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Abstract
In this article we study a class of stochastic fractional kinetic equations with fractional
noise which are spatially homogeneous and are fractional in time with H > 1/2. The
diffusion operator involved in the equation is the composition of the Bessel and Riesz
potentials with any fractional parameters. We prove the existence of the solution
under some mild conditions which generalized some results obtained by Dalang
(Electron. J. Probab. 4(6):1–29, 1999) and Balan and Tudor (Stoch. Process. Appl.
120:2468–2494 , 2010). We study also its Hölder continuity with respect to space and
time variables with b = 0. Moreover, we prove the existence for the density of the
solution and establish the Gaussian-type lower and upper bounds for the density by
the techniques of Malliavin calculus.
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1 Introduction
This paper is concerned with the following stochastic fractional kinetic equation (SFKE
for short) with zero initial condition (see, for example, Angulo et al. [1, 3], Angulo et al.
[2], and Márquez-Carreras [16]):

⎧
⎨

⎩

∂
∂t u(t, x) = –(I – �) α

2 (–�)
γ
2 u(t, x) + b(u(t, x)) + Ẇ (t, x) in [0, T] ×R

d,

u(0, x) = 0, x ∈R
d,

(1)

with T > 0, d ≥ 1, α ≥ 0, γ > 0, b(·) is a measurable function and Ẇ denotes a fractional
noise. We will specify later the required conditions on the noise Ẇ . In the SFKE (1), I and
� are the identity and Laplacian operators, respectively, and the operators (I – �) α

2 and
(–�)

γ
2 have to be interpreted as the inverses of the Bessel potential and Riesz potential,

respectively. The fractional Riesz–Bessel operator was introduced by Angulo et al. in [3]
and the authors established the existence of the Riesz–Bessel motion.

The SFKE (1) (known also as Riesz–Bessel fractional diffusion equation, the fractional
diffusion equation or the fractional heat equation) driven by Gaussian white noise was in-
troduced by Angulo et al. [2] via the Eulerian approach. It was mainly used to model some
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physical phenomena, such as diffusion in porous media with fractal geometry, kinematics
in viscoelastic media, and propagation of seismic waves. In [2], the authors mainly studied
the SFKE (1) with additive Gaussian space-time white noise in bounded and unbounded
spatial domains. They connected it with the Eulerian theory of turbulence dispersion by
means of the advection–diffusion equation. They also gave a very interesting connection
with the Lagrangian theory.

Nowadays we can find a lot of applications of these equations in turbulence, ecology,
hydrology, geophysics, image processing, neurophysiology, economics and finance, etc.
(see Angulo et al. [2], Anh et al. [4, 5], Márquez-Carreras [16] and the references therein
for more details). The composition of the Bessel and Riesz potentials plays an important
role in describing the behavior of the process at the spatial macro and microscales. Apart
from the classical context of heat conduction, an equation of form the SFKE (1) with α = 0
and γ = 2 also arises in neurophysiology; see [21] for example. Diffusion operators in the
SFKE (1) with α = 0 and γ > 0 correspond to the generalized heat equation which have
been used to define hyperviscosity and to study its effect on the inertial-range scaling of
fully developed turbulence [13]. The presence of the Bessel operator is essential for a study
of stationary solutions of the SFKE (1). One can also see [4] and [5] for related models.

After the nice work of Angulo et al. [2], several authors have also studied this kind of
the SFKE (1) and other similar equations from a mathematical point of view. For exam-
ple, Angulo et al. [1] considered a more generalized type of space-time fractional kinetic
equation with Gaussian white noise or infinitely divisible noise as follows:

(

An
∂βn

∂tβn
+ · · · + A1

∂β1

∂tβ1
+ A0

∂β0

∂tβ0

)

u(t, x) = –(I – �)
α
2 (–�)

γ
2 u(t, x) + Ẋ(t, x),

with βn > βn–1 > · · · > β1 > β0 ≥ 0, Ai > 0, i = 0, . . . , n, and the fractional-in-time derivative
is defined in the Caputo–Djrbashian sense, i.e.,

∂βu
∂tβ

(t, x) =

⎧
⎨

⎩

∂mu
∂tm (t, x) if β = m ∈ N,

1
�(m–β)

∫ t
0 (t – r)m–β–1 ∂mu(r,x)

∂rm dr if m – 1 < β < m,

where �(·) is the gamma function. The solutions to the equation are proved in both
bounded and unbounded domains, in conjunction with bounds for the variances of the in-
crements. The role of each of the parameters in the equation is investigated with respect to
second- and higher-order properties. In particular, they also proved that the long-range
dependence may arise in the temporal solution under certain conditions on the spatial
operators. In [6], the authors provided a detailed review of the related literature. They
considered a more general class of fractional (both in time and space) evolution equation
defined on Dirichlet regular bounded open domains. They derived the sufficient condi-
tions for the definition of a weak-sense Gaussian solution. The Hölder regularity of the
solution with respect to the time and space variables is also derived.

Meanwhile Márquez-Carreras [15] dealt with the SFKE (1) driven by a Gaussian noise
which is white in time and correlated in space. They proved the existence and unique-
ness of solution by means of a weak formulation and studied the Hölder continuity of this
solution. Moreover, they also proved the existence of a smooth density associated to the
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solution process and studied the asymptotic behavior of this density. Later on Márquez-
Carreras [16] studied the following kind of stochastic partial differential equations:

∂

∂t
u(t, x) = –(I – �)

α
2 u(t, x) + a

(
u(t, x)

)
+ b

(
u(t, x)

)
Ẇ (t, x) with [0, T] ×R

d,

with α > 0 and the process Ẇ is a Gaussian noise, white in time and correlated in space.
The existence and uniqueness of solution and the Hölder continuity of this solution was
proved. Moreover, they proved the existence of the density of the solution and that its
density was smooth.

In this paper, regarding the structure of the SFKE (1), we prove the existence and unique-
ness of the solution and the Hölder continuity of this solution. Moreover, we show that the
equation of the solution is absolutely continuous with respect to Lebesgue’s measure on
R

d (with d < α + γ ) and establish the lower and upper bounds for its density by means of
Malliavin calculus.

We would like to list some differences between this study and all the papers mentioned
above. Firstly, the SFKE (1) we considered in this paper is driven by a more general Gaus-
sian noise (fractional in time and correlated in space) which extended the former noises
in Angulo et al. [2], Angulo et al. [1], and Márquez-Carreras [16]. Secondly, thanks to the
fractional noise, the properties of the solution are checked for any α > 0 and γ > 0 and not
for a more restricted region. Moreover, these properties do not depend on the dimension
of x. Finally, we generalize some results of Balan and Tudor [7, 8] to the fractional opera-
tor setting. We study some new properties of the mild solution to the SFKE (1). Here, we
deal widely with the Hölder continuity in time and in space. We also study some density
properties of the solution by using the techniques of Malliavin calculus; see, for example
Nualart and Quer-Sardanyons [19, 20], and Liu and Yan [14].

This article is organized as follows. In Sect. 2 we recall some preliminaries including
the fractional noise and Malliavin calculus. Section 3 is devoted to describe what we un-
derstand by a solution of the SFKE (1) and prove the existence and uniqueness of this
solution. We show that the solution of the SFKE (1) exists if (12) holds. In Sect. 4 we
check that spatially the solution of the SFKE (1) with b = 0 is a Gaussian field with zero
mean, stationary increments, and a continuous covariance function. We find its index
(see Definition 4.1). We also show that the solution is not stationary in time. Finally in
Sect. 5 we study the density properties of the solution of the SFKE (1), such as the ex-
istence of the density and related Gaussian-type lower and upper bounds for the den-
sity.

2 The preliminaries
This section is devoted to recalling some preliminaries about the fractional noise and re-
lated Malliavin calculus.

2.1 Fractional noise
Let us start by introducing some basic notions on Fourier transforms of functions: the
space of real valued infinitely differentiable functions with compact support is denoted by
D(Rd) and by S(Rd) the Schwartz space of rapidly decreasing C∞ functions in R

d . For
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ϕ ∈ L1(Rd), we let Fϕ be the Fourier transform of ϕ

Fϕ(ξ ) =
∫

Rd
e–iξ ·xϕ(x) dx,

so that the inverse Fourier transform is given by F–1ϕ(ξ ) = (2π )–dFϕ(–ξ ).
Similarly to [8] or [11] for the general case, on a complete probability space (�,F ,Ft , P),

for H > 1/2, we consider a zero-mean Gaussian process W = {W (ϕ),ϕ ∈ D([0, T] × R
d)}

with covariance given by

E
(
W (ϕ)W (φ)

)
= αH

∫ T

0

∫ T

0

∫

R2d
ϕ(t, x)φ(s, y)|t – s|2H–2
(x – y) dx dy ds dt,

with αH = H(2H –1) and 
(·) : Rd →R+ is a non-negative definite function and its Fourier
transform F
 = μ is a tempered measure. Moreover, we assume that there is an integer
m ≥ 1 such that

∫

Rd

1
(1 + |ξ |2)m μ(dξ ) < ∞.

We call Ẇ the fractional noise; it has a spatial covariance 
(·) and has the covariance of a
fractional Brownian motion with Hurst parameter H > 1/2 in time.

Let H be the completion of D([0, T] ×R
d) endowed with the inner product

〈ϕ,φ〉H = αH

∫ T

0

∫ T

0

∫

R2d
ϕ(t, x)φ(s, y)|t – s|2H–2
(x – y) dx dy ds dt

= αH

∫ T

0

∫ T

0

∫

Rd
Fϕ(t, ·)(ξ )Fφ(s, ·)(ξ )|t – s|2H–2μ(dξ ) ds dt,

(2)

where Fϕ refers to the Fourier transform with respect to the space variable only and the
last equality in (2) follows from the simple properties of the Fourier transform. The map
ϕ �→ W (ϕ) defined in D([0, T] ×R

d) can be extended to an isometry between H and the
Gaussian space HW of W . For any ϕ ∈H, we denote this isometry by

ϕ �→ W (ϕ) =
∫ T

0

∫

Rd
ϕ(t, x)W (dt, dx).

Moreover, we can interchange the order of the integrals ds dt and μ(dξ ), since for the
indicator functions φ and ϕ, the integrand is a product of a function of (t, s). Hence, we
have

〈ϕ,φ〉H = αH

∫

Rd

∫ T

0

∫ T

0
Fϕ(t, ·)(ξ )Fφ(s, ·)(ξ )|t – s|2H–2 ds dtμ(dξ ).

The space H may contain distributions, but it contains the space |H| of measurable
functions ϕ : [0, T] �→R

d such that

〈ϕ,φ〉|H| = αH

∫ T

0

∫ T

0

∫

R2d

∣
∣ϕ(t, x)

∣
∣
∣
∣φ(s, y)

∣
∣|t – s|2H–2
(x – y) dx dy ds dt < ∞.
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We shall make a standard assumption on the spectral measure μ, which will prevail until
the end of the paper (see Dalang [10] for some details about this hypothesis).

Hypothesis 1 The measure μ satisfies the following integrability condition:

∫

Rd

1
1 + |ξ |2 μ(dξ ) < ∞. (3)

Remark 2.1 Since the spectral measure μ is a non-trivial positive tempered measure, we
can ensure that there exist positive constants c1, c2 and k such that

c1 <
∫

{|ξ |<k}
μ(dξ ) < c2. (4)

The following estimate (see, for example, [18]) will be needed in the sequel: If 1
2 < H < 1

and f , g ∈ L
1
H ([a, b]), then

∫ b

a

∫ b

a
f (x)g(y)|x – y|2H–2 dx dy ≤ CH‖f ‖

L
1
H ([a,b])

‖g‖
L

1
H ([a,b])

, (5)

where CH > 0 is a constant depending only on Hurst parameter H .

2.2 Malliavin calculus
Since W = {W (t, x), (t, x) ∈ [0, T] × R

d} is Gaussian, we might develop the Malliavin cal-
culus (refer to Nualart [18] for more details) with respect to fractional noise introduced
in Sect. 2.1 in order to study the density of the solution to the SFKE (1). We will also re-
call briefly the results in Nourdin and Viens [17] in order to establish the lower and upper
bounds for the density.

Recall the notation W (ϕ) =
∫ T

0
∫

Rd ϕ(t, x)W (dt, dx) for ϕ ∈ H, and let S be the class of
smooth and cylindrical random variables of the form

F = f
(
W (ϕ1), . . . , W (ϕn)

)
,

where f ∈ C∞
b (Rn) (the set of all functions with bounded derivatives of all orders) and

ϕi ∈H (i = 1, . . . , n and n ∈N). For each F ∈ S , define the derivative Dt,xF by

Dt,xF :=
n∑

i=1

∂f
∂xi

(
W (ϕ1), . . . , W (ϕn)

)
ϕi(t, x).

Let D1,2 be the completion of S under the norm

‖F‖2
1,2 = E

[|F|2 + ‖DF‖2
H

]
.

Then D
1,2 is the domain of the closed operator D on L2(�). We also denote by Dh the

closure of S under the norm

‖F‖2
h = E

[|F|2 + |DhF|2],
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with DhF = 〈DF , h〉H. Let {hn, n ≥ 1} be an orthonormal basis of H. Then F ∈ D
1,2 if and

only if F ∈Dhn for each n ∈N and
∑∞

n=1 E|Dhn F|2 < ∞.
On the other hand, the divergence operator δ is the adjoint of the derivative operator D

characterized by

E〈DF , u〉H = E
(
Fδ(u)

)
, for any F ∈ S ,

with u ∈ L2(�;H). Then Dom(δ), the domain of δ, is the set of all functions u ∈ L2(�;H)
such that

E
∣
∣〈DF , u〉H

∣
∣ ≤ Cu‖F‖H,

for all F ∈D
1,2, where Cu is some constant depending on u.

Proposition 2.1 Let FA := σ {W (B), B ⊂ A} for A ∈ B([0, T] × R
d). If F is a square inte-

grable random variable that is measurable with respect to the σ -field FAc , then

DF1A = 0 a.s.

Proposition 2.2 Let F ∈D
1,2. Then the distribution of the random variable F is absolutely

continuous with respect to Lebesgue measure if ‖DF‖2
H > 0 a.s.

We remark the following results.

Remark 2.2
1. Let u = {u(t, x), (t, x) ∈ [0, T] ×R

d} be an {Ft , t ∈ [0, T]}-adapted random field. By
Proposition 2.1, we have Ds,yu(t, x) = 0, a.s. for any 0 ≤ s < t ≤ T and x, y ∈R

d .
2. Proposition 2.1 and Proposition 2.2 can be proved similarly to the work of

Nualart [18] with Wiener white noise replaced by fractional noise introduced in
Sect. 2.2.

Another important operator in the theory of Malliavin calculus is the generator of the
Ornstein–Uhlenbeck semigroup, which is usually denoted by L (see, for example, Nu-
alart [18]). It is related to the Malliavin derivative D and its adjoint δ through the formula
δDF = –LF in the sense that F belongs to the domain of L if and only if it belongs to the
domain of δD.

The authors in [17] considered a random variable F ∈ D
1,2 with mean zero and defined

the following function on R:

gF (z) = E
(〈

DF , –DL–1F
〉

H|F = z
)
,

where L–1 denotes the pseudo-inverse of L. Then Nourdin and Viens [17] proved the fol-
lowing.

Proposition 2.3 Assume that there exists a positive constant C1, such that gF (F) ≥ C1 > 0,
a.s., then the law of F has a density p(·) whose support is R and satisfies, almost everywhere



Lu and Liu Advances in Difference Equations        (2021) 2021:152 Page 7 of 33

in R,

p(z) =
E|F|

2gF (z)
exp

{

–
∫ z

0

y
gF (y)

dy
}

. (6)

An immediate consequence of the above proposition, is that, if one also has gF (F) ≤ C2

a.s., then the density p(·) satisfies, for almost all z ∈R,

E|F|
2C2

exp

{

–
z2

2C1

}

≤ p(z) ≤ E|F|
2C1

exp

{

–
z2

2C2

}

.

In order to deal with particular applications of this method, Proposition 3.7 in Nourdin
and Viens [17] established an alternative formula for gF (F). That is,

gF (F) =
∫ +∞

0
e–η

E
[
E

′(〈DF , D̃F〉H|F)]
dη, (7)

where, for any random variable F defined in (�,F , P), F̃ denotes the shifted random vari-
able in � × �′, for some probability space �′, given by

F̃
(
ω,ω′) = F

(
e–ζω +

√
1 – e–2ζω′), ω ∈ �,ω′ ∈ �′.

Notice that, indeed, F̃ depends on the parameter ζ , but we have decided to drop its explicit
dependence for the sake of simplification. In Eq. (7), E′ stands for the expectation with
respect to �′.

3 Existence and uniqueness
In this section, we will study the Cauchy problem for the SFKE (1) driven by fractional
noise. Following Walsh [22], let us recall the notation of a mild solution to the SFKE (1).

Definition 3.1 An Lp(�) Ft-adapted process u : [0, T] ×R
d × � → R is a mild solution

to the SFKE (1) if

u(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)b

(
u(s, y)

)
dy ds +

∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy), (8)

where G(t, x) is the fundamental solution (called also the Green function) of

∂

∂t
G(t, x) + (I – �)

α
2 (–�)

γ
2 G(t, x) = 0.

Moreover, according to [15], the Green function G(t, x) can be written as

G(t, x) =
1

(2π )d

∫

Rd
ei〈x,ξ 〉 exp

{
–t|ξ |α(

1 + |ξ |2)
γ
2
}

dξ , (9)

with i2 = –1 and its Fourier transform FG(t, ·)(ξ ) is given by

FG(t, ·)(ξ ) = exp
{

–t|ξ |α(
1 + |ξ |2)

γ
2
}

. (10)
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When H > 1/2, it turns out that under relatively mild assumptions on the fundamental
solution G given by (9), the condition

αH

∫ T

0

∫ T

0

∫

Rd
FG(u, ·)(ξ )FG(v, ·)(ξ )|u – v|2H–2μ(dξ ) du dv < ∞ (11)

provides a necessary and sufficient condition for the stochastic integral with respect to
Gaussian process W given by

∫ t
0
∫

Rd G(t – s, x – y)W (ds, dy) to be well-defined in Lp(�)
with p ≥ 1. Hence the condition (11) is also the necessary and sufficient condition for the
existence of the solution in the linear case, i.e.

∂

∂t
u(t, x) + (I – �)

α
2 (–�)

γ
2 u(t, x) = Ẇ (t, x).

Next we firstly give an integrability condition on the spectral measure μ.

Hypothesis 2 The measure μ satisfies the following integrability condition:

∫

Rd

(
1

1 + |ξ |2
)H(α+γ )

μ(dξ ) < ∞. (12)

Before we prove the equivalence between (11) and (12). Let us now recall some of the
main examples of spatially covariances 
(·) (or the tempered measure μ), which will be
our guiding examples in the remainder of the present paper.

Example 3.1
1. Let 
(x) =

∏d
i=1 αHi |xi|2Hi–2 be the covariance function of a fractional Brownian

sheets with Hi > 1
2 and i = 1, . . . , d. Then μ(dξ ) =

∏d
i=1 αHi |ξi|–2Hi+1 dξ . Then (12) is

equivalent to
∑d

i=1(2Hi – 1) > d – 2H(α + γ ).
2. Let 
(x) = γλ,d|x|–(d–λ) be the Riesz kernel of order λ ∈ (0, d) with the constant γλ,d ,

then μ(dξ ) = |ξ |–λ dξ and the condition (12) is equivalent to 2H(α + γ ) + λ > d.
3. Let 
(x) = γλ

∫ ∞
0 ω

λ–d
2 –1e–ωe– |x|2

4ω dω be the Bessel kernel of order λ > 0 with the
constant γλ. Then μ(dξ ) = (1 + |ξ |2)– λ

2 dξ the condition (12) is equivalent to
2H(α + γ ) + λ > d.

4. Let 
(0) < ∞ (i.e. μ is a finite measure). It corresponds to a spatially smooth noise Ẇ .
5. Suppose d = 1 and 
 = δ0 (i.e. μ is the Lebesgue measure). This corresponds to a

(rougher) noise Ẇ which is “white in space”.

Proposition 3.1 Assume that the condition (12) holds, then (11) is satisfied.

Proof The proof of this proposition can be completed by using Proposition 3.2. �

Proposition 3.2 Denote

Nt(ξ ) =
∫ t

0

∫ t

0
FG(u, ·)(ξ )FG(v, ·)(ξ )|u – v|2H–2 du dv. (13)

Then we have

C3.1

(
1

1 + |ξ |2
)H(α+γ )

≤ Nt(ξ ) ≤ C3.2

(
1

1 + |ξ |2
)H(α+γ )

, (14)
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with two positive constants C3.1 and C3.2 given by C3.1 = 1
4α–1

H (t2H + 2–2H) and C3.2 =
α–1

H t2H2H(α+γ ) + CHH2H2H(α+γ ) with t ∈ [0, T].

Proof Recall that the Fourier transform FG(t, ·)(ξ ) of G(t, x) with respect to the spatial
variable x is given by (10). Then we can rewrite Nt(ξ ) defined by (13) as follows:

Nt(ξ ) =
∫ t

0

∫ t

0
e–(u+v)|ξ |α (1+|ξ |2)

γ
2 |u – v|2H–2 du dv.

Now we want to find the lower and upper bound for Nt(ξ ). Firstly assuming that |ξ | < 1
and using the fact e–x ≤ 1 for any x > 0, then one obtains

Nt(ξ ) ≤ α–1
H t2H ≤ α–1

H t2H2H(α+γ )
(

1
1 + |ξ |2

)H(α+γ )

,

where we have used the fact that 1 < 2
1+|ξ |2 when |ξ | < 1.

Suppose now that |ξ | ≥ 1, by means of the change of variables, inequality (5) and the
fact that 1 – e–x < 1 for all x > 0, we have

∫ t

0

∫ t

0
e–(u+v)|ξ |α (1+|ξ |2)γ /2 |u – v|2H–2 du dv

=
1

(|ξ |α(1 + |ξ |2)γ /2)2H

∫ t|ξ |α (1+|ξ |2)γ /2

0

∫ t|ξ |α (1+|ξ |2)γ /2

0
e–u–v|u – v|2H–2 du dv

≤ CH
H2H

(|ξ |α(1 + |ξ |2)γ /2)2H

(
1 – e– t|ξ |α (1+|ξ |2)γ /2

H
)2H

≤ CHH2H 1
|ξ |2H(α+γ )

≤ CHH2H2H(α+γ )
(

1
1 + |ξ |2

)H(α+γ )

,

where we have used the fact 1
|ξ |2H(α+γ ) ≤ ( 2

1+|ξ |2 )H(α+γ ) if |ξ | ≥ 1.
So combining the two estimates for Nt(ξ ) with |ξ | < 1 and |ξ | ≥ 1, we have

Nt(ξ ) ≤ C3.2

(
1

1 + |ξ |2
)H(α+γ )

,

with C3.2 = α–1
H t2H2H(α+γ ) + CHH2H2H(α+γ ).

Next let us proceed to prove the lower bound for Nt(ξ ). Suppose firstly t|ξ |α(1 + |ξ |2)
γ
2 ≤

1
2 , then, for any u ∈ [0, t],

u|ξ |α(
1 + |ξ |2) γ

2 ≤ t|ξ |α(
1 + |ξ |2) γ

2 ≤ 1
2

.

Using e–x > 1 – x for any x > 0, we conclude that

e–u|ξ |α (1+|ξ |2)
γ
2 ≥ 1 – u|ξ |α(

1 + |ξ |2)
γ
2

≥ 1 – t|ξ |α(
1 + |ξ |2)

γ
2
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≥ 1
2

.

Hence one obtains that

Nt(ξ ) =
∫ t

0

∫ t

0
e–(u+v)|ξ |α (1+|ξ |2)

γ
2 |u – v|2H–2 du dv

≥ 1
4

∫ t

0

∫ t

0
|u – v|2H–2 du dv

≥ 1
4
α–1

H t2H
(

1
1 + |ξ |2

)H(α+γ )

,

where for the last inequality we have used the fact that 1 ≥ 1
1+|ξ |2 . �

Suppose now t|ξ |α(1 + |ξ |2)
γ
2 ≥ 1

2 , using the change of variables u′ = u|ξ |α(1 + |ξ |2)
γ
2 and

v′ = v|ξ |α(1 + |ξ |2)
γ
2 and the fact 1 – e–x < x for all x > 0, we get

∫ t

0

∫ t

0
e–(u+v)|ξ |α (1+|ξ |2)γ /2 |u – v|2H–2 du dv

=
1

(|ξ |α(1 + |ξ |2)γ /2)2H

∫ t|ξ |α (1+|ξ |2)γ /2

0

∫ t|ξ |α (1+|ξ |2)γ /2

0
e–u–v|u – v|2H–2 du dv

≥ 1
(|ξ |α(1 + |ξ |2)γ /2)2H

∫ 1/2

0

∫ 1/2

0
e–u–v|u – v|2H–2 du dv

≥ 1
4

1
(|ξ |α(1 + |ξ |2)γ /2)2H

∫ 1/2

0

∫ 1/2

0
|u – v|2H–2 du dv

≥ 1
αH22+2H

(
1

1 + |ξ |2
)H(α+γ )

,

where we have used the fact that |ξ |α(1 + |ξ |2)
γ
2 ≤ (1 + |ξ |2)

α+γ
2 . Thus we can conclude to

the following lower bound for Nt(ξ ):

Nt(ξ ) ≥ C3.1

(
1

1 + |ξ |2
)H(α+γ )

,

with C3.1 = 1
4α–1

H (t2H + 2–2H ). Thus the proof of this proposition is complete.

Remark 3.1 Note that Proposition 3.1 extends the case of stochastic heat equation in Balan
and Tudor [8] with condition (12) (i.e. α = 0 and γ = 2). Moreover, Proposition 3.1 is also
an improvement of Lemma 2.1 obtained in [15] and also generalizes the cases in Márquez-
Carreras [16] (with α = 0 and γ > 0). Moreover, we also prove the equivalence between (11)
and (12) in this paper.

Now we can state the main result in this section. The proof of this theorem could be
derived by the standard arguments with some estimates of the Green function G(t, x) and
some properties of the stochastic integral in (8). However, we have preferred to give the
complete proof. We shall also make the following hypothesis on the coefficient b.
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(H.1): The function b satisfies the Lipschitz condition as follows:

∣
∣b(x) – b(y)

∣
∣ ≤ C|x – y|, ∀x, y ∈R

d. (15)

Theorem 3.1 Assume that (12) holds and the coefficient b satisfies (H.1), then there exists
a unique solution u(t, x) to the SFKE (1) such that

sup
(t,x)∈[0,T]×Rd

E
∣
∣u(t, x)

∣
∣p < ∞,

for any T > 0 and p ≥ 2.

Firstly let us give a useful estimate associated with the Green function G(t, x) given by
(9).

Lemma 3.1 We have the following, with t ∈ [0, T]:

∫

Rd
G(t, x)2 dx � t– d

α+γ , (16)

where the notation f � g means that there exist two constants c, C such that cg ≤ f ≤ Cg .

Proof Using the Plancherel theorem and equality (10), we can write

∫

Rd
G(t, x)2 dx =

1
(2π )d

∫

Rd

∣
∣FG(t, ·)(ξ )

∣
∣2 dξ

=
1

(2π )d

∫

Rd
exp

{
–2t|ξ |α(

1 + |ξ |2)γ /2}dξ

=
Sd

(2π )d

∫ +∞

0
rd–1 exp

{
–2trα

(
1 + r2)γ /2}dr,

where we have used the integration in polar coordinates in the last equation above and Sd is
a positive constant resulting from the integration over the angular spherical coordinates.
Now using the fact rα(1 + r2)γ /2 ≥ rα+γ with r > 0, we get, with the change of variable
formula u = 2trα+γ ,

∫ +∞

0
rd–1 exp

{
–2trα

(
1 + r2)γ /2}dr ≤

∫ +∞

0
rd–1 exp

{
–2trα+γ

}
dr

= (2t)– d
α+γ

1
α + γ

∫ +∞

0
u

d
α+γ –1e–u du

= (2t)– d
α+γ

1
α + γ

�

(
d

α + γ

)

t– d
α+γ ,

where �( d
α+γ

) is a Gamma function.
On the other hand, using the fact rα(1 + r2)γ /2 ≤ (1 + r2)

α+γ
2 with r > 0, we get with the

change of variable formula u = 2t(1 + r2)
α+γ

2 ,

∫ +∞

0
rd–1 exp

{
–2trα

(
1 + r2)γ /2}dr
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≥
∫ +∞

0
rd–1 exp

{
–2t

(
1 + r2)

α+γ
2

}
dr

=
1
2

(2t)– 2
α+γ

∫ +∞

0

((
u
2t

) 2
α+γ

– 1
) d

2 –1

u
2

α+γ –1e–u du

≈ 1
2

(2t)– d
α+γ

∫ +∞

0
u

d
α+γ –1e–u du, as u → ∞,

where the last integral is finite. Then we can conclude the proof of this lemma. �

Now let us prove the main result in this section.

Proof of Theorem 3.1 We use the Picard approximation to get a solution to (8). Define

u(n+1)(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)b

(
u(n)(s, y)

)
dy ds

+
∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy).

(17)

Firstly, we will prove that

sup
n∈N∪{0}

sup
(t,x)∈[0,T]×Rd

E
∣
∣u(n)(t, x)

∣
∣p < ∞.

It follows from (17) that for each n ∈N

E
∣
∣u(n+1)(t, x)

∣
∣p ≤ Cp

(
A(n)

p (t, x) + B(n)
p (t, x)

)
, (18)

where

A(n)
p (t, x) = E

∣
∣
∣
∣

∫ t

0

∫

Rd
G(t – s, x – y)b

(
u(n)(s, y)

)
dy ds

∣
∣
∣
∣

p

and

B(n)
p (t, x) = E

∣
∣
∣
∣

∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy)

∣
∣
∣
∣

p

.

Note that, by the Hölder inequality and the fact that G(t – s, x – y) is Rd-integrable for t �= s,

A(n)
p (t, x) ≤ Cp

(∫ t

0

∫

Rd

∣
∣G(t – s, x – y)

∣
∣dy ds

)p–1

×E

(∫ t

0

∫

Rd

∣
∣b

(
u(n)(s, y)

)∣
∣p · ∣∣G(t – s, x – y)

∣
∣dy ds

)

≤ CpE

[∫ t

0

∫

Rd

(
1 +

∣
∣u(n)(s, y)

∣
∣p) · ∣∣G(t – s, x – y)

∣
∣dy ds

]

≤ Cp

∫ t

0

(
1 + sup

y∈Rd
E

∣
∣u(n)(s, y)

∣
∣p

)(∫

Rd

∣
∣G(t – s, x – y)

∣
∣dy

)

ds.

(19)
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For the term B(n)
p (t, x), since the stochastic integral

∫ t
0
∫

Rd G(t – s, x – y)W (ds, dy) is Gaus-
sian, according to Proposition 3.2 and Eq. (12), we have

B(n)
p (t, x) = E

∣
∣
∣
∣

∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy)

∣
∣
∣
∣

p

≤ Cp,H

(∫ t

0

∫ t

0

∫

Rd
FG(u, ·)(ξ )FG(v, ·)(ξ )|u – v|2H–2μ(dξ ) du dv

) p
2

≤ Cp,T ,H

∫

Rd

(
1

1 + |ξ |2
)H(α+γ )

μ(dξ ) < ∞.

(20)

Combining (18), (19) and (20), we have

sup
x∈Rd

E
∣
∣u(n+1)(t, x)

∣
∣p ≤ Cp

∫ t

0

(
1 + sup

y∈Rd
E

∣
∣u(n)(s, y)

∣
∣p

)∫

Rd

∣
∣G(t – s, x – y)

∣
∣dy ds. (21)

Then that fact that |G(t – s, x – y)| is Rd-integrable for t �= s in (19) together with the Gron-
wall lemma ensures that

sup
0≤t≤T

sup
x∈Rd

E
∣
∣u(n+1)(t, x)

∣
∣p < ∞,

and consequently {u(n)(t, x), n ≥ 1} is well defined. Moreover, by Lemma 15 in Dalang [10],
one can obtain

sup
n∈N∪{0}

sup
(t,x)∈[0,T]×Rd

E
∣
∣u(n)(t, x)

∣
∣p < ∞.

Secondly let us prove that {u(n)(t, x), n ≥ 1} converges in Lp(�). As for n ≥ 2,

E
(∣
∣u(n+1)(t, x) – u(n)(t, x)

∣
∣p)

= E

(∣
∣
∣
∣

∫ t

0

∫

Rd
G(t – s, x – y)

[
b
(
u(n)(s, y)

)
– b

(
u(n–1)(s, y)

)]
dy ds

∣
∣
∣
∣

p)

≤ Cp

∫ t

0

∫

Rd
E

∣
∣u(n)(s, y) – u(n–1)(s, y)

∣
∣p∣∣G(t – s, x – y)

∣
∣dy ds

≤ Cp

∫ t

0
sup
y∈Rd

E
∣
∣u(n)(s, y) – u(n–1)(s, y)

∣
∣p

(∫

Rd

∣
∣G(t – s, x – y)

∣
∣dy

)

ds.

(22)

Then Gronwall’s lemma yields

∑

n≥0

sup
(t,x)∈[0,T]×Rd

E
(∣
∣u(n+1)(t, x) – u(n)(t, x)

∣
∣p) < ∞. (23)

Hence, {u(n)(t, x)}n≥0 is a Cauchy sequence in Lp(�). Let

u(t, x) = lim
n→∞ u(n)(t, x).
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Then, for each (t, x) ∈ [0, T] ×R
d ,

sup
(t,x)∈[0,T]×Rd

E
∣
∣u(t, x)

∣
∣p < ∞.

Taking n → ∞ in Lp(�) in both sides of (17) shows that u = {u(t, x); (t, x) ∈ [0, T] × R
d}

satisfies (3.1).
The uniqueness can be checked by a standard argument. �

Remark 3.2
1. Our result Theorem 3.1 here is an extension of the one in Márquez-Carreras [15]

(when H = 1/2) to fractional noise. However, the noises considered in
Márquez-Carreras [15] is multiplicative.

2. The cases α = 0 and γ = 2, then Eq. (1) reduces to the classical stochastic heat
equation with fractional version considered in Balan and Tudor [8]. Then the
condition (12) is coherent with the results found in [8] for the stochastic heat
equation with fractional noise.

4 Index-β Gaussian random field
In this section we will prove that the solution to the SFKE (1) satisfies the following prop-
erty defined by Definition 4.1; see Márquez-Carreras [15] for example. As a related prob-
lem, we also study the sample paths of the solution to the SFKE (1).

Definition 4.1 Let X(t) be a Gaussian process that has zero mean, stationary increments,
and a continuous covariance function. Set σ 2(θ ) = E[|X(t +θ )–X(t)|2]. Then, if there exists
β ∈ (0, 1] such that

β = sup
{
β̃ : σ (θ ) = o

(‖θ‖β̃
)
,‖θ‖ → 0

}
,

then X = {X(t), t ∈R
d} is called an index-β Gaussian field.

Example 4.1 From the above definition of index-β Gaussian random fields, it is the local
variance of their increments which determines the degree of fractality of the sample path.
For example, from the covariance function of fractional Brownian motion BH = {BH(t), t ∈
[0, T]},

E
(
BH (t)BH(s)

)
=

1
2
(
t2H + s2H – |t – s|2H)

,

it is seen that BH is an index-H random field.

Moreover, from Angulo et al. [1], the following results hold with probability one.
1. dimH (graph(X)) = d + 1 – β , where dimH is the Hausdorff dimension which

quantifies the irregularity of a set and graph(X) := {(t, X(t)), t ∈R
d}.

2. X is Hölder continuous of order ρ strictly less than β . However, for any ρ < β , X fails
to satisfy any uniform Hölder condition of order ρ .

In this section we essentially show that the solution to the SFKE (1) has similar properties
to the solution studied in Angulo et al. [1], Márquez-Carreras [15]. However before we
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state our main result in this section, we will firstly give another condition on the tempered
measure μ which is slightly stronger than Hypothesis 2 because of the appearance of η ∈
(0, 1).

Hypothesis 3 For some ψ ∈ (0, 1), the measure μ satisfies the following integrability con-
dition:

∫

Rd

(
1

1 + |ξ |2
)H(α+γ )ψ

μ(dξ ) < ∞. (24)

Let us denote

U(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy), (25)

which is the mild solution to the SFKE (1) with b = 0. Then we have

Theorem 4.1 Assume that the spectral measure μ satisfies (24). Then, for a fixed t ∈ [0, T]
and x, x′ ∈R

d , the spatial covariance function of U(t, x) given by (25) is

Rt
(
x – x′) =

∫

Rd
e–i〈ξ ,x–x′〉 ‖e–u‖2

H([0,t|ξ |α (1+|ξ |2)γ /2])

(|ξ |α(1 + |ξ |2)γ /2)2H μ(dξ ).

Moreover, at each fixed time t ∈ [0, T],
• if H(α + γ ) > 1 then U(t, ·) is an index-β1 Gaussian field with β1 ∈ (0, 1);
• if H(α + γ ) ≤ 1 then U(t, ·) is an index-β2 Gaussian field with

β2 ∈ (0, H(α + γ )(1 – ψ)) for ψ ∈ (0, 1).

Proof We first calculate the spatial covariance function for a fixed t ∈ [0, T]. By means of
the definition of the Fourier transform, a change of variable formula and Fubini’s theorem,
we obtain, for any x, x′ ∈R

d ,

E
(
U(t, x)U

(
t, x′))

=
∫ t

0

∫ t

0

∫

Rd
FG(t – s1, x – ·)(ξ ) ·FG

(
t – s2, x′ – ·)(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫

Rd

∫ t

0

∫ t

0
e–i〈ξ ,x〉FG(t – s1, ·)(ξ ) · e–iξ ·x′FG(t – s2, ·)(ξ )|s1 – s2|2H–2 ds1 ds2μ(dξ )

=
∫

Rd
e–i〈ξ ,x–x′〉

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

=
∫

Rd
e–i〈ξ ,x–x′〉 ‖e–u‖2

H([0,t|ξ |α (1+|ξ |2)γ /2])

(|ξ |α(1 + |ξ |2)γ /2)2H μ(dξ ),

where we use the notation ‖e–u‖2
H([0,t|ξ |α (1+|ξ |2)γ /2]) to denote the double integral

∫ t|ξ |α (1+|ξ |2)γ /2

0

∫ t|ξ |α (1+|ξ |2)γ /2

0
e–u1–u2 |u1 – u2|2H–2 du1 du2,
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which is finite. In fact using the change of variables formula u1 = (t – s1)|ξ |α(1 + |ξ |2)γ /2

and u2 = (t – s2)|ξ |α(1 + |ξ |2)γ /2, then we have

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

=
1

(|ξ |α(1 + |ξ |2)γ /2)2H

∫ t|ξ |α (1+|ξ |2)γ /2

0

∫ t|ξ |α (1+|ξ |2)γ /2

0
e–u1–u2 |u1 – u2|2H–2 du1 du2

≤ 1
(|ξ |α(1 + |ξ |2)γ /2)2H α–1

H
(
t|ξ |α(

1 + |ξ |2)γ /2)2H

= α–1
H t2H .

Moreover, for a fixed time t ∈ [0, T], the process U(t, x) is a Gaussian field that has zero
mean, stationary increments and a continuous covariance function.

We now begin to study the index. For t ∈ [0, T], x ∈R
d and small θ ∈R

d , we have

σ 2(θ ) = E
∣
∣U(t, x + θ ) – U(t, x)

∣
∣2

= E

∣
∣
∣
∣

∫ t

0

∫

Rd

(
G(t – s, x + θ – y) – G(t – s, x – y)

)
W (ds, dy)

∣
∣
∣
∣

2

=
∫ t

0

∫ t

0

∫

Rd
F

(
G(t – s1, x + θ – ·) – G(t – s1, x – ·))(ξ )

×F
(
G(t – s2, x + θ – ·) – G(t – s2, x – ·))(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2.

(26)

Then using the formula

F
(
G(t – s, x + θ – ·) – G(t – s, x – ·))(ξ )

= e–i〈ξ ,(x+θ )〉F
(
G(t – s, ·))(ξ ) – e–i〈ξ ,x〉F

(
G(t – s, ·))(ξ )

= e–i〈ξ ,x〉[e–i〈ξ ,θ〉 – 1
]
F

(
G(t – s, ·))(ξ ).

Then we can rewrite (26) as follows:

σ 2(θ ) =
∫ t

0

∫ t

0

∫

Rd
F

(
G(t – s1, x + θ – ·) – G(t – s1, x – ·))(ξ )

×F
(
G(t – s2, x + θ – ·) – G(t – s2, x – ·))(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫ t

0

∫ t

0

∫

Rd

∣
∣e–i〈ξ ,x〉∣∣2∣∣1 – e–i〈ξ ,θ〉∣∣2F

(
G(t – s1, ·))(ξ )F

(
G(t – s2, ·))(ξ )

× |s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫ t

0

∫ t

0

∫

Rd

∣
∣1 – e–i〈ξ ,θ〉∣∣2F

(
G(t – s1, ·))(ξ )

×F
(
G(t – s2, ·))(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫ t

0

∫ t

0

∫

Rd

∣
∣1 – e–i〈ξ ,θ〉∣∣2e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2μ(dξ ) ds1 ds2.

(27)
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Using the fact Rd = {|ξ |2 < 1} ∪ {|ξ |2 ≥ 1}, we can divide σ 2(θ ) into two parts σ 2(θ )1{|ξ |2<1}
and σ 2(θ )1{|ξ |2≥1} according to the value of |ξ |. Let us firstly estimate the term σ 2(θ )1{|ξ |2<1}.
Recall the following inequality:

∣
∣1 – e–i〈ξ ,θ〉∣∣2 = 4 sin2

( 〈ξ , θ〉
2

)

≤ |ξ |2|θ |2. (28)

Then with (4) in Remark 2.1, we have

σ 2(θ )1{|ξ |2<1} ≤ |θ |2
∫

{|ξ |2<1}
|ξ |2

∫ t

0

∫ t

0
|s1 – s2|2H–2 ds1 ds2μ(dξ )

≤ α–1
H |θ |2t2H

∫

{|ξ |2<1}
μ(dξ )

≤ C|θ |2.

(29)

For the proof of the second term σ 2(θ )1{|ξ |2>1}, we distinguish two cases depending on the
value of H(α + γ ). We first study the case H(α + γ ) > 1. With inequality (28), we have

σ 2(θ )1{|ξ |2>1} ≤ α–1
H t2H |θ |2

∫

|ξ |>1

|ξ |2
(|ξ |α(1 + |ξ |2)γ /2)2H μ(dξ )

≤ α–1
H t2H |θ |2

∫

|ξ |>1

1
|ξ |2(H(α+γ )–1) μ(dξ )

≤ α–1
H 2H(α+γ )–1t2H |θ |2

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )–1

μ(dξ ).

(30)

Next, according to Hypothesis 3, we just need choose a constant ψ satisfying 0 < ψ <
1 – 1

H(α+γ ) , then we can conclude that

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )–1

μ(dξ ) ≤
∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )ψ

μ(dξ ) < ∞.

This yields

σ 2(θ )1{|ξ |2>1} ≤ α–1
H 2H(α+γ )–1t2H

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )–1

μ(dξ )|θ |2

= C4.1|θ |2,

(31)

with C4.1 = α–1
H 2H(α+γ )–1t2H ∫

|ξ |>1( 1
1+|ξ |2 )H(α+γ )–1μ(dξ ).

For the case H(α + γ ) ≤ 1, we need the following inequality, with 0 < κ < 1:

∣
∣1 – e–i〈ξ ,θ〉∣∣2 ≤ 41–κ |ξ |2κ |θ |2κ . (32)

Then one gets

σ 2(θ )1{|ξ |2>1} ≤ α–1
H t2H

∫

|ξ |>1

∣
∣1 – e–i〈ξ ,θ〉∣∣2

(
1

|ξ |α(1 + |ξ |2)γ /2

)2H

μ(dξ )
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≤ 41–κα–1
H t2H |θ |2κ

∫

|ξ |>1

1
|ξ |2(H(α+γ )–κ) μ(dξ )

≤ 41–κα–1
H t2H |θ |2κ

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )–κ

μ(dξ )

≤ 41–κα–1
H t2H |θ |2κ

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )ψ

μ(dξ ),

provided we choose a positive constant κ satisfying 0 < κ < H(α + γ )(1 – ψ). Then we
conclude that

σ 2(θ )1{|ξ |2>1} ≤ 41–κα–1
H t2H |θ |2κ

∫

|ξ |>1

(
1

1 + |ξ |2
)H(α+γ )ψ

μ(dξ )

= C4.2|θ |2κ , 0 < κ < H(α + γ )(1 – ψ).

(33)

Combining the above estimates (29), (30), (31) and (33) for σ 2(θ ), we conclude that

σ 2(θ ) ≤
⎧
⎨

⎩

C|θ |2β if H(α + γ ) > 1,

C|θ |2κ if H(α + γ ) ≤ 1,
(34)

with β ∈ (0, 1), ψ ∈ (0, 1) and 0 < κ < H(α + γ )(1 – ψ). �

Next let us move to the case of U with respect to the time variable. The result is given
as follows.

Theorem 4.2 Assume that the measure μ satisfies Hypothesis 3 for some η ∈ (0, 1). Then,
for t ∈R+, τ ∈ R such that t + τ ∈ R+ and x, z ∈ R

d , the spatial-temporal covariance func-
tion of U(t + τ , x) and U(t, z) is

Rt(τ , x – z) =
∫

Rd
e–i〈ξ ,x–z〉e–τ |ξ |α (1+|ξ |2)γ /2

×
∫ t+τ

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ ).

(35)

Moreover, U(·, x) is asymptotically in time with an index-β Gaussian field with 0 < β <
H(1 – ψ).

Since the process U is not stationary in time but as t tends to infinity, it converges to a
stationary process. That means the limiting-time process is stationary in time and space.

Proof For t ∈ [0, T] and τ ∈R such that t + τ ∈ [0, T] and x, z ∈R
d , with Fubini’s theorem,

E
(
U(t + τ , x)U(t, z)

)

=
∫ t+τ

0

∫ t

0

∫

Rd
FG(t + τ – s1, x – ·)(ξ )FG(t – s2, z – ·)(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫ t+τ

0

∫ t

0

∫

Rd
e–i〈ξ ,x–z〉FG(t + τ – s1, ·)(ξ )FG(t – s2, ·)(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2
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=
∫

Rd
e–i〈ξ ,x–z〉

∫ t+τ

0

∫ t

0
e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ ).

In the following we should prove that the integral
∫ t+τ

0
∫ t

0 e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 –
s2|2H–2 ds1 ds2 is finite. Actually with (5) one gets

∫ t+τ

0

∫ t

0
e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

≤ CH

(∫ t+τ

0
exp

{

–
(t + τ – s1)|ξ |α(1 + |ξ |2)γ /2

H

}

ds1

)H

×
(∫ t

0
exp

{

–
(t – s2)|ξ |α(1 + |ξ |2)γ /2

H

}

ds1

)H

= CH

(
H

|ξ |α(1 + |ξ |2)γ /2

)2H[
1 – e–(t+τ ) |ξ |α (1+|ξ |2)γ /2

H
][

1 – e–t |ξ |α (1+|ξ |2)γ /2
H

]
.

On the other hand, one gets

∫ t+τ

0

∫ t

0
e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

=
∫ t

0

∫ t

0
e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

+
∫ t+τ

t

∫ t

0
e–(t+τ–s1+t–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

:= I1 + I2.

With the change of variables formula and the definition of the norm in H, one can get

I1 =
(

1
|ξ |α(1 + |ξ |2)γ /2

)2H

e–τ |ξ |α (1+|ξ |2)γ /2∥∥e–u∥∥
H([0,t|ξ |α (1+|ξ |2)γ /2])

→ �(2H)
2H – 1

(
1

|ξ |α(1 + |ξ |2)γ /2

)2H

e–τ |ξ |α (1+|ξ |2)γ /2
as t → +∞,

(36)

where �(·) is the gamma function. For the second term I2, one can show that it tends to
zero as t → ∞. Thus we complete the proof of (35).

We now tackle the second part of this theorem. We assume that x ∈ R
d , t ∈ [0, T] and

τ ∈R such that t + τ ∈ [0, T]. Then we have

E
∣
∣U(t + τ , x) – U(t, x)

∣
∣2

= E

∣
∣
∣
∣

∫ t+τ

0

∫

Rd
G(t + τ – s, x – y)W (ds, dy) –

∫ t

0

∫

Rd
G(t – s, x – y)W (ds, dy)

∣
∣
∣
∣

2

≤ 2
(

E

∣
∣
∣
∣

∫ t+τ

t

∫

Rd
G(t + τ – s, x – y)W (ds, dy)

∣
∣
∣
∣

2

+ E

∣
∣
∣
∣

∫ t

0

∫

Rd

(
G(t + τ – s, x – y) – G(t – s, x – y)

)
W (ds, dy)

∣
∣
∣
∣

2)

:= 2(A1 + A2).

(37)
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We firstly study the term A1. In fact according to the inner product (2) and Fourier trans-
form for G we have

A1 = E

∣
∣
∣
∣

∫ t+τ

t

∫

Rd
G(t + τ – s, x – y)W (ds, dy)

∣
∣
∣
∣

2

=
∫ t+τ

t

∫ t+τ

t

∫

Rd
FG(t + τ – s1, x – ·)(ξ )

×FG(t + τ – s2, x – ·)(ξ )|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫

Rd

∫ t+τ

t

∫ t+τ

t
e–(2(t+τ )–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

=
∫

|ξ |≤1

∫ t+τ

t

∫ t+τ

t
e–(2(t+τ )–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

+
∫

|ξ |>1

∫ t+τ

t

∫ t+τ

t
e–(2(t+τ )–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

:= A1,1 + A1,2.

(38)

By means of the inequalities (5) and 1 – e–x ≤ x for all x > 0, we can prove that

A1,1 ≤ CH

∫

|ξ |≤1

(∫ t+τ

t
e– (t+τ–s)|ξ |α (1+|ξ |2)γ /2

H ds
)2H

μ(dξ )

= CH

∫

|ξ |≤1

H2H

(|ξ |α(1 + |ξ |2)γ /2)2H

(
1 – e– τ |ξ |α (1+|ξ |2)γ /2

H
)2H

μ(dξ )

≤ CH

∫

|ξ |≤1
μ(dξ )|τ |2H ,

(39)

and also with (5), by choosing some constant θ = 1 – η ∈ (0, 1), we can prove that under
Hypothesis 3

A1,2 ≤ CH

∫

|ξ |>1

(∫ t+τ

t
e– (t+τ–s)|ξ |α (1+|ξ |2)γ /2

H ds
)2H

μ(dξ )

= CH

∫

|ξ |>1

H2H

(|ξ |α(1 + |ξ |2)γ /2)2H

(
1 – e– τ |ξ |α (1+|ξ |2)γ /2

H
)2H

μ(dξ )

≤ CH

∫

|ξ |>1

H2H

(|ξ |α(1 + |ξ |2)γ /2)2H

(
1 – e– τ |ξ |α (1+|ξ |2)γ /2

H
)2Hθ

μ(dξ )

≤ CHτ 2Hθ

∫

|ξ |>1

1
|ξ |2H(α+γ )(1–θ ) μ(dξ )

≤ 2H(α+γ )(1–θ )CHτ 2Hθ

∫

|ξ |>1

(
1

1 + |ξ |2
)2H(α+γ )(1–θ )

μ(dξ )

= C4.2|τ |2Hθ , θ = 1 – η ∈ (0, 1),

(40)

with t ∈ [0, T], τ ∈ R such that t + τ ∈ [0, T] and

C4.2 = CH2H(α+γ )(1–θ )
∫

|ξ |>1

(
1

1 + |ξ |2
)2H(α+γ )(1–θ )

μ(dξ ).
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Combining (38), (39) and (40), we conclude that

A1 ≤ C4.3|τ |2Hθ , θ = 1 – η ∈ (0, 1),

with C4.3 = CH
∫

|ξ |≤1 μ(dξ ) + C4.2. Finally let us study the second term, A2,

A2 = E

∣
∣
∣
∣

∫ t

0

∫

Rd

(
G(t + τ – s, x – y) – G(t – s, x – y)

)
W (ds, dy)

∣
∣
∣
∣

2

=
∫ t

0

∫ t

0

∫

Rd
F

(
G(t + τ – s1, x – ·) – G(t – s1, x – ·))(ξ )

×F
(
G(t + τ – s2, x – ·) – G(t – s2, x – ·))(ξ )|s1 – s2|2H2μ(dξ ) ds1 ds2

=
∫ t

0

∫ t

0

∫

Rd
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 ∣∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2|s1 – s2|2H–2μ(dξ ) ds1 ds2

=
∫

Rd

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

=
∫

|ξ |≤1

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2μ(dξ )

+
∫

|ξ |>1

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2

× |s1 – s2|2H–2 ds1 ds2μ(dξ )

:= A2,1 + A2,2. (41)

With similar calculations to (39) and the fact that 1 – e–x ≤ x for all x > 0, we can bound
A2,1 as follows with θ = 1 – η ∈ (0, 1):

A2,1 ≤ CHt2H
∫

|ξ |≤1

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2θ

μ(dξ )

≤ CHt2H
∫

|ξ |≤1

(
τ |ξ |α(

1 + |ξ |2)γ /2)2θ ≤ C4.4|τ |2θ .
(42)

Let β ∈ (0, H(1 – η)) with η ∈ (0, 1). For the double integral
∫ t

0
∫ t

0 e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 –
s2|2H–2 ds1 ds2 in A2,2, by means of (5), we can bound it as follows:

∫ t

0

∫ t

0
e–(2t–s1–s2)|ξ |α (1+|ξ |2)γ /2 |s1 – s2|2H–2 ds1 ds2

=
1

(|ξ |α(1 + |ξ |2)γ /2)2H

∫ t|ξ |α (1+|ξ |2)γ /2

0

∫ t|ξ |α (1+|ξ |2)γ /2

0
e–u1–u2 |u1 – u2|2H–2 du1 du2

≤ CH
H2H

(|ξ |α(1 + |ξ |2)γ /2)2H

(
1 – e– t|ξ |α (1+|ξ |2)γ /2

H
)2H

≤ CHH2H 1
|ξ |2(α+γ )H .
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Thus with the inequality |1 – e–x| ≤ 21–β |1 – e–x|β for some β ∈ (0, H(1 – η)) ⊂ (0, 1) and
the fact 1 – e–x ≤ x for all x > 0, we have with Hypothesis 3

A2,2 ≤ CHH2H
∫

|ξ |>1

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2 1

|ξ |2(α+γ )H μ(dξ )

≤ CHH2H22–2β

∫

|ξ |>1

∣
∣1 – e–τ |ξ |α (1+|ξ |2)γ /2 ∣∣2β

(
1

|ξ |(α+γ )

)2H

μ(dξ )

≤ CHH2H22–2β |τ |2β

∫

|ξ |>1

(
1

|ξ |(α+γ )

)2(H–β)

μ(dξ )

≤ CHH2H22–2β+(H–β)(α+γ )|τ |2β

∫

|ξ |>1

(
1

1 + |ξ |2
)(H–β)(α+γ )

μ(dξ )

≤ C4.6|τ |2β , 0 < β < H(1 – η),

(43)

with C4.6 = CHH2H22–2β+(H–β)(α+γ ) ∫
|ξ |>1( 1

1+|ξ |2 )(H–β)(α+γ )μ(dξ ). Putting together (37), (38),
(39), (40), (41), (42) and (43), we then can conclude that with θ = 1 – η ∈ (0, 1) and β ∈
(0, H(1 – η))

E
∣
∣U(t + τ , x) – U(t, x)

∣
∣2 ≤ C4.7

(|τ |2Hθ + |τ |2β
) ≤ C4.8|τ |2β . �

Finally in this section, as a related problem, we can also get the following path Hölder
regularity of U(t, x) with respect to the time and space variables, respectively, by following
similar arguments to the proof of Theorem 4.1 and Theorem 4.2.

Proposition 4.1 Assume that the spectral measure μ satisfies Hypothesis 3 for some ψ ∈
(0, 1). Then, for every t, s ∈ [0, T], T > 0, x, y ∈ R

d , p ≥ 2, β1 ∈ (0, H(1 – ψ)) and β2 ∈ (0, 1)
and β3 ∈ (0, H(α + γ )(1 – ψ)), we have

E
∣
∣U(t, x) – U(s, x)

∣
∣p ≤ C4.9|t – s|pβ1 ;

and

E
∣
∣U(t, x) – U(t, y)

∣
∣p ≤

⎧
⎨

⎩

C4.10|x – y|pβ2 if H(α + γ ) > 1,

C4.11|x – y|pβ3 if H(α + γ ) ≤ 1.
(44)

5 Analysis of the density
This section is devoted to a study of the density of the solution to the SFKE (1) at any
fixed (t, x) ∈ [0, T] × R

d . This will be done by using Malliavin calculus. The aim in this
section is two-fold. Firstly we will prove that the solution to the SFKE (1) at any fixed
(t, x) ∈ [0, T] × R

d is a random variable whose equation admits a density. Secondly we
apply the results obtained by Nourdin and Viens [17] to the SFKE (1) to obtain the upper
and lower Gaussian-type estimates for the density (see recent work by Nualart and Quer-
Sardanyons [19, 20], and Liu and Yan [14]).

5.1 Existence of the density
The main result in this subsection is stated as follows.
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Theorem 5.1 We set the conditions of Theorem 3.1 and d < α + γ , furthermore we also
assume that b(·) ∈ C1(R) with bounded Lipschitz continuous derivative. Then, for any fixed
(t, x) ∈ [0, T] × R

d , the equation of the solution to Eq. (1) is absolutely continuous with
respect to the Lebesgue measure.

Before giving the proof of Theorem 5.1, we firstly give the following.

Proposition 5.1 Assume that the spectral measure μ satisfies Hypothesis 2, suppose also
that d < α + γ and the coefficient b(·) is C1(R) with bounded Lipschitz continuous deriva-
tive. Then, for any fixed (t, x) ∈ [0, T] ×R

d , the random variable u(t, x) belongs to D
1,2 and

satisfies

Dv,zu(t, x) = G(t – v, x – z) +
∫ t

v

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
Dv,zu(s, y) dy ds, (45)

for all 0 < v ≤ t and x ∈R
d .

Proof Let u(n)(t, x)(n ≥ 1) be the solution of Eq. (17). Since b is Lipschitz, by a standard
argument, one can see that the sequences u(n) converges to u in Lp(�) for any p ≥ 2 and
(t, x) ∈ [0, T] × R

d as n → ∞. Then a similar argument to that in Zhang and Zheng [23]
shows that, for each n ∈N and h ∈H, u(n)(t, x) ∈Dh,

Dhu(n)(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)b′(u(n–1)(s, y)

)
Dhu(n–1)(s, y) dy ds

+
〈
G(t – ·, x – ·), h

〉

H.
(46)

Since u(n)(t, x) → u(t, x) as n → ∞ in the Lp(�) sense, there exists a random field uh(t, x)
such that Dhu(n)(t, x) → uh(t, x) as n → ∞ uniformly on (t, x) ∈ [0, T] ×R

d , and the latter
satisfies

uh(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
uh(s, y) dy ds +

〈
G(t – ·, x – ·), h

〉

H. (47)

Hence, from the closeness of the operator Dh, it follows that u(t, x) ∈Dh, Dhu(t, x) = uh(t, x)
and

Dhu(t, x) =
∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
Dhu(s, y) dy ds +

〈
G(t – ·, x – ·), h

〉

H. (48)

Next we proceed to proving that u(t, x) ∈D
1,2. Recall the sequence {hn, n ≥ 1} introduced

in Sect. 2. By (48), one gets

E
∣
∣Dhn u(t, x)

∣
∣2

= E

∣
∣
∣
∣

∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
Dhn u(s, y) dy ds +

〈
G(t – ·, x – ·), hn

〉

H

∣
∣
∣
∣

2

≤ C5.1.1E

[∫ t

0

∫

Rd

(
G(t – s, x – y)

)2(Dhn u(s, y)
)2 dy ds

]

+ C5.1.2
〈
G(t – ·, x – ·), hn

〉2
H, (49)
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with two positive constants C5.1.1 and C5.1.2. Set

Um(t) = sup
x∈Rd

E

m∑

n=1

∣
∣Dhn u(t, x)

∣
∣2.

Then, by (49), the Hölder inequality with p = q = 2 and estimates (16) for the Green
function, we have

Um(t) ≤ C5.1.3E

[∫ t

0

∫

Rd

(
G(t – s, x – y)

)2Um(s) dy ds
]

+ C5.1.4
∥
∥G(t – ·, x – ·)∥∥2

H

≤ C5.1.5 + C5.1.6

∫ t

0
(t – s)– d

α+γ Um(s) ds.
(50)

Then the Gronwall lemma yields

Um(t) ≤ C5.1.7 exp
{

C5.1.8T1– d
α+γ

}
,

where C5.1.7 and C5.1.8 are independent of m. Let m → ∞ to get

sup
x∈R

E

∞∑

n=1

∣
∣Dhn u(t, x)

∣
∣2 < ∞.

That means that u(t, x) ∈D
1,2.

Since u(t, x) is Ft-adapted, there exists a measurable function Dv,zu(t, x) ∈ H such that
Dv,zu(t, x) = 0 if v > t and for any h ∈H

Dhu(t, x) =
〈
Du(t, x), h

〉

H. (51)

From (48), (51) and Fubini’s theorem, it follows that

〈
Du(t, x), h

〉

H

=
∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)〈
Du(s, y), h

〉

H dy ds +
〈
G(t – ·, x – ·), h

〉

H

=
〈∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
Du(s, y) dy ds, h

〉

H
+

〈
G(t – ·, x – ·), h

〉

H.

Therefore

Dv,zu(t, x) =
∫ t

v

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
Dv,zu(s, y) dy ds + G(t – v, x – y).

Thus we can conclude the proof of this proposition. �

We also need the following lemma concerning the estimates for the L2-norm of the
Malliavin derivative Du(t, x).
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Lemma 5.1 For ε ∈ (0, t) and d < α + γ , there exist two positive constants C5.1.9 and C5.1.10

such that

sup
s∈[t–ε,t]

sup
y∈Rd

E

(∫ t

t–ε

∫

Rd

∣
∣Dv,zu(s, y)

∣
∣2 dz dv

)

< C5.1.9ε
1– d

α+γ (52)

and

sup
ζ∈R

sup
s∈[t–ε,t]

sup
y∈Rd

E

(∫ t

t–ε

∫

Rd
E

′(∣∣ ˜Dv,zu(s, y)
∣
∣2)dz dv

)

< C5.1.10ε
1– d

α+γ . (53)

Proof We will only deal with the proof of (52), since (53) can be checked by using exactly
the same arguments. For s ∈ [t – ε, t], set

Lε(s, y) = E

(∫ s

t–ε

∫

Rd

∣
∣Dv,zu(s, y)

∣
∣2 dz dv

)

.

Then from the proof of Proposition 5.1, we get

sup
(s,y)∈[0,T]×Rd

Lε(s, y) < ∞.

Let us invoke the linear equation (45) satisfied by the Malliavin derivative Du(s, y) for
(s, y) ∈ [t – ε, t] ×R

d , then

Lε(s, y) ≤ 2
[∫ s

t–ε

∫

Rd

∣
∣G(s – v, x – z)

∣
∣2 dz dv

+
∫ s

t–ε

∫

Rd
E

∣
∣
∣
∣

∫ s

v

∫

Rd
G(s – r1, y – z1)b′(u(r1, z1)

)
Dv,zu(r1, z1) dz1 dr1

∣
∣
∣
∣

2

dz dv
]

:= 2
(
Lε,1(s, y) + Lε,2(s, y)

)
. (54)

With the estimate (16) associated with the Green function G(t, x), we have

∫

Rd

∣
∣G(t – s, y – z)

∣
∣2 dz ≤ C∗(t – s)– d

α+γ . (55)

Then

Lε,1(s, y) ≤ C∗
∫ s

t–ε

(s – v)– d
α+γ dv ≤ C5.1.11ε

1– d
α+γ . (56)

For the second term Lε,2(s, y), we apply the Hölder inequality, the fact that b′ is bounded
and Fubini’s theorem, so that we end up with

Lε,2(s, y) ≤ C5.1.12ε

∫ s

t–ε

∫

Rd

∣
∣G(s – r1, y – z1)

∣
∣2

×
(∫ s

t–ε

∫

Rd
E

(
Dv,zu(r1, z1)

)2 dz dv
)

dz1 dr1.
(57)
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Then, from (54), (55), (56), (57), we obtain

sup
(ρ,y)∈[t–ε,s]×Rd

E

(∫ s

t–ε

∫

Rd

∣
∣Dv,zu(ρ, y)

∣
∣2 dz dv

)

≤ C5.1.11ε
1– d

α+γ + C5.1.12ε

∫ s

t–ε

(s – r)– d
α+γ sup

(τ ,m)∈[t–ε,r]×Rd

×E

(∫ s

t–ε

∫

Rd

∣
∣Dv,zu(τ , m)

∣
∣2 dz dv

)

dr.

Now we can conclude by using Gronwall’s lemma (for example, Lemma 15 in
Dalang [10]). �

Furthermore according to Bouleau and Hirsch’s criterion, if a random variable F in the
space D

1,2 satisfies the non-degeneracy condition ‖DF‖H > 0, a.s., then the law of F is
absolutely continuous with respect to the Lebesgue measure.

Proof of Theorem 5.1 We will adopt a technical argument which has been proposed by
many authors (see, e.g., Cardon–Weber [9]) to prove Theorem 5.1. It suffices to prove that

∥
∥Du(t, x)

∥
∥
H > 0.

Notice that (see, e.g., Jiang et al. [12])

‖Du‖H > 0 ⇔ ‖Du‖L2([0,T]×Rd) > 0.

Hence we only need to prove that ‖Du‖L2([0,T]×Rd) > 0 a.s. For 0 < ε < t, recall (45), we have

∫ t

0

∫

Rd

∣
∣Dr,zu(t, x)

∣
∣2 dz dr ≥

∫ t

t–ε

∫

Rd

∣
∣Dr,zu(t, x)

∣
∣2 dz dr

≥ C5.1.13
(
I1(t, x, ε) – I2(t, x, ε)

)
,

(58)

where

I1(t, x, ε) =
∫ t

t–ε

∫

Rd

∣
∣G(t – r, x – z)

∣
∣2 dz dr

and

I2(t, x, ε) =
∫ t

t–ε

∫

Rd

∣
∣
∣
∣

∫ t

r

∫

Rd
G(t – r1, x – z1)b′(u(r1, z1)

)
Dr,zu(r1, z1) dz1 dr1

∣
∣
∣
∣

2

dz dr.

According to (16), there exists a constant C∗ > 0 such that

I1(t, x, ε) = C∗ε1– d
α+γ . (59)
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By (56) and Lemma 5.1, one gets

E
∣
∣I2(t, x, ε)

∣
∣ ≤

∫ t

t–ε

∫

Rd

∣
∣G(t – r1, x – z1)

∣
∣E

(∫ r1

t–ε

∫

Rd

∣
∣Dr,zu(r1, z1)

∣
∣2 dz dr

)

dz1 dr1

≤ C5.1.14ε
1– d

α+γ

∫ t

t–ε

∫

Rd

∣
∣G(t – r1, x – z1)

∣
∣dz1 dr1

≤ C5.1.15ε
2– 3d

2α+2γ .

(60)

Then, for each ε0 > 0, according to (58), (59) and (60),

P
(∫ t

0

∫

R

∣
∣Dr,zu(t, x)

∣
∣2 dz dr > 0

)

≥ sup
ε∈(0,ε0]

P
(
C5.1.16

(
I1(t, x, ε) – I2(t, x, ε)

)
> 0

)

≥ sup
ε∈(0,ε0]

P
(
I2(t, x, ε) ≤ C5.1.17I1(t, x, ε)

)

≥ 1 – inf
ε∈(0,ε0]

{
1

C5.1.18ε
1– d

α+γ

E
∣
∣I2(t, x, ε)

∣
∣

}

≥ 1 – inf
ε∈(0,ε0]

C5.1.19ε
1– d

2α+2γ = 1.

(61)

Thus the proof of this theorem is complete. �

5.2 Lower and upper bounds for the density
Let us consider T > 0 and let u = {u(t, x), (t, x) ∈ [0, T] × R

d} be the unique mild solution
to Eq. (1). This section is devoted to proving the following result concerning with the
Gaussian-type estimates for the density of u(t, x) at any fixed (t, x) ∈ [0, T] ×R

d .

Theorem 5.2 Fix t ∈ [0, T] and x ∈ R
d . Suppose that Hypothesis 3 is satisfied for some

η ∈ (0, 1). Moreover, the coefficient b(·) is of class C1(Rd) and has a bounded Lipschitz con-
tinuous derivative. Then the density of the random variable u(t, x) satisfies the following:
for almost every z ∈R

E|u(t, x) – m|
C5.2.2t2H exp

{

–
(z – m)2

C5.2.1t2H

}

≤ p(z) ≤ E|u(t, x) – m|
C5.2.1t2H exp

{

–
(z – m)2

C5.2.2t2H

}

, (62)

where m = Eu(t, x) and C5.2.1 and C5.2.2 are positive constants depending on H ,‖b′‖∞,η, T .

Under Hypothesis 3, one can conclude this lemma from the proof of Proposition 3.2.

Lemma 5.2 Let d < α + γ , d ≥ 1 and T ≥ 0. Then under Hypothesis 3, we have:
1. There exists a positive constant k1 such that for any t ∈ [0, T]

αH

∫ t

0

∫ t

0

∫

Rd
FG(u, ·)(ξ )FG(v, ·)(ξ )|u – v|2H–2μ(dξ ) du dv ≥ k1t2H . (63)

2. There exists a positive constant k2 such that, for any t ∈ [0, T],

αH

∫ t

0

∫ t

0

∫

Rd
FG(u, ·)(ξ )FG(v, ·)(ξ )|u – v|2H–2μ(dξ ) du dv ≤ k2t2H . (64)
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Remark 5.1 It is worth mentioning that the integrability condition (12) was sufficient for
us to prove the existence of density for the solution u(t, x) at any fixed point (t, x) ∈ [0, T]×
R

d . However, as will be made clearer in Lemma 5.2, we will really need lower and upper
bounds of the form (63) and (64) in order to obtain lower and upper bounds for the density
of u(t, x) at any fixed (t, x) ∈ [0, T] ×R

d .

Remark 5.2 It is interesting to note that the lower and upper bounds obtained in this
proposition did not include the parameter α and γ .

Theorem 5.2 will be a consequence of Theorem 3.1 in [17] and Proposition 5.1. We use
the notation F = u(t, x) –Eu(t, x) and we recall that we will need to find almost sure lower
and upper bounds for the random variable gF (F), which is given by

gF (F) =
∫ ∞

0
e–ζ

E
[
E

′(〈DF , D̃F〉H
)|F]

dζ

=
∫ ∞

0
e–ζ

E
[
E

′(〈Du(t, x), D̃u(t, x)
〉

H
)|F]

dζ ,
(65)

where D̃F = (DF)(e–ζω +
√

1 – e–2ζω′).

Proposition 5.1 Fix T > 0 and assume that d < α + γ and the function b(·) is of C1(Rd)
with a bounded Lipschitz continuous derivative. Then, for all t ∈ [0, T], there exist positive
constants C5.2.1 and C5.2.2

C5.2.1t2H ≤ gF (F) ≤ C5.2.2t2H . (66)

In order to prove Proposition 5.1, we will also need the following lemma, whose proof is
similar to that of Lemma 5.1, Lemma 4.6 in Nualart and Quer-Sardanyons [19] or Lemma 5
in Nualart and Quer-Sardanyons [20].

Lemma 5.3 For δ ∈ (0, 1] and assuming d < α + γ and Hypothesis 3 holds, there exist two
positive constants C5.2.3 and C5.2.4 such that depending on ‖b′‖∞, ζ and the constant k2 in
(64) such that

sup
(r,y)∈[(1–δ)t,t]×Rd

E
[∥
∥Du(r, y)

∥
∥2
H([(1–δ)t,t]×Rd)|F

] ≤ C5.2.3(δt)2H , a.s. (67)

and

sup
ζ≥1

sup
(r,y)∈[(1–δ)t,t]×Rd

E
[
E

′(∥∥D̃u(r, y)
∥
∥2
H([(1–δ)t,t]×Rd)

)|F] ≤ C5.2.4(δt)2H , a.s. (68)

Proof From (45) in Theorem 5.1, and applying the Minkowski inequality, we get

∥
∥Du(t, x)

∥
∥
H([(1–δ)t,t]×Rd)

≤ ∥
∥G(t – ·, x – ∗)

∥
∥
H([(1–δ)t,t]×Rd)

+
∥
∥b′∥∥∞

∫ t

0

∫

Rd

∣
∣G(t – s, x – y)

∣
∣E

[∥
∥Du(s, y)

∥
∥
H([(1–δ)t,t]×Rd)

]
dy ds.

(69)
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As a consequence, we have the following estimate:

E
[∥
∥Du(t, x)

∥
∥
H([(1–δ)t,t]×Rd)|F

]

≤ ∥
∥G(t – ·, x – ∗)

∥
∥
H([(1–δ)t,t]×Rd)

+
∥
∥f ′∥∥∞

∫ t

0

∫

Rd

∣
∣G(t – s, x – y)

∣
∣E

[∥
∥Du(s, y)

∥
∥
H([(1–δ)t,t]×Rd)|F

]
dy ds.

(70)

Let

Yt := sup
(r,x)∈[0,t]×Rd

E
[∥
∥Du(r, x)

∥
∥
H([(1–δ)t,t]×Rd)|F

]
.

Then according to (64), we have proved that

Yt ≤ C5.2.7(δt)2H +
∫ t

0
(t – s)– d

2(α+γ ) Ys ds.

Then a suitable generalization of the Gronwall-type lemma (see, for example, Lemma 15
in Dalang [10]) allows us to conclude the proof. The estimation (68) can be checked using
exactly the same arguments. �

Proof of Proposition 5.1 We first recall that the Malliavin derivative of u(t, x), (t, x) ∈
[0, T] ×R satisfies Dv,zu(s, y) ≥ 0, for all (v, z) ∈ [0, T] ×R

d , a.s. This is because the Malli-
avin derivative solves the linear equation (45). Let us deal with the proof of (66) in two
steps. Our method used here is essentially due to Nualart and Quer-Sardanyons [19] and
[20].

Step 1. The lower bound. Fix δ ∈ (0, 1] and let us first derive the lower bound of (66).
Since the Malliavin derivative of u(t, x) is non-negative, Eq. (65) yields

gF (F) ≥
∫ ∞

0
e–ζ

E
[
E

′(〈Du(t, x), D̃u(t, x)
〉

H([(1–δ)t,t]×Rd)

)|F]
dξ . (71)

By (45), we can decompose the right-hand side of the above (71) in a sum of four terms:

�0(t, x; δ) =
∥
∥G(t – ·, x – ·)∥∥2

H([(1–δ)t,t]×Rd), (72)

�1(t, x; δ) = E

[∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)

× 〈
G(t – ·, x – ·), Du(s, y)

〉

H([(1–δ)t,t]×Rd) dy ds|F
]

,
(73)

�2(t, x; δ) =
∫ ∞

0
e–ζ

E

[

E
′
(∫ t

0

∫

Rd
G(t – s, x – y)b′(ũ(s, y)

)

× 〈
G(t – ·, x – ·), D̃u(s, y)

〉

H([(1–δ)t,t]×Rd) dy ds|F
)]

dσ ,
(74)

�3(t, x; δ) =
∫ +∞

0
e–ζ

E

[

E
′
∫ t

0

∫

Rd

∫ t

0

∫

Rd
G(t – s, x – y)b′(u(s, y)

)
G(t – r, x – z)

× b′(ũ(r, z)
)〈

Du(s, y), D̃u(r, z)
〉

H([(1–δ)t,t]×Rd) dr ds dy dz|F)
]

dσ .
(75)
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Firstly we notice that with d < α + γ and (63) in Lemma 5.2,

�0(t, x; δ) ≥ k1(δt)2H .

Thus we can write

gF (F) ≥ k1(δt)2H –
∣
∣�1(t, x; δ) + �2(t, x; δ) + �3(t, x; δ)

∣
∣. (76)

Thus we will need to obtain the upper bounds for the terms �i(t, x; δ), i = 1, 2, 3. We apply
Fubini’s theorem, the boundedness of b′, the estimate (64) in Lemma 5.2 and the bound
(67) in Lemma 5.3. Then we have the following estimate:

∣
∣�1(t, x; δ)

∣
∣

≤ C5.2.9
∥
∥G(t – ·, x – ·)∥∥H([(1–δ)t,t]×Rd)

∥
∥b′∥∥∞

×
[∫ t

(1–δ)t

∫

Rd

∣
∣G(t – s, x – y)

∣
∣E

∥
∥Du(s, y)

∥
∥
H([(1–δ)t,t]×Rd) dy ds|F

]

≤ C5.2.10
∥
∥G(t – ·, x – ·)∥∥H([(1–δ)t,t]×Rd)

∥
∥b′∥∥∞

× sup
(s,y)∈[(1–δ)t,t]×Rd

E
∥
∥Du(s, y)

∥
∥
H([(1–δ)t,t]×Rd)

∫ t

(1–δ)t

∫

Rd

∣
∣G(t – s, x – y)

∣
∣dy ds

≤ C5.2.11(δt)2H+1– d
2(α+γ ) .

(77)

In order to get an upper bound for |�2(t, x; δ)|, one can proceed using exactly the same
arguments as for |�1(t, x; δ)|, but apply (68) in Lemma 5.3 instead of (67) in Lemma 5.3.
Hence one obtains

∣
∣�2(t, x; δ)

∣
∣ ≤ C5.2.14(δt)2H+1– d

2(α+γ ) . (78)

Let us finally estimate |�3(t, x; δ)|. For this, we apply Fubini’s theorem, the fact that b′ is
bounded, the Cauchy–Schwartz inequality, and we finally invoke Lemma 5.3,

∣
∣�3(t, x; δ)

∣
∣

≤ C5.2.15
∥
∥f ′∥∥∞

∫ +∞

0
e–ζ

[∫ t

(1–δ)t

∫

Rd

∫ t

(1–δ)t

∫

Rd
G(t – s, x – y)G(t – s, x – y)

× (
E

[∥
∥Du(s, y)

∥
∥
H([(1–δ)t,t]×Rd)E

′(∥∥D̃u(s, y)
∥
∥
H([(1–δ)t,t]×Rd)

)|F])
dy ds dy ds

]

dσ .

At this point, we apply the Cauchy–Schwartz inequality with respect to the conditional
expectation with respect to F . One can use the bounds (67) and (68) in Lemma 5.3 and
obtain

∣
∣�3(t, x; δ)

∣
∣ ≤ C5.2.17(δt)2H+1– d

α+γ . (79)

Eventually, plugging the bounds (77), (78), (79) into (76), we have with d < α + γ

gF (F) ≥ k1(δt)2H –
[
C5.2.19(δt)2H+1– d

2(α+γ ) + C5.2.17(δt)2H+1– d
α+γ

]
.
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Hence we have

gF (F) ≥ t2H[
k1δ

2H – δ2H(
C5.2.19(δT)1– d

2(α+γ ) + C5.2.17(δT)1– d
α+γ

)]
.

Hence if we assume that δ < 1 ∧ 1
T , it only remains to choose a positive quantity δ suf-

ficiently small such that the quantity δ2H [k1 – (C5.2.19(δT)1– d
2(α+γ ) + C5.2.17(δT)1– d

α+γ )] is
strictly positive, then we can write

gF (F) ≥ C5.2.1t2H .

Thus, the lower bound in (66) has been proved.
Step 2. The upper bound. The upper bound in (66) is almost an immediate consequence

of the computations which we have just performed for the lower bound. More precisely,
according to gF (F) and the considerations in the first part of the proof, we have the follow-
ing:

gF (F) ≤
3∑

i=0

�i(t, s; δ),

where we notice that we have substituted δ by 1 in �i(t, x; δ), i = 0, 1, 2, 3. We have already
seen that, for i = 1, 2,

∣
∣�i(t, x; 1)

∣
∣ ≤ C5.2.14t2H+1– d

2(α+γ )

and

∣
∣�3(t, x; 1)

∣
∣ ≤ C5.2.17t2H+1– d

α+γ .

So we just need to bound �0(t, x; 1), which follows directly from (64). Thus

gF (F) ≤ k3t2H + 2C5.2.14t2H+1– d
2(α+γ ) + C5.2.17t2H+1– d

α+γ .

Therefore we conclude that

gF (F) ≤ C5.2.2t2H ,

with the positive constants C5.2.2 depending on T . Therefore the proof of this proposition
is complete. �

Proof of Theorem 5.2 For any fixed (t, x) ∈ [0, T] × R, we know that the random variable
F = u(t, x) – E(u(t, x)) is centered and belongs to D

1,2 and by (66); we have 0 < C5.2.1t2H ≤
gF (F) for all t ∈ [0, T]. We then apply Theorem 3.1 and Corollary 3.3 in Nourdin and
Viens [17], and find that the probability density ρ : R �→ R of the random variable F is
given by

ρ(z) =
E|u(t, x) – E(u(t, x))|

2gF (z)
exp

{

–
∫ z

0

y
gF (y)

dy
}

,
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for almost every z ∈R. Then the density p of the random variable u(t, x) satisfies

p(z) =
E|u(t, x) – E(u(t, x))|

2gF (z – E(u(t, x)))
exp

{

–
∫ z–E(u(t,x))

0

y
gF (y)

dy
}

. (80)

In order to conclude the proof, we only need to apply the bounds obtained in Proposi-
tion 5.1 to (80). �
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