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1 Introduction
In 2020, El-Deeb et al. [1] have proved the following inequalities:
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The objective of the theory of time scales, which was introduced by Stefan Hilger in his
PhD thesis [2] in 1988, is to unify continuous and discrete calculus. Several foundational

definitions and notations of basic calculus of time scales introduced in the excellent recent
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books [3, 4] by Bohner and Peterson will be employed in the sequel. For some Gronwall—-
Bellman-type integral, dynamic inequalities and other type of inequalities on time scales,
see the papers [5-36].
We use the following notations:
(i) If T =R, then

o(t)=t,
wu(t) =0,

A =£),
b b
f Fo)AL- / Fod

(ii) If T = Z, then

ot)=t+1,
u(t) =1,
FA0 = Af (D), (1.2)

b b-1
/ fOAL=) f(@),

where A is the forward difference operator.

Theorem 1.1 (Chain rule on time scales [3]) Let g : R — R be continuous and A-
differentiable on T*, and let f : R — R be continuously differentiable. Then there exists
c € [t,o(t)] with

(f o)™ (®) =1 (g(c))g" (). (1.3)

Theorem 1.2 (Chain rule on time scales [3]) Let f : R — R be continuously differentiable
and suppose g : T — R is A-differentiable. Then f o g : T — R is A-differentiable and the
formula

1
(fog)*(t) = {/0 [f"(hg” () + (1 —h)g(t))]dh}(g)A(t): (1.4)
holds.

Theorem 1.3 ([3]) Letty € TX and k: T x T — R be continuous at (t, t), where t > ty and
t € T%. Assume that k™ (t,-) is rd-continuous on [ty, o (t)]. Suppose that for any ¢ > 0, there
exists a neighborhood U of t, independent of T € [ty, o ()], such that

|[k(0(t),t) - k(s,r)] —kA(t,‘L')[O’(t) —s]| < 8|a(t) -

, Vsel.

Ifk® denotes the derivative of k with respect to the first variable, then

£(8) = /tk(t,r)At
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yields
fA) = /[kA(t,r)Ar +k(o(2),t).

Other dynamic inequalities on time scales may be found in [37-40]. In this manuscript,
we will discuss the retarded time scale case of the inequalities obtained in [1] using new
techniques by replacing the upper limit ¢ and ¢ of the integral by the delay function &(¢) <
cand B(0) < 0. Furthermore, these inequalities that we obtained here extend some known
results in the literature, and they also unify the continuous and discrete cases.

2 Main results
Throughout the paper, we suppose that T; and T, are two time scales.
First, we prove the following result.

Theorem 2.1 (Leibniz integral rule on time scales) In the following by f2(t,s) we mean
the delta derivative of f (t,s) with respect to t. Similarly, f~ (t,s) is understood. If f, f* and
fY are continuous, and u,h : T — T are delta differentiable functions, then the following
formulas hold vVt e T*:
D Ui S (65)As1 = [, h(')fA(t DAs + h> () (0 (8), (D) - 1P (O)f (0 (1), w(t));
[fw) ,5)As]Y f fv(t )As +hY (O)f (o(8), h(2)) — u” (£)f (p(2), u(t));
(i) [ fh(“ V]2 = [0 FA(E$)Vs + hA(0)f (0/(6), () - u® (Of (o (2), u(®));
W) 29 £(65)Vs]Y = [19 1V (t,5)Vs + hY (0f (p(0), h(©) — u¥ (O (p(0), u(2).

Proof We will only prove part (i); the others may be proved similarly. Define a function g
by

I(t)
= / f(t,s)As, forteT". (2.1)
u(t)

We notice that g is a continuous function. Indeed, we have two cases for ¢. In the first case,
if ¢ is right-scattered, from (2.1), we get

glo(2)) - g(?)
o(t)—t

1 h(o () h(t)
To()-t [/M(au)) floths)s - /u(t) f(t’s)AS]

u(o (t)) h(t)
- ﬁ[_/( f(G(t),s)As+/ fo(®),s)As

) u(t)

ho (1) h(t)
+/h f(a(t),s)As—/u(t) f(t,s)As:|

®)

gh) =

H0 f(o(8),s) —f(t,s) 1 h(o(2))
- u(t) o(t)—t As+ o(t)—t ,/h(t) f(U(t);S) As
1 u(o ()
_o'(t)—t/ Y flo@),s)As

/ fAts)As + ((); ()f(a(t),h(t))
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u(o (t)) — u(t)
- Wf(a(t)»u(t))

h(t)
= / Y FA6)As + B2 (0)f (o (), h(D)) — u™(0)f (o (2), u(?)). (2.2)

From (2.2), we get the required result.

Now consider the second case when ¢ is right-dense. Since f is continuous, it is rd-
continuous, hence it has a delta partial anti-derivative with respect to the second variable
s, say F(t,s), that is, f(t,s) = F*s(¢,s), and then we have

) A
[f() f(t,S)AS] =g

= lim
r—t

-;gr;ﬁ[f f(tsAs—/ £ o)A }

u(t)
—hm—[/ f(t,s)As - f(r,s)As

(t) —g (r)

r>tf—r

- f(r, S)As — f(r, ]

u(t) h(t)
t,s 7,8 1 hz)
= / M +1im —— / F(r,5)As
rﬁt ) t— r>tt—r h(r)
1 u(t)
—lim—/ F2(r,5)As. (2.3)
rotft—r u(r)

Thus, from (2.3), we get

h(t)

h(e) A
|: f(t,s)As] = FA(t,s)As + hm %[ (r,h(8)) = F(r, h(r))]
u(t) u

(t)

~lim —— [F(r,u(0)) = F(r,u(n)]

r>tt—r

he) . h(t) = h(r) E(r, h(¢)) = F(r, h(r))
_ A
A e T

. u(t) —ulr) F(r,u(t)) — F(r,u(r))

—lim

r—>t  t—r u(t) — u(r)

he) . h(t) h(r) .. F(r,h(t)) — F(r, h(r))
= A, 1 li
/M(t) f2(t,s)As + lim - lim 1O~ h)

. u(t) —ulr) . F(r,u(t)) — F(r,u(r)
—lim lim
r—t t—r r—t u(t) — u(r)

h(t)
" esyas s md@ES (&, 1(8)) - u® (E)F2 (£, u®))

u(t)

h(t)
= f FAE ) As + B2 (0)f (8, h(2) - u™ @)f (¢ u(?)).
u(t)

This completes the proof. 0
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Remark 2.2 If we take h(t) = t and u(¢) = a (where a is constant), then Theorem 2.1 reduces
to [4, Theorem 5.37, p. 139].

Now, by using the result of Theorem 2.1, we state and prove the rest of our main results:

Theorem 2.3 Suppose a € C,q(2,R,) is nondecreasing with respect to (¢,0) € 2, and g, u,
P f € Ca(,R,). Also let & € Cl(T4, Ty) and B € CL(T2, T,) be nondecreasing functions
with &(&) < & on Ty, B(O) < b on Ty. Furthermore, suppose ®, ¥ € C(R,,R,) are nonde-
creasing functions with {®, U}(u) > 0 for u > 0, and uErPOO&D(u) = +00. If u(¢, 0) satisfies

B @@ rBRO o R A . .
B(u(e,0) < alé,0) + fo fo £ ) (ur, £)) + plEr £)] AB AR,
/&@)/ﬁ(é)f(é é)(/él @6 (Aé>)AA)Aé AB 4
+ | : 1,62 ; g, 86 u(g, &2 ¢ 2A&1 .

for (¢,0) € Q, then

u(f,@)s&»-l{i\ [A(q(g,g) / / f(sl,sz)(u f g(, &)Az)AszAsl“

(2.5)
for0<¢<¢1,0<0 <0, where
R L «e) rp@ A
q(ng) =a(§,Q) +/ / p(gl’EZ)AEZASI: (2'6)
0 0
N r AA _ 00 AA
A(r):/ ~7‘§1 r>ry>0, A(+oo):/ ~751 —+00,  (27)
ro wo ®1(&) o wo® (&)

and (S1,01) € Q is chosen so that

(~ (¢,0)) / / HGHD) <1+/ (f,éz)ﬁg)ﬁézA%) € Dom(G™).

Proof Assume that a(¢,0) > 0. Since g > 0 and it is nondecreasing, fixing an arbitrary
point (£,7) e 2 and defining z(¢, 0) by

«2,0) = a6, ) / / FELE) (b 5)) AE AR,

a0 @)
+/0 §/0 Qf(fbéz)(/ g(C 52)‘1’(1,1(; fz)) )A§2A$1,

0

A
a'¥e

which is a positive and nondecreasing function for 0 < ¢ <& < ¢
then get z(0,0) = z(¢,0) = q(&, ) and

u(¢,0) < @7 (2(¢,0)). (2.8)
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By applying Theorem 2.1, differentiating z(g, 0) with respect to ¢, and using (2.8), we get

0
A 3(@)AAA~~1 A
<a (5)/ f(@),&) [\IJ o d7!(2(a(8),52))
0
O T T
+/ g, &)W o @™ (z(;“,éz))Ag“]Asz.
0
Since W o ! is nondecreasing with respect to (¢,0) € R, x R,, we then have

2%(¢,0)

o R B@) R G I B
< B0 & (2(a(2), A(@))d () /0 f(éz(f),sz)[l . fo g(@ézM(}ASzr (2.9)
from which W o ®1(2(&(&), (8))) < ¥ o d1(2(¢,0)), so from (2.9), we get

24(5,0)
1

A
¥ o &1(2(¢,0))

16 X o N L
it [ f(&@),sz)(u / g@,szmz)m;z. (2.10)
Now from (2.10), we get

&
0

. . a@) rh@ S R
Aeeo) <A@+ [ [ f(sl,sz)(u / g(§r§2)A§>A$2A§1-
Since (£, Z ) € Q is chosen arbitrarily,

T «e) B E N . .
Z(@@)SAI[A(Q@:@)F/O /0 f($1,$2)<1+f0 g(§’$2)AC)A€2A$1]- (2.11)

So from (2.11) and (2.8), we get the desired inequality in (2.5). For a(¢,0) = 0, we carry
out the above procedure with € > 0 instead of a(¢,9) and subsequently let € — 0. This

completes the proof. g

Remark 2.4 1f we take @(¢) = ¢ and @(0) = 9, then Theorem 2.3 reduces to [1, Theo-

rem 2.1].

Page 6 of 22



El-Deeb and Rashid Advances in Difference Equations (2021) 2021:125 Page 7 of 22

Corollary 2.5 The discrete form can be obtained by letting T = Z, with the help of relations
(1.2), and &(&) = &, B(d) = b in Theorem 2.3. If

$-1 0-1

®(u(,0) = a($0) + ) ) [,V (ul, &) +p6)]
£1=0£,=0
$-1 0-1
Y Y fELE) <Zg(z E) (u(¢, &)))

£1=0£,=0

holds for (¢,0) € Q, then

¢-1 0-1
u($,0) < él{ﬁ [ (4(¢,0) +ZZf(sl,sz)<1+Zg(; &))“

0£2=0

for0<¢ <¢;,0<0 <01, where

¢-1 o0-1
q(¢,0) = a(S,0) + p(€1, &),
£1=0£,=0
r-1 1 +00 1
Alr) = — . r>ry>0, A(+00) = — = +00,
éz wod1(E) ’ éZ 0o d1(E)
1=70 1=70

and ($1,01) € Q is chosen so that

¢-1 0-1
< (a(¢,0)) ZZf(SpSz)(l + Zg , ‘52))) € Dom(G™).

£1=0 st=0

Theorem 2.6 Assume that h, b € Cq(Q2,R,). Let g, f, p, a, u, ®, and U be as in Theo-
rem 2.3. If u(¢, 0) satisfies

_ ae) pp@
(u(2,0)) < alé,0) + / / [FGo bW (b, £) + pler, £2)] 06, A8,
/ / b(E1, ) I:h(él:éz)‘i’(u(éhéz))

. /0 o660 (u(t, sz))Ag}AszAsl (2.12)

for (S,0) € 2, then

g
f(flygz)AézA&} } (2.13)

for0<¢<¢;,0<0 <0, where Ais defined by (2.7),

N

a) h@ o . T
(2,0) = /0 /0 b(sl,&)[h(shszn /0 g@,sz)A;}AszAsl, (2.14)
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and (S1,01) € Q is chosen so that
o “o) pBo .
(A(q(g,g)) ciga [ [ f(sl,sz)AszAa) & Dom(A™Y).
0 0

Proof Assume thata(¢,9) > 0. Fixing an arbitrary (£,7) € Q, we definea positive and non-
decreasing function z(¢, 0) by

Cor=aE D [ / " e e (e B aba,
/ / b o) 61 )t )
+ fo &£, &)W (u(?, EZ))AC:|A§2A€1
for0<¢<£&<¢8,0<0 <7 <y,thenz(0,0) =2(¢,0) = q(&,¢) and
u(¢,0) < @7 (2(¢,0)).

Now, by applying Theorem 2.1, we have

ZA?(?:@)

I
>
>
—~
>
N
~
—_
>
—~
>
N
e
o
SN—
<X
—_
N
—~
Q>
—~
D
Jre>
[y N
N—
>
e
¥
+
Q
G?
N4
S~
=™
S
—_
c
—~
n
—
o
o
N—

i) o B X

/ F(a(),E) 0 37 (2(6(&), ) Aby + /0 b(a(e).6)
. B©) . .
<&%(é) Vo <1>1(z(§,é))[ i f(@(8),&)Ag

B@® . . A .
0 0

Since W o ®71(2(¢,0)) < W o ®71(2(¢,0)), we then get

B@) . . a@ .
+/ b(&(f),$2)<h(&(§),éz)+/ g(C,Sz)AC)}AEz. (2.15)
0 0



El-Deeb and Rashid Advances in Difference Equations (2021) 2021:125 Page 9 of 22

Integrating (2.15), we get

- B - . ae) rAO) A A
A(6.0) < Aa@.B) +AG0)+ [ Flnb)AEAL.
0 0
Since (£,Z) € Q is chosen arbitrarily,
o 5 “o ho
26,0) < A [A(q(é,@)) LA(60) + / f(sl,szmszmsl] (2.16)
0 0

Thus, from (2.16) and u(&,9) < ®1(z(¢,0)), we get the required inequality in (2.13). For
a(¢,0) = 0, we carry out the above procedure with € > 0 instead of a(¢, 0) and subsequently

let € — 0. This completes the proof. g

Remark 2.7 1If we take @(¢) = ¢ and @(0) = 9, then Theorem 2.6 reduces to [1, Theo-
rem 2.4].

Corollary 2.8 If we take T = R in Theorem 2.6, then, with the help of relations (1.1), we
have the following inequality due to Boudeliou [41]. If

®(u(é,0))
@) rA©) o A . R
<a(e0)+ /0 /0 [F(E1, 60 (uBr,B) + (s, £0)] dy d
@) ph@ o & T ..
. / / b(sl,a)[h(sl,sz)w(u(sl,sz))+ / g(;,sz)w(u(c,&))d;]dszdsl
0 0 0

holds for (¢,0) € Q, then
R o o @) pp@
u(E,0) < & { G [G(q(g,g)) raGo)+ (61 Eo) s dsl]}
0 0

for0<¢<¢;,0<0 <0, where Ais defined by (2.7),

«e) rp@ o E 7 . .

ico- [ [ b(sl,a)[h(a,sz) - g(;,&)d;} dEy df,

0 0 0

and (&1, 01) € Q is chosen so that

- y ae) @
(A(q(§:@)) "'A(f’@)‘r/() /0 f(%_l:EZ)dSZdEl) € Dom(A 1).
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Corollary 2.9 The discrete form can be obtained by letting T = Z, with the help of relations
(1.2) and &(&) = &, B(d) = b in Theorem 2.6. If

$-1 0-1
d(u(¢,0) <a(é,0)+ Y Y [fE &)V (uE, &) +pEr, 6]
£1=0£,=0
¢-1 o0-1 ~
+Zstl,sZ[ €1, 6) T (w1, &) Zg; E)(u ))}
§1=082=0

holds for (¢,0) € Q, then
&-1 p-1
u(2,0) <& {G-l [G(q(ﬁ,@)) +A(G0)+ ) Zf(sl,&)} }
£1=06,-0
for0<¢<¢;,0<0 <01, where Ais defined by (2.7),
¢-1 0-1

A(8,0) = ZZbSI»SZ[ €16 + Zg@ Ez:|

§1=082=0

and ($1,01) € Q is chosen so that

-1 p-1
(Z\ (4(5,0) +A(G,0)+ ) Zf(él,éz)) € Dom(A™).

£1=0£,=0
Theorem 2.10 Assume that g, a, u,f, p, ®,and V are as in Theorem 2.3. If u(¢, O) satisfies
®(u(s,0)
<a(é,0)+ f / (e, £) [ 8 (e, ) + pl6r, E)] abr Ay

& R
/ / f&,6)T 51:%'2))(/0 g((fz)q’(u(f»fz))A§>A‘EzAgl» (2.17)

for (S,0) € 2, then

a@) pp@ S N
+/O /0 f(§1752)<1+/0 g(f,éz)Ac)ASzA&D}, (2.18)

0(2,0) = A(a(2,0) / / pELE)ABAL, (2.19)

Page 10 of 22
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- A

®(’)‘/,0 (Fodnohn@) =7 (2.20)
- Y A& _

O(o0) = / @od oA 1E)

and (&1,01) € Q is chosen so that
- ae) b & N .. )
(@(m(g,g)) [ f(sl,sz)(l «f g(g,s»A;)AszAsl) & Dom(671),
0 0 0

Proof Suppose that a(€, %) > 0. Fixing an arbitrary (,7) € Q, we define a positive and

nondecreasing function z(¢, 0) by

u(¢,0) < ®7'(2(¢,0))-

Now, by applying Theorem 2.1, we have

+
c
>
—~
n\
N
~
—_
c
—~
>
-
oy
o
SN—
=X
—_
<
~~~
Q>
~
o
ores
IS
SN—
N—
N
S~
A
o
—
\:\f)
N2
IS
N
=
—~~~
<
~
>
N2
o
(.
N—
>
~o>
v
>
N2
IS

~

o . p@)
+Wo ¢‘1(Z(&(§),ﬂ(é)))&A(§)fo f(&(8),6)

Page 11 of 22
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or

Z24(8,0)
Vo &-1(z(¢,0))

B@) o
<a%() / [F(8(2),6:) 0 57 (2(a(8),£)) + p(&,E)] A,
S L . A R
+01A(§)/ f@),é (/ g(C,Ez)‘I’OQI(Z(C,Ez))Aé“)AEz- (2.21)

Integrating (2.21), we get

A(z(g, a(€,0)) / / E)W 0 &7 (2(61,6)) + p6r, £2)]| A6 AE

a($) Q A A 1 A A~ - A n n R
+/0 /0 f(fbéz)(/ g(sz)‘l’O¢_1(Z(§;52))A§)A52A51-

0

If (€,¢) € Q is chosen arbitrarily, then

Ae&.0) = 01(6.0) / / P 0 &7 (2(br, 8) Abr G
@) rBG A & T . A R A~ A
+/0 /(; f(E1»$z)(f0 8, &)Vo CI>1(Z(C,52))AC)A$2A$1.

Since ¢1($,0) > 0 is a nondecreasing function, fixing an arbitrary point (£,7) € Q and
defining v(&, 0) > 0 to be a nondecreasing function given by

. ae) pp@ o .

v($,0) =LI1(§:§)+/O /0 fEL,E)V o @71 (2(61,6)) A& AL
&g pp@ E R N
| f(sl,&)( INGLE q>-1(z(;,sz))Ac)AszAsl,

for0<¢ =< 5 <¢,0<0< g: < 1, we obtain v(0,0) = v(&,0) = ql(é,f) and
2(¢,0) < A7 (v(S,0)). (2.22)
Now, by applying Theorem 2.1, we have
U L. L R
P60 =@ [ f(E@E) 0 b7 (610 E)ak
s PO U A
+a”(S) f(@(8),5) (/ 8(¢,8)V o d” (Z(Cw’?z))Ai)A&
0 0

B(0) . ~
<6%@) fo F(6(8),8)F 0 37 (G (v(@(8), &) Ad,

B(d) R S R n N
cav@ [ f(ae)n k) ( /0 G, E) o ¢-1(G-1(v(¢,sz)))Az)Asz

Page 12 of 22
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< (Tod ) o A (v(&(8), B(0)))a’ (&)

B(@) . IS . .
[f f@),é A§2+/0 f(a(s‘)rfz)(/o g(‘f’éz)AC)AEz],

or

vA4(8,0)
(Vo d1)o A1(v(¢,0))

J6) L 6 R S N
saﬁ@{A .ﬂMﬁéﬂA&+1; f@@%&wl;ﬂaﬁﬂw)A&} (2.23)

Integrating (2.23), we get

O(v(8,0)) < (611(5 f / / f(§1,§2)|:1+/0 g, 52)A§]A§2A51'

Since we chose (§,¢) € Q arbitrarily,

<6 [ (4:(2,0)) / / f(§17§2)[1+/0 g, §2)A§]A§2A$1] (2.24)

From (2.24), (2.22), and u(&,0) < ®1(2(&,0)), we get the desired inequality in (2.18). For
a(s,0) = 0, we carry out the above procedure with € > 0 instead of a(&, 0) and subsequently

let € — 0. This completes the proof. g

Remark 2.11 If we take &(¢) = ¢ and @(9) = 0, then Theorem 2.10 reduces to [1, Theo-
rem 2.7].

Corollary 2.12 Ifwe take T = R in Theorem 2.10, then, with the help of relations (1.1), we
get the following inequality due to Boudeliou [41]. If

®(u(¢,0))
<a(s, Q)+/ / (€1, &) [f@lrfz)‘lf(u(éhfz)) +P(51,52)] dé, dé,
«e pp@ . & N .
+/(; /0 f(§1:§2)\y(u(gl;§2))(/(; g(LEzN(M(LSz))M) d&, dé
holds for (¢,0) € Q, then
ue0) = {367 6(a(2.0)

o) (Be) BN
"'/0 /0 f(§1,§2)<1+/0 g(C:&z)d§>d§2d$1:|>},
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0(2,0) = A(a(2,0)) / / (1, E) dEy

o dé,

o) - / (@ odnodng) =07
. Y dé, _
O+o0) = /ro (@o®1)oA1(E) o

and (S1,01) € 2 is chosen so that

- &
(9(‘12 $,0)) f / S 51,52)(1+/ g, fz)df) d§2d€1> € Dom(©™).

Corollary 2.13 Thediscrete form, due to El-Deeb et al. [1], can be obtained by letting T = Z

in Theorem 2.10, with the help of relations (1.2) and &(S) = ¢, B(d) = 0 as follows. If

-1 0-1
(u(2,0)) <a(€,0)+ Y Y U(ul,&)[f(E1,6)0 (uEr &) + pr,6)]
£1=0£,=0
é-1 0-1
Y > fEE)I(uELE) (Zg £,E)0 (u(, sz)))
£1=0£,=0 ¢=0

holds for (¢,0) € Q, then

$-1 0-1 -1
u(f,@>s&>—l{c‘;—1<F [ (@2(¢,0)) +ZZf(él,é)(l+Zg(2,éz))]>},

£1=0£2=0 £=0
or 0 < ¢ < ¢1,0<0 <01, where
0=0
¢-1 0-1
72(¢,0) = A(a($,0)) + ZP(SL&),
£1=0£,=0
r—1 1
E(r)= - ————, r>ry>0,
; (Wod 1) oG (&)
§1=ro
+00 1
F(+00) = _ - 400,
éZ; (@0 ® 1) 0 G1(&)
1=710

and (S1,01) €  is chosen so that

$-1 0-1
( @E0) + S5 e (uzg@ sz>)> < Dom(F-).

£1=06,=0
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Theorem 2.14 Assume that g, a, f, u, ®, and V are as in Theorem 2.3. If u(¢, 9) satisfies
&) rpO A~ < 2\
a(¢,0) + (/ FELE) D (u (51:52))A52A$1>
& . . R
/ / fE, &) 51»52)) (/0 g(;“,éﬂ\l/(u({,%‘ﬂ)A{)A&ASI, (2.25)

for (S,0) € Q, then

=
‘{‘\)
>
=
IA
it
L
e e,
T«
|
—
I
¢
—
Q
PN
"o
fb)
=
SN—"
(
U‘\)
!0)
\
\
>
<
g
S
>
>
0
>
>
—
N——
P
——
—
[\>}
[\*)
N
=

. ae) pp@ & N ..
B(&.0) - fo fo f(sl,sz)(fo g@,sz)Ag)AszAsh (2.27)

H(r)z/r#, VZ?‘()>0,
o (Wo ®1)2(&)

B B +00 Aél ~
R T ore R

(2.28)

and ($1,01) € Q is chosen so that
. o o@) rB® . \2 -
(Fttaté. o) + 5.0y +2( [ fét)akio) ) e Dom(ir).
0 0

Proof Assume that a(¢,0) > 0. Taking (£,7) € Q as a fixed arbitrary point, we define
z(¢,0) > 0 to be a nondecreasing function by

z(¢,0)
oL & ppe N\ 2
:a<s,;>+< /0 /0 f(sl,szw(u(sl,sz))AszAa) (2.29)
a) rB©) . A & e R R A
. f f f(sl,szw(u(sl,sz))( / g(g,sZM(u(;,sz))A;)Aszasl, (2:30)
0 0 0

for0< ¢ <E<¢,0<p < <é, hencez(0,0) = 2(¢,0) = a(, ) and

From (2.29), and applying the chain rule on time scales (1.2), we get
2%(¢,0)

a0 b
:2< /O /0 f(‘;l»fz)‘l/(u(sl,gz))AEZA&)
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5 R a@) R . .
+62() / F(@(),8)¥( (6:@»&))(/0 g(:,sz)w(u@,sz))A:)Asz
< z( / / o él(z@l,éz))AézAél)
B©) L ~ R .
&5(2) / F(6(0),6) T 0 B (2(a(2),6)) A
+a2(@) / F(8(2),5)F 0 37 (2(6(2),55))
X (/(; 2(,E) Vo0 &- (Z(é::éz))Ag)Aéz
o R ) a0 pp@
<2(¥ 0 57 (2(a(2), A(2)))) &A@)( /0 /0 f@hsz)AsgAsl)
A@) o
x / f(@(8),&)AE
0

A ZAAAﬁ@AAA T
o (00 & (2(a(2), B©))) 62 (&) /0 f(a(g),52)< fo g(g,EZ)A;)Asz,

thus we have

§@) pBO . \27Ae
(/ fo f(flfz)A%”zA&) ]

a(s) A R .
+62(0) / F(a@),6 (f (f»fz)AC)Afz- (2.31)

Integrating (2.31), we get
L “o ph@ . \2
H(Z(g,Q))sH(a(S,C))+</ / f(Sl,Ez)AEzAél)
0 0
& ph@ R
| f<sl,sz)</ g(;,szmq)AszAsl.
0 0 0
Since (£,£) € Q is chosen arbitrarily,

T, . “o pB@ N2
§,é)sH‘1[H(a(§,é))+B(§,é)+(/ / f(sl,szmszAsl) } (2.32)
0 0

zZ(
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From (2.32) and u(¢,8) < ®'(2(¢, 8)), we get the desired inequality (2.26). For a(¢, 8) = 0,
we carry out the above procedure with € > 0 instead of a(¢, 0) and subsequently let € — 0.
This completes the proof. d

Remark 2.15 If we take &(¢) = ¢ and @(0) = 0, then Theorem 2.14 reduces to [1, Theo-
rem 10].

Theorem 2.16 If we take T = R in Theorem 2.14, with the help of relations (1.1), we have
the following inequality due to Boudeliou. If

i o)A@ N2
¢W@@D§d§@+(£ ‘A f&%ﬂww&fmd&@o
@) rh@ N L
+/ f(ShEZ (”(élrSZ))</ g((y&)‘”“(@&))ﬂ) déZdél’
0 0

0

for (¢,0) € , then

(. T, . B ph@ . \2
u(f,é)sdfl{H‘l[H(a(f,é))+B(§,é)+( /0 /0 f(sl,sz)dszdsl) ]}

f07’0§§§§1,0§@§@1,wher€

] a@) h@ sk
B(&.0) - fo fo f(sl,sz)(fo a@.8)d )dszdsl,

I:[(V)=/V~Zd%, r>ry>0, C:)(‘I'OO):/J@O#:‘FOO;
o (Wo®1)2(&) o (Wo®1)2(E)

and ($1,01) € Q is chosen so that

. o@ rB@® . \2 5
(H(a(f,@>)+3<§,@>+z</o 0 f(sl,szmszda))eDom(H-l).

Corollary 2.17 Thediscrete form, due to El-Deeb et al. [1], can be obtained by letting T = Z
and a(S) = ¢, ﬁ(@) = 0 in Theorem 2.14 as follows. If

-1 p-1 2
®(u(2,0)) < a(,0) + <Z Zf(él,é)@(u(éhéz)))

£1=0£,=0

$-1 0-1 1
0N fELE)U (uE,Ey) (Zg £,E) (u(, 52)))

£1=0£=0 =0

holds for (¢,0) € Q, then

¢-1 0-1
u(,0) < {H‘{H(a(f,g) +B(,0)+ (ZZf(Sl,Ez) ”

§1=082=0
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-1 0 &
Beo)=) > f (a@)(Zg(c sz))
£1=0£,=0 ¢=0
. r-1 1 _ +00 1
H = = =~ A 0; ® = = =~ A~ _ - ’
D PN S M P DY = r

and (S1,01) € 2 is chosen so that

¢-1 0-1
< (a(s,0)) + B(¢,0) (ZEf(&fz)) )eDom( ).

§1=082=0

3 Applications
In this section we would like to show the beauty behind our results by applying Theorems
2.10 and 2.3 to study the boundedness of the solutions of some delay initial boundary value
problems.

Consider the problem

o 5 R a(g) R R
uAE80(¢ 5 - @(5,@,u(&(§),ﬂ<@>), fo k(sl,@,ms,@))Aa), G3.1)
W) =am(@)  w00)=a@), @) =a0)=0, (32)

for any (&,0) € 2, where k € C,a(2 x R,R), © € Cra(2 x R x R,R), a1 € Cra(T1,R), and
ay € Cy(T, R).

Theorem 3.1 Suppose that the functions k,©, ay, ay in (3.1) and (3.2) satisfy the conditions

+f(§,@)®(|u(&(§),ﬁ(@)| v, (3.3)
|k(¢,0,u(&(¢), B(0))| < g(¢,0)F(Ju(@(e), B©)]), (3.4)
|a1(8) + a2(0)| < a(¢, ), (3.5)

where the functions p, g, a, f, Q, B, and ¥ are defined as in Theorem 2.10 with a(¢,0) > 0,
forall (¢,0) € Q. Then

o @), &)
(&,0)] < A ( [ (¢,0)) -
(¢, 0))| 42(5,0)) / f &@1E))B (B 1(E)

& o R A
X |:1+/(; g(§,§2)A§:|A§2A§1:|), (3.6)

for0<¢ <¢;,0<0 <01, where F and G are defined as in Theorem 2.10,

" P(&_l(él)yﬁ_l(éz))
= ——————— AtAs, 3.7
2:(6,2 = Gla(s,2))) / f dGENEGIE) G2
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and (S, 0) € Q is chosen so that

o ¢ @fwl@xﬁwgn[ S A]A A
C , 1 LE)AC |AEA
R A A sy s R RG] LS

€ Dom(F™).
Proof If the problem (3.1) and (3.2) has a solution u(¢, 0), it can be written as

W(E,8) = (&) + ax(0)
A A EIVAA
f /' <&$2M ﬂ@))ﬁ @Ezu@f»AK)A&A&, (3.8)

for any (&, 0) € Q. Using the conditions (3.3), (3.4), and (3.5) in (3.8), we get

X [f(ébéz)‘i’ﬂu(&(él),B(éz))|) +P(§1,§2)]A§2A§1
¢ ro 5 A
bl ‘.p o b
+A.Af@ﬂ(ww@0ﬂ&M)
& A
x(/ o6 6 ([u(E, &) A )A&Aa (3.9)
0

Now, from (3.9), we get
- L (Y9 PO (L E))
(,0)| <a(é,0) LSl
[4(.2) “§Q+A A &G EE (B )
X [f(&_l(él),ﬁ_l(§2))¢(|u(élr§2)|)
+p(@7'(E), B (E)) ] AtAs

PO @ 1(8), B1(E)
u(é, %)
/ / awﬂmmw%@>qﬁﬁn

£
X (/0 2, &)e(|ul, éz)f)Aé“)AézAfl, (3.10)

for any (&, 0) € Q2. Now, an application of Theorem 2.10 to (3.10) yields the required in-
equality in (3.6). O

Consider the initial boundary value problem of the form
TN PP P ag) N
(z7)7° 798, 0) = Al ¢,0,2(&(2), ﬂ(@)),/ h(81,0,2(81,0)) A&y ), (3.11)
0
Z(S:! O) = d1(§)7 Z(Or é) = dZ(é)’ a (0) = dZ(O) =0, (312)

for any (¢, 0) € Q.
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Theorem 3.2 Assume that the functions h, A, ay, ay in (3.11) and (3.12) satisfy the condi-

tions
|A(&,6,2(a(8), BO),v)| <f(&,0)|Z (&(2), B©D))] +f(&, 0, (3.13)
h(&,6,2(8,0))| < g(¢,0)|2'(¢,8)|, (3.14)
|a1(8) + a2(0)| < a(¢,0), (3.15)

where r > q > 0. Then

. . ”17 (<) a (&), 1))
|Z(§’Q)|5[(“(g"") + / / a(& (GNP 1)

x (1+ /0 ¢, sz)A;)AszAsl]q , (3.16)

for0 <¢,0<0<0:.

Proof If the problem (3.11) and (3.12) has a solution z(¢, 0), it can be written as
S re /. . A
20 -awrat)+ [ [ @(a,sl,u(&@l),ﬁ(&)),
o Jo
a)
/ (§ &y, u(Z, 52))A§>A§2A§1, (3.17)
0

for any (&, 0) € Q. Using the conditions (3.13), (3.14), and (3.15) in (3.17), we get

121(2,0)| < a(e,0) + / / FEnLE)|Z (65), B(0)| AE, AR,

¢ e . . 1 A A n R R
+/0 /Of(flwfz)(/o g(§,§2)|z’(§,§2)]A§>Anggl. (3.18)

From (3.18), we get

f@ '), ﬂ L(&))
<al(s, Q)+/ / B GNP (§2))’ (E1,8)| A& AE

/ / a6, B (&)
’(06‘1 )R (B (&)

& . R R . R
X(/o g(§,§2)|zr(§;$2)|A§)A$2A§1: (3.19)

|2(¢,0)

forany (&, 0) € 2. A suitable application of Theorem 2.3 to (3.19) with ®(x) = u4, W (u) =
and p(¢, 0) = 0 gives the required inequality in (3.16). O

4 Conclusion
In this work, by using a new technique, we proved several nonlinear retarded dynamic
inequalities in two independent variables of Gronwall type on time scales. We also gave a
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new proof and formula of Leibniz integral rule on time scales. Further, we also applied our

inequalities to discrete and continuous calculus to obtain some new inequalities as special

cases. Furthermore, we studied the boundedness of some delay initial value problems by

applying our results.

Acknowledgements
The authors would like to thank the editor and reviewers for their valuable comments which improved the paper.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have read and finalized the manuscript with equal contribution. All authors read and approved the final
manuscript.

Author details
' Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt. *Department of
Mathematics, Government College University, Faisalabad, Pakistan.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 26 September 2020 Accepted: 8 February 2021 Published online: 25 February 2021

References

1.

2.

El-Deeb, AA, Khan, ZA.: Certain new dynamic nonlinear inequalities in two independent variables and applications.
Bound. Value Probl. 2020(1), 31 (2020)

Hilger, S.: Ein MaRkettenkalkil mit Anwendung auf Zentrumsmannigfaltigkeiten. Ph.D. thesis, Universitat Wirzburg
(19898)

. Bohner, M, Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston

(2001)

. Bohner, M, Peterson, A.: Advances in Dynamic Equations on Time Scales. Birkhauser, Boston (2003)
. Abdeldaim, A, El-Deeb, A.A,, Agarwal, P, EI-Sennary, H.A.: On some dynamic inequalities of Steffensen type on time

scales. Math. Methods Appl. Sci. 41(12), 4737-4753 (2018)

. Agarwal, R, O'Regan, D,, Saker, S.: Dynamic Inequalities on Time Scales. Springer, Cham (2014)
. Akin-Bohner, E.,, Bohner, M., Akin, F.: Pachpatte inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 6(1),

Article ID 23 (2005)

. Bohner, M, Matthews, T.: The Griiss inequality on time scales. Commun. Math. Anal. 3(1), 1-8 (2007)
. Bohner, M,, Matthews, T.: Ostrowski inequalities on time scales. JIPAM. J. Inequal. Pure Appl. Math. 9(1), Article ID 8

(2008)
Dinu, C: Hermite—Hadamard inequality on time scales. J. Inequal. Appl. 2008, Article ID 287947 (2008)

. El-Deeb, A.A: On some generalizations of nonlinear dynamic inequalities on time scales and their applications. Appl.

Anal. Discrete Math. 13(2), 440-462 (2019)

El-Deeb, AA, Cheung, W-S.: A variety of dynamic inequalities on time scales with retardation. J. Nonlinear Sci. Appl.
11(10), 1185-1206 (2018)

El-Deeb, AA, El-Sennary, HA, Khan, ZA: Some Steffensen-type dynamic inequalities on time scales. Adv. Differ. Equ.
2019, 246 (2019)

El-Deeb, AA, Elsennary, HA, Cheung, W.-S.: Some reverse Holder inequalities with Specht’s ratio on time scales.
J.Nonlinear Sci. Appl. 11(4), 444-455 (2018)

El-Deeb, AA, Elsennary, H.A. Nwaeze, E.R.: Generalized weighted Ostrowski, trapezoid and Griss type inequalities on
time scales. Fasc. Math. 60, 123-144 (2018)

El-Deeb, A.A, Xu, H., Abdeldaim, A, Wang, G.: Some dynamic inequalities on time scales and their applications. Adv.
Differ. Equ. 2019, 130 (2019)

El-Deeb, A.A: Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral
equations. J. Egypt. Math. Soc. 26(1), 1-17 (2018)

Hilscher, R.: A time scales version of a Wirtinger-type inequality and applications. J. Comput. Appl. Math. 141(1-2),
219-226 (2002)

Li, W.N.: Some delay integral inequalities on time scales. Comput. Math. Appl. 59(6), 1929-1936 (2010)

. Rehék, P: Hardy inequality on time scales and its application to half-linear dynamic equations. J. Inequal. Appl. 2005,

942973 (2005)

. Saker, SH, El-Deeb, AA, Rezk, HM.,, Agarwal, R.P: On Hilbert's inequality on time scales. Appl. Anal. Discrete Math.

11(2),399-423 (2017)

Page 21 of 22



El-Deeb and Rashid Advances in Difference Equations (2021) 2021:125 Page 22 of 22

22.

23.

24.

25.

26.

27.

28.

29.

30.
31

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

Tian, Y, EI-Deeb, A A, Meng, F: Some nonlinear delay Volterra-Fredholm type dynamic integral inequalities on time
scales. Discrete Dyn. Nat. Soc. 2018, Article ID 5841985 (2018)

El-Deeb, AA, Kh, EM,, Ismail, GAF, Khan, ZA.: Weighted dynamic inequalities of Opial-type on time scales. Adv.
Differ. Equ. 2019(1), 393 (2019)

Kh, EM.,, El-Deeb, A.A, Abdeldaim, A, Khan, Z.A.: On some generalizations of dynamic Opial-type inequalities on time
scales. Adv. Differ. Equ. 2019(1), 323 (2019)

Abdeldaim, A, El-Deeb, A.A.: Some new retarded nonlinear integral inequalities with iterated integrals and their
applications in retarded differential equations and integral equations. J. Fract. Calc. Appl. 5(suppl. 35), Paper no. 9
(2014)

Abdeldaim, A, EI-Deeb, A.A.: On generalized of certain retarded nonlinear integral inequalities and its applications in
retarded integro-differential equations. Appl. Math. Comput. 256, 375-380 (2015)

Abdeldaim, A, El-Deeb, A.A.: On some generalizations of certain retarded nonlinear integral inequalities with iterated
integrals and an application in retarded differential equation. J. Egypt. Math. Soc. 23(3), 470-475 (2015)

Abdeldaim, A, El-Deeb, A A: On some new nonlinear retarded integral inequalities with iterated integrals and their
applications in integro-differential equations. Br. J. Math. Comput. Sci. 5(4), 479-491 (2015)

Agarwal, R.P, Lakshmikantham, V.: Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations. Series
in Real Analysis, vol. 6. World Scientific, Singapore (1993)

El-Deeb, A.A.: On Integral Inequalities and Their Applications. LAP Lambert Academic Publishing, Saarbricken (2017)
El-Deeb, AA.: A variety of nonlinear retarded integral inequalities of Gronwall type and their applications. In:
Advances in Mathematical Inequalities and Applications, pp. 143-164. Springer, Berlin (2018)

El-Deeb, AA,, Ahmed, R.G.: On some explicit bounds on certain retarded nonlinear integral inequalities with
applications. Adv. Inequal. Appl. 2016, Article ID 15 (2016)

El-Deeb, A.A, Ahmed, RG.: On some generalizations of certain nonlinear retarded integral inequalities for
Volterra-Fredholm integral equations and their applications in delay differential equations. J. Egypt. Math. Soc. 25(3),
279-285(2017)

El-Owaidy, H., Abdeldaim, A, El-Deeb, A.A.: On some new retarded nonlinear integral inequalities and their
applications. Math. Sci. Lett. 3(3), 157-164 (2014)

El-Owaidy, H.M,, Ragab, A.A, Eldeeb, AA, Abuelela, W.M.K:: On some new nonlinear integral inequalities of
Gronwall-Bellman type. Kyungpook Math. J. 54(4), 555-575 (2014)

Li, J.D.: Opial-type integral inequalities involving several higher order derivatives. J. Math. Anal. Appl. 167(1), 98-110
(1992)

El-Deeb, A.A, Makharesh, S.D., Baleanu, D.: Dynamic Hilbert-type inequalities with Fenchel-Legendre transform.
Symmetry 12(4), 582 (2020)

El-Deeb, A.A., Baleanu, D.: New weighted Opial-type inequalities on time scales for convex functions. Symmetry 12(5),
842 (2020)

El-Deeb, AA, El-Sennary, H.A, Khan, ZA.: Some reverse inequalities of Hardy type on time scales. Adv. Differ. Equ.
2020(1), 402 (2020)

El-Deeb, AA, Elsennary, H.A, Baleanu, D.: Some new Hardy-type inequalities on time scales. Adv. Differ. Equ. 2020(1),
441 (2020)

Ammar, B.: On certain new nonlinear retarded integral inequalities in two independent variables and applications.
Appl. Math. Comput. 2019(335), 103-111 (2018)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	On some new double dynamic inequalities associated with Leibniz integral rule on time scales
	Abstract
	Keywords

	Introduction
	Main results
	Applications
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


