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Abstract
In this paper, the authors present a strategy based on fixed point iterative methods to
solve a nonlinear dynamical problem in a form of Green’s function with boundary
value problems. First, the authors construct the sequence named Green’s normal-S
iteration to show that the sequence converges strongly to a fixed point, this sequence
was constructed based on the kinetics of the amperometric enzyme problem. Finally,
the authors show numerical examples to analyze the solution of that problem.
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1 Introduction
The development of a mathematical model based on diffusion has received a great deal
of attention in recent years, many scientist and mathematician have tried to apply basic
knowledge about the differential equation and the boundary condition to explain and ap-
proximate the diffusion and reaction model [1–11].

In 2017, Abukhaled and Khuri [12] solved a solution of amperometric enzymatic reac-
tion based on Green’s function by using the fixed point iteration

∂2s
∂x2 –

Ks
1 + αs

= 0, 0 < s ≤ 1, (1)

subject to

s′(0) = 0, s(0) = a, and s(1) = b. (2)

They defined an operator based on the Picard iteration and proved that the operator is a
contraction mapping that shows the sequence convergence with regard to Banach’s theo-
rem.
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Theorem Banach ([13]) Let (M, d) be a complete metric space and P : M → M be Banach’s
contraction map (that is, there exists a ∈ [0, 1) such that

d(Px, Py) ≤ ad(x, y)

for all x, y ∈ M. Then P has a unique fixed point p ∈ M. Furthermore, for each x0 ∈ M, the
sequence {xn} defined by

xn+1 = Pxn

for each n ≥ 0 converges to the fixed point p.

In 2018, Khuri and Louhichi [14] presented a new numerical approach for the numer-
ical solution of boundary value problems. The algorithm is defined in terms of Green’s
function into the Ishikawa fixed point iteration [15]

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ M,

yn = (1 – βn)xn + βnPxn,

xn+1 = (1 – αn)xn + αnPyn, ∀n ∈N,

where {βn} and {αn} are sequences in [0, 1]. Note that the step of yn is called Mann’s iter-
ation [16].

Further, the converge theorem was proved by using the theorem of Berinde [17].

Theorem Berinde Let M be an arbitrary Banach space, K is a closed convex subset of
M and P : K → K , which the operator satisfies the Zamfirescu operator. Let {xn}∞n=0 be an
Ishikawa iteration and x0 ∈ K , where {α} and {β} are sequences of positive numbers in [0, 1]
with {βn} satisfying

∑∞
n=0 βn = ∞. Then {xn}∞n=0 strongly converges to the fixed point of P.

The above operator is sometimes called Zamfirescu operator [18].

Theorem Zamfirescu Let (M, d) be a complete metric space and P : M → M be a map for
there exist the real numbers a1, a2, and a3 satisfying 0 ≤ a1 < 1, 0 ≤ a2, ac < 0.5 such that,
for each pair x, y in M, at least one of the following is true:

(z1) d(Px, Py) ≤ a1d(x, y);
(z2) d(Px, Py) ≤ a2[d(x, Px) + d(y, Py)];
(z3) d(Px, Py) ≤ a3[d(x, Py) + d(y, Px)].

Then P has a unique fixed point p and the sequence {xn}∞n=0 defined by Picard iteration

xn+1 = Pxn, n = 0, 1, 2, . . .

converges to p for any x0 ∈ M.

In this paper, the authors use the motivation above to construct Green’s normal-S itera-
tion based on the sequence of normal-S iteration of Sahu [19]. Let K be a convex subset of
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the normed space M and a nonlinear mapping P, the sequence {xn} in K is call normal-S
if it is defined by

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈ M,

yn = (1 – βn)xn + βnPxn,

xn+1 = P(yn)

(3)

for each n ≥ 1, where {βn} is the sequence in [0, 1].
The proof of the convergence theorem is based on Berinde’s idea. Finally, the authors use

the sequence to approximate problem (1) subject to (2) by showing a numerical example.

2 Preliminaries
2.1 The mathematical model
Diffusion equations were presented by a mathematical model related to Michaelis–
Menten kinetics (4) of the enzymatic reaction

E + S ⇐⇒ ES → E + P, (4)

where E is an enzyme, S is a substrate, ES is a complex between enzyme and substrate,
and P is a product of reaction.

In biochemistry, the enzyme kinetics in n-dimension � is modeled by the reaction-
diffusion equation [20]

∂S
∂t

= DS∇(∇S) – ν(t, X), X ∈ �, (5)

where DS is the diffusion coefficient of a substrate and ν is the initial reaction velocity.
By using the Michaelis–Menton hypothesis, the velocity ν for simple reaction processes
without competitive inhibition is given by [20, 21]

ν(t, X) =
KS

1 + S/KM
, (6)

where K = k2E0/KM represents a pseudo first order, in which k2 is the unimolecular rate
constant, E0 is the total amount of enzymes, and KM is the Michaelis constant. The one-
dimensional form of (5) is given by

∂S
∂t

= DS
∂2S
∂X2 –

KS
1 + S/KM

, X ∈ �, (7)

with the initial condition given by

S(0, X) = S0(X). (8)

By introducing the parameters

s =
S

KS∞ , x =
X
L

, τ =
DS

L2 , K =
kL2

DS
= φ2, α =

kS∞

KM
, (9)
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we obtain the nonlinear reaction-diffusion equation at steady state

∂2s
∂x2 –

Ks
1 + αs

= 0, 0 < s ≤ 1, (10)

where S∞ is the substrate concentration in bulk solution (mol dm–3), φ2 is the Thiele
modulus.

2.2 Green’s function
Consider the second order differential equation decomposed into a linear term Li[y] and
a nonlinear term f (t, y, y′) as follows:

Li[y] ≡ y′′ = f
(
t, y, y′), (11)

subject to the boundary conditions

⎧
⎨

⎩

BCa[y] ≡ a0y(a) + a1y′(a) = α,

BCb[y] ≡ b0y(b) + b1y′(b) = β ,
(12)

where a ≤ t ≤ b. Bernfeld and Lakshmikantham [22] presented the existence and unique-
ness theorems for solutions of (11).

The Green’s function G(t, s) corresponding to the linear term Li[y] is defined as the so-
lution of the following boundary value problem:

Li
[
G(t, s)

]
= δ(t – s), BCa

[
G(t, s)

]
= BCb

[
G(t, s)

]
= 0, (13)

and has the piecewise form

G(t, s) =

⎧
⎨

⎩

c1y1 + c2y2, a ≤ t < s,

d1y1 + d2y2, s < t ≤ b,
(14)

where y1 and y2 form a fundamental set of solutions for Li[y] = 0. The unknowns could
be found using the homogeneous conditions given in (12) and the fact that the Green’s
function is continuous and its first derivative has a unit jump discontinuity. More precisely,
the constants are determined using the following properties:

A. G satisfies the corresponding homogeneous boundary conditions

BCa
[
G(t, s)

]
= BCb

[
G(t, s)

]
= 0; (15)

B. G is continuous at t = s, i.e.,

c1y1(s) + c2y2(s) = d1y1(s) + d2y2(s); (16)

C. G′ has a unit jump discontinuity at t = s, i.e.,

d1y′
1(s) + d2y′

2(s) – c1y′
1(s) – c2y′

2(s) = 1. (17)
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A particular solution to y′′ = f (t, y, y′, y′′) is expressed in terms of G and is given by the
following structure:

up =
∫ b

a
G(t, s)f

(
s, up, u′

p
)

ds. (18)

We construct the Green’s function for the differential operator Li[y] = y′′ = 0, which has
two linearly independent solutions y1(t) = 1 and y2(t) = t. From (14), the Green’s function
will have the form

G(t, s) =

⎧
⎨

⎩

c1 + c2t, 0 ≤ t ≤ s,

d1 + d2t, s ≤ t ≤ 1,
(19)

where the unknowns are found by the properties A, B, and C listed above. To find the
homogeneous boundary conditions, we have

c1 = 0, d1 + d2 = 0. (20)

G(t, s) is continuous and G′(t, s) discontinues at t = s then

⎧
⎨

⎩

c1 + c2s = d1 + d2s,

c2 – d2 = 1.
(21)

From (19)–(21), we obtain the following Green’s function:

G(t, s) =

⎧
⎨

⎩

s(1 – t), 0 ≤ s ≤ t,

t(1 – s), t ≤ s ≤ 1.
(22)

2.3 Green’s normal-S iteration
Applying the Green’s function to the normal-S iterative method, we recall the following
differential equation:

Li[y] + No[y] = f (t, y), (23)

where Li[u] is a linear operator in y, No[y] is a nonlinear operator in y, and f (t, y) is a
linear or nonlinear function in y. Let yp be a particular solution of (23). We define the
linear integral operator in terms of the Green’s function and the particular solution yp as
follows:

K[yp] =
∫ b

a
G(t, s) Li[yp] ds. (24)

Here, G is the Green’s function corresponding to the linear differential operator Li[y]. For
convenience, we set yp = v. Adding and subtracting No[v] – f (s, v) from within the integral
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in (24) yield

K[v] =
∫ b

a
G(t, s)

(
Li[v] + No[v] – f (s, v)

)
ds +

∫ b

a
G(t, s)

(
f (s, v) – No[v]

)
ds (25)

= v +
∫ b

a
G(t, s)

(
Li[v] + No[v] – f (s, v)

)
ds. (26)

We then apply the normal-S fixed point iterative form

⎧
⎪⎪⎨

⎪⎪⎩

v0 ∈ M,

wn = (1 – βn)vn + βnK[vn],

vn+1 = K[wn],

(27)

where n ≥ 0, (βn) is a sequence of real numbers in [0, 1]. That is,

⎧
⎪⎪⎨

⎪⎪⎩

v0 ∈ M,

wn = (1 – βn)vn + βn[vn +
∫ b

a G(t, s)(Li[vn] + No[vn] – f (s, vn)) ds],

vn+1 = wn +
∫ b

a G(t, s)(Li[wn] + No[wn] – f (s, wn)) ds,

(28)

which is reduced to

⎧
⎪⎪⎨

⎪⎪⎩

v0 ∈ M,

wn = vn + βn
∫ b

a G(t, s)(Li[vn] + No[vn] – f (s, vn)) ds,

vn+1 = wn +
∫ b

a G(t, s)(Li[wn] + No[wn] – f (s, wn)) ds.

(29)

3 Main results
3.1 Constructing the normal-S Green’s iterative scheme
Let Li[s] = ∂2s

∂x2 and f (α, K , s) = Ks
1+αs , consider the enzyme substrate reaction equation,

which takes the form of the following nonlinear equation:

Li[s] = s′′(x) = f
(
x, s(x), s′(x)

)
, (30)

with boundary condition (2), then the required Green’s function

Li
[
G(x, z)

]
= δ(x – z), (31)

subject to the corresponding homogenous boundary conditions

d
dx

G(x, z)|x=0 = 0 and G(x, z)|x=1 = 0. (32)

Using boundary condition (32) in Green’s function (19) then G(x, z), we obtain the equa-
tions

c2 = 0 and d1 + d2 = 0. (33)
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The continuity of G implies that

c2z + c1 = d2z + d1, (34)

and d
dx G(x, z) jump discontinuity implies that

d2 – c2 = 1. (35)

Hence,

G(x, z) =

⎧
⎨

⎩

z – 1, 0 ≤ x ≤ z,

x – 1, z ≤ x ≤ 1.
(36)

From (25), we introduce the following continuous functions on [0, 1] into itself:

PG(sn) = sn +
∫ 1

0
G(x, z)

(
s′′

n(z) – f (α, K , sn)
)

dz, (37)

then equations (27)–(29) become

⎧
⎪⎪⎨

⎪⎪⎩

s0 ∈ M,

wn = (1 – βn)sn + βnPG(sn),

sn+1 = PG(wn).

(38)

3.2 Convergence theorems
In Theorem 1 we show that the operator PG is a contraction mapping, and in Theorem 2
we show that if the operator P satisfies condition Z, then the sequence {sn}∞n=0 defined by
normal-S (29) converges strongly to the fixed point of P.

Theorem 1 Assume that the function f , which appears in the definition of the operator PG,
is such that

C = Cc < 1,

where Cc = maxx∈[0,1] |f ′(s(x))|. Then PG is a contraction, and hence the sequence {sn} is
defined by normal-S iteration (29).

Proof Performing integration by parts in equations (29), (36)–(38), the product is

PG(s) = s –
∫ 1

0
G(x, z)f

(
z, s, s′)dz, (39)
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where s = wn of (38). Thus

∣
∣PG(s) – PG(v)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(x, z)

[
f
(
z, v, v′) – f

(
z, s, s′)]dz

∣
∣
∣
∣

≤
(∫ 1

0

∣
∣G(x, z)

∣
∣dz

)(∫ 1

0

∣
∣f

(
z, v, v′) – f

(
z, s, s′)∣∣dz

)

≤
(∫ 1

0

∣
∣f

(
z, v, v′) – f

(
z, s, s′)∣∣dz

)

.

By applying the mean value theorem for f (s) and using the condition that Cc =
maxx∈[0,1] |f ′(s(x))|, we consider the last inequality

∣
∣PG(s) – PG(v)

∣
∣ ≤ max

x∈[0,1]

∣
∣f

(
v(x)

)
– f

(
s(x)

)∣
∣

≤ Cc‖s – v‖,

where ‖s – v‖ = maxx∈[0,1] |s(x) – v(x)| and C = Cc < 1. So, we obtain the following:

∥
∥PG(s) – PG(v)

∥
∥ ≤ C‖s – v‖

such that 0 ≤ C < 1. Hence PG is a contraction mapping. �

Theorem 2 Let M be an arbitrary Banach space, K be a closed convex subset of M, and
P : K → K be an operator satisfying the condition of Zamfirescu. Let {sn}∞n=0 be defined by
normal-S (3) and s0 ∈ K , where {βn} is a sequence in [0, 1]. Then {sn}∞n=0 converges strongly
to the fixed point of P.

Proof By Zamfirescu’s theorem, we know that P has a unique fixed point in K that is p.
Consider s, m ∈ K . Since P is a Zamfirescu operator, at least one of conditions (z1), (z2),
and (z3) is satisfied. If (z2) holds, then

‖Ps – Pm‖ ≤ a2
[‖s – Ps‖ + ‖m – Pm‖]

≤ b
[‖s – Ps‖ + ‖m – s‖ + ‖s – Ps‖ + ‖Ps – Pm‖],

so

(1 – a2)‖Ps – Pm‖ ≤ a2‖s – m‖ + 2a2‖s – Ps‖

from 0 ≤ a2 < 1

‖Ps – Pm‖ ≤ a2

1 – a2
‖s – m‖ +

2a2

1 – a2
‖s – Ps‖. (40)

Similarly, if (z3) holds

‖Ps – Pm‖ ≤ a3

1 – a3
‖s – m‖ +

2a3

1 – a3
‖s – Ps‖. (41)
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Denote δ = max{a1, a2
1–a2

, a3
1–a3

}. Then we have 0 ≤ δ < 1 and get

‖Ps – Pm‖ ≤ δ‖s – m‖ + 2δ‖s – Ps‖. (42)

The sequence {sn}∞n=0 is defined by normal-S iteration (3) and s0 ∈ K , by (42) we get

‖sn+1 – p‖ = ‖Pp – Pmn‖ ≤ δ‖mn – p‖.

Consider again

‖sn – p‖ =
∥
∥(1 – βn)sn + βnPsn – p

∥
∥

=
∥
∥(1 – βn)(sn – p) + βn(Psn – p)

∥
∥

= (1 – βn)‖sn – p‖ + βn‖Psn – p‖.

By (42) again,

‖p – Psn‖ ≤ δ‖sn – p‖.

So, we have

‖sn+1 – p‖ ≤ δ‖mn – p‖
≤ δ

[
(1 – βn)‖sn – p‖ + βnPsn – p‖]

≤ δ
[
(1 – βn)‖sn – p‖ + βnδ‖sn – p‖]

= δ(1 – βn + βnδ)‖sn – p‖,

by induction

‖sn+1 – p‖ ≤
n∏

k=0

δ(1 – βk + βkδ)‖s0 – p‖ for n = 0, 1, 2, . . . . (43)

From δ(1 – βk + βkδ) < 1,

lim
n→∞

n∏

k=0

δ(1 – βk + βkδ) = 0, (44)

which implies

lim
n→∞‖sn+1 – p‖ = 0. (45)

Therefore {sn}∞n=0 converges strongly to the fixed point of P. This is completes the proof. �

4 Numerical examples
In the first example, we show a simple example to compare the solution with three iterative
methods to explain the convergence of the sequences. In the last example, we present the
main example to analyze the main problem (10).
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Example 1 Consider the following differential equation x(t):

x′′(t) =
3
2

x(t)2, (46)

where 0 ≤ t ≤ 1 and subject to

x(0) = 4, x(1) = 1. (47)

The exact solution is x(t) = 4
(1+t)2 . The initial iterate satisfies x′′ = 0 and boundary condi-

tions (47). This x0 = 4 – 3t. By normal-S Green’s iteration (29),

wn = xn + βn

∫ t

0
s(1 – t)

(

x′′
n(s) –

3
2

x(s)2
)

ds + βn

∫ 1

t
t(1 – s)

(

x′′
n(s) –

3
2

x(s)2
)

ds,

xn+1 = wn +
∫ t

0
s(1 – t)

(

w′′
n(s) –

3
2

w(s)2
)

ds +
∫ 1

t
t(1 – s)

(

w′′
n(s) –

3
2

w(s)2
)

ds.
(48)

Table 1 shows the convergence step, Fig. 1 shows the convergence step and the error step
of sequence {xn}, which the error is calculated from (

∫ b
a |xn – xexact|2)1/2.

Figure 1 shows a sequence of functions to compare three iterative methods. From the
boundary condition, the value of problem starts at 4 and stops at 1. The back line is the
solution of function, while red, blue, and green lines are Mann, normal-S, and Ishikawa

Table 1 The convergence step of {xn} for example with αn = 0.1 + 0.000001
n2

and βn = 0.005 + 0.0000001
n2

t Exact solution Mann Ishikawa Normal-S

0.0 3.92118419 3.92242687 1.30160882 3.92242687
0.1 3.36671997 3.37519562 1.65351070 3.37519562
0.2 2.82465927 2.83754278 2.35571598 2.83754278
0.3 2.40370170 2.41804592 2.40900977 2.41804592
0.4 2.07028621 2.08442445 2.14697656 2.08442445
0.5 1.80172064 1.81466881 1.87174319 1.81466881
0.6 1.58221589 1.59335578 1.63868670 1.59335578
0.7 1.40051118 1.40941688 1.44510892 1.40941688
0.8 1.24840048 1.25474044 1.28251199 1.25474044
0.9 1.11978947 1.12326988 1.14342745 1.12326988
1.0 1.01007550 1.01040682 1.02099028 1.01040682

Figure 1 The convergence step of sequence {xn} with αn = 0.1 + 0.000001
n2

and βn = 0.005 + 0.0000001
n2
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Figure 2 The convergence and the error step of sequence {xn} with αn = 0.1 + 0.000001
n2

and

βn = 0.005 + 0.0000001
n2

sequences, respectively. The figure concludes that Mann and normal-S are converging
faster than Ishikawa and converging nearly to the solution of the function.

Figure 2 shows the error of three iterative sequences to compare the error value. Red,
blue, and green lines mark Mann, Normal-S, and Ishikawa sequences, respectively. The
figure concludes that normal-S sequence is decreasing to 0 faster than the error of Mann
and Ishikawa sequences.

Example 2 Consider the differential equation (10)

s′′(x) =
Ks

1 + αs
,

where 0 ≤ x ≤ 1 and subject to

s′(0) = 0, s(0) = 4 and s(1) = 1.

The initial iterate satisfies s′′ = 0 and the boundary conditions. Then s0 = 4 – 3x. By
normal-S Green’s iteration (29) and from (36), (37), and (38), the sequence is defined by

wn = sn + βn

∫ x

0
(z – 1)

(

s′′
n(z) –

Ksn(z)
1 + αsn(z)

)

dz

+ βn

∫ 1

x
(x – 1)

(

s′′
n(z) –

Ksn(z)
1 + αsn(z)

)

dz,

sn+1 = wn +
∫ x

0
(z – 1)

(

w′′
n(z) –

Kwn(z)
1 + αwn(z)

)

dz

+
∫ 1

x
(x – 1)

(

w′′
n(z) –

Kwn(z)
1 + αwn(z)

)

dz,

(49)

where K and α are constants of substrate concentration, and set βn = 0.005 + 0.0000001
n2 .

Table 2 and Fig. 3 show approximation of substrate concentration sequence S(x) for
different values of α and K .

Explanation of Fig. 3: Firstly, the error of normal-S sequence S(x) compares with different
values of α with K = 0.00001, the error sequence of large α converges faster than that of
small α. Secondly, the error of normal-S sequence S(x) which compared by different values
of K with α = 1000, the error sequence of small K converges faster than that of large K .
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Table 2 Approximation of substrate concentration sequence S(x) for different values of α and K

K α Value Error

0.00001 1000 1.30229436 0.163849753
10,000 1.31170037 0.0163837933
100,000 1.30116511 0.00163148460

0.00001 1000 1.30229436 0.163849753
0.000005 1.30114713 0.0819213023
0.000000000001 1.29999989 7.80258953e–06

Figure 3 The error step of the sequence {sn} with different values of α with K = 0.00001 and different values
of K with α = 1000

5 Conclusion
This paper presents a strategy based on fixed point iterative methods with normal-S it-
eration (38) to solve a nonlinear dynamical problem in a form of Green’s function with
boundary conditions used in Theorem 1 and Theorem 2 to guarantee the solution. Ex-
ample 2 explains two constants K and α in the nonlinear reaction-diffusion equation at
steady state (1). Therefore, the values of K must be small, while the values of α should be
large, so the error value of sequence will converge to 0 faster than the other cases.
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