636 0.6646906619 0.6646910073 0.6646909975 0.6646909955
0.4 0.4333212737 0.4335721573 0.4335614390 0.4335607657 0.4335607750 0.4335607752
0.6 0.2767356220 0.2764912235 0.2764814803 0.2764823213 0.2764823294 0.2764823279
0.8 0.1716941986 0.1714664548 0.1714843782 0.1714841232 0.1714841100 0.1714841105
1 0.1025092417 0.1026729554 0.1026700543 0.1026701279 0.1026701257 0.1026701257

achieved for the solution of the equation. For future work, we will suggest the implemen-
tation of the method to the numerical solution of other types of DDE, such as fractional
DDEs, fractional delay integro-differential equations and fractional delay partial differen-
tial equations.
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