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Abstract
In this paper, we have mathematically analyzed a within-host model of SARS-CoV-2
which is used by Li et al. in the paper “The within-host viral kinetics of SARS-CoV-2”
published in (Math. Biosci. Eng. 17(4):2853–2861, 2020). Important properties of the
model, like nonnegativity of solutions and their boundedness, are established. Also,
we have calculated the basic reproduction number which is an important parameter
in the infection models. From stability analysis of the model, it is found that stability of
the biologically feasible steady states are determined by the basic reproduction
number (χ0). Numerical simulations are done in order to substantiate analytical
results. A biological implication from this study is that a COVID-19 patient with less
than one basic reproduction ratio can automatically recover from the infection.
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1 Introduction
A deadly virus, called SARS-CoV-2 and mostly known as coronavirus, has affected most
of the countries from November 2019. The World Health Organization declared it as a
pandemic, as the virus affected more than a hundred countries and killed lots of peo-
ple worldwide, especially in Europe and the USA in a short period [1]. During this ram-
pant situation, to stop the virus propagation, almost all the regions of the world have been
locked-down by applying strict social distancing measures and banned social gathering in
all circumstances. Research is going on all over the world to control this epidemic from
different points of view, such as pathology [2, 3], microbiology [4, 5], mathematics [6, 7],
and so on [8–10]. Until now, several mathematical models have been suggested to study
the population dynamics of coronavirus [8], but few of them could predict the outcomes
accurately.

As we know, mathematical studies demonstrate the best strategies for controlling any
type of disease or virus infection in humans [11, 12]. The modeling of any disease helps to
decide on public health and introduces the disease treatment. When the primary studies
of any deadly disease cannot give us any concluding remarks to take significant decisions
to control the pandemic situation, the key facts of mathematical modeling always help
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the human civilization. Mathematical models of viral dynamics with viral and antiviral
drug effects are examined and assisted by their transparent structures and biologically
feasible parameters. There is much work to be done now and in the future to assess the
figure of confirmed cases of COVID-19. Also, a few studies focused on confirmed cases,
risk history, and disease schedule characteristics [8, 12, 13]. Mathematical models of epi-
demiology have been developed to help policymakers in making the right decisions at
the right time. These models highlight that isolation plays an important role in control-
ling the spread of the virus [6, 13]. But this is not a solution to the long-term vision as a
country’s economic growth globally is declining due to the locked-downs to maintain so-
cial distancing [7]. Therefore, researchers and scientists are now developing dynamic viral
within-host models to understand the mechanisms of SARS-CoV-2 in the human body.
To date, only a few host-level models [4, 5] have been developed to understand the SARS-
CoV-2 replication cycle and its interactions with the immune system. Most of them are
linked to HIV [14], hepatitis virus [15], Ebola [16], influenza [9, 17], and other models.

At present, clinically there is no effective treatment developed to remove the virus from
the human body. However, the research is going on. Researchers provided many treat-
ments (like plasma therapy, monoclonal antibody therapy, etc.) which are effective for
early diseases like SARS-CoV, MERS-CoV, Ebola, Influenza, HIV-like virus disease. Also
we all know that our body immune system gives a good response to fight any viruses or
diseases [2].

At the time of SARS-CoV-2 infection, macrophages are first targeted by SARS-CoV-2
and after that these SARS-CoV-2 propagate to T cells. At this stage of the virus route,
the T cells activate and further they involve differentiation. Besides, the T cells produce
cytokines (INF-α, IL-6, and IL-10) associated with the different types of a T cell. A large
amount of cytokines provides a greater activation of the immune response to fight the
virus. Particularly T cells, CD4+ T cells, and CD8+ T cells have played a significant an-
tiviral role in a fight against pathogens. There is also a risk of mounting autoimmunity or
devastating inflammation. CD4+ T cells help the immune system of the body by generat-
ing virus-specific antibodies with the activation of T-dependent B cells. However, CD8+

T cells can kill virally infected cells, as they are cytotoxic. In general, a large number of
CD8+ T cells in the infected SARS-CoV-2 body are found in nearly 80% of the total infil-
trative inflammatory cells in the interstitial pulmonary tract, which play a significant role
in clearing CoVs. The loss of CD4+ T cells is correlated with reduced conscription of lym-
phocytes and neutralizing the production of antibodies and cytokines, resulting in severe
immune-mediated interstitial pneumonitis and delayed SARS-CoV lung clearance [2, 18].

Researchers have shown that there is a long-lasting and persistent response of T cells
to the S and other structural proteins (including the proteins M and N), which provides
sufficient knowledge to draft SARS vaccine by combining viral structural proteins. These
types of vaccine may provide a strong, efficient, and long-term response to the virus by
memory cells [3]. Also, clinical trials show that a monoclonal antibody therapy is an effec-
tive treatment tool which responds better to SARS-CoV-2 [10]. In our paper, we studied
a model of in-host viral kinetics, that describes the response of SARS-CoV-2 to epithelial
cells. In Sect. 2, we describe a previously proposed model by Li et al. [5]. We have shown
in Sect. 3 that the solutions of the model are biologically feasible. The basic reproduction
number is computed and steady state analysis is done in Sect. 4. Sections 5 and 6 deal with
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the local and global stability of the model, respectively. In Sect. 7, we fitted our theoretical
results with MATLAB. A concluding discussion is presented in Sect. 8.

2 The SARS-CoV-2 infection model
To study the within-host dynamics of SARS-CoV-2 infection, we consider the mathemat-
ical model used by Li et al. [5], which is represented by the following ordinary differential
equations system:

dEp(t)
dt

= dE
(
Ep(0) – Ep(t)

)
– βEp(t)v(t),

dE∗
p(t)

dt
= βEp(t)v(t) – dE∗E∗

p(t),

dv(t)
dt

= πvE∗
p(t) – dvv(t).

(2.1)

with the initial conditions as below:

Ep(0) > 0, E∗
p(0) ≥ 0 and v(0) ≥ 0. (2.2)

Here, the model consists of three population compartments: virus-free pulmonary epithe-
lial cells denoted by Ep(t), virus infected pulmonary epithelial cells denoted by E∗

p(t), and
the free virus denoted by v(t). Also, dE , dE∗ , and dv represent the death rates of virus-free
epithelial cells, virus infected epithelial cells, and the free virus, respectively. Also β de-
notes the rate at which the virus-free epithelial cells are infected by free virus, πv is the
production rate of free virus. In this model, the term dEEp(0) describes the constant re-
generation rate of the virus-free pulmonary epithelial cells.

3 Basic properties of model (2.1)
Lemma 1 All analytic solutions of model (2.1) with initial conditions (2.2) are nonnegative
for all t > 0.

Proof We can write the first equation of model (2.1) as

d
dt

[
Ep(t) exp

{∫ t

0

(
βv(μ) + dE

)
dμ

}]
= dEEp(0) exp

{∫ t

0

(
βv(μ) + dE

)
dμ

}
. (3.1)

Therefore,

Ep(t) exp

{∫ t

0
βv(μ) dμ + dEt

}
– Ep(0) =

∫ t

0

[
dEEp(0) exp

{∫ u

0
βv(μ) dμ + dEu

}]
du,

which implies

Ep(t) = exp

{
–

∫ t

0
βv(μ) dμ – dEt

}

×
[

Ep(0) +
∫ t

0

[
dEEp(0) exp

{∫ u

0
βv(μ) dμ + dEu

}]
du

]
. (3.2)
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From the above equation, it is clear that Ep(t) > 0 for t > 0. It can be shown in the same
way that E∗

p(t) ≥ 0, v(t) ≥ 0 for t > 0 [19]. �

Lemma 2 The solutions Ep(t), E∗
p(t), v(t) of the model (2.1) are bounded for all t > 0.

Proof Adding the first two equations of the model (2.1), we get

d
dt

{
Ep(t) + E∗

p(t)
}

= dE
(
Ep(0) – Ep(t)

)
– dE∗E∗

p(t) ≤ dEEp(0) – δ
{

Ep(t) + E∗
p(t)

}
,

where δ =min{dE, dE∗ }. Therefore, the numbers of both the virus-free and infected pul-
monary epithelial cells are always bounded. From the third equation of the model, we can
easily show that the population of the free virus v is also bounded above. We consider
K ≥ 0 as the maximum of the above bounds. Therefore, we get the bounded set

� =
{

Ep(t), E∗
p(t), v(t) ∈R

3 : 0 ≤ Ep(t) + E∗
p(t) ≤ dEEp(0)

δ
, v ≤ K

}
,

where K ≥ 0. It is clear that this set is convex. Also using the nonnegativity criteria of so-
lutions of the model (2.1) from Lemma 1 and the boundedness conditions from Lemma 2,
it is clear that with the initial conditions (Ep(0), E∗

p(0), v(0)) ∈ �, we have solutions of the
model (2.1) again in �, i.e., (Ep(t), E∗

p(t), v(t)) ∈ � for all t ≥ 0. Hence, the set � is positively
invariant w.r.t. the model (2.1). �

4 Basic reproduction number and steady states
It is straightforward to show that the system has a noninfected steady state S1(Ep(0), 0, 0).
Now, the basic reproduction ratio of the model (2.1) will be calculated with the help of
the next generation matrix method. Considering Y = (E∗

p(t), v(t), Ep(t)), we can write the
system (2.1) as

dY
dt

= A(Y ) – T(Y ). (4.1)

Here A(Y ) stands for the rate of new infections, T(Y ) stands for the transfer rate of indi-
viduals; they are given by

A(Y ) =

⎛

⎜
⎝

βEp(t)v(t)
0
0

⎞

⎟
⎠ and T(Y ) =

⎛

⎜
⎝

dE∗E∗
p(t)

dvv(t) – πvE∗
p(t)

βEp(t)v(t) – dE(Ep(0) – Ep(t))

⎞

⎟
⎠ .

The jacobian matrices DA(Ep(0)) and DT(Ep(0)) at the noninfected steady state are

DA
(
Ep(0)

)
=

(
a2×2 02×1

01×2 0

)

, DT
(
Ep(0)

)
=

(
t2×2 02×1

0 βEp(0) dE

)

,

where

a2×2 =

(
0 βEp(0)
0 0

)

, t2×2 =

(
dE∗ 0
–πv dv

)

.
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Now,

at–1 =
1

dE∗dv

(
πvβEp(0) dE∗βEp(0)

0 0

)

.

Therefore, the basic reproduction number (χ0) of the system (2.1) is given by the spectral
radius of the matrix at–1 and hence χ0 = πvβEp(0)

dE∗ dv
.

Also, from a simple calculation it is clear that the model (2.1) has a unique infected
steady state

S2 =
(
Ēp, Ē∗

p , v̄
)

whenever χ0 > 1,

where

Ēp =
dE∗dv

βπv
= Ep(0)

1
χ0

,

Ē∗
p =

dvv̄
πv

=
dvdE

βπv
(χ0 – 1),

v̄ =
dE

β
(χ0 – 1).

5 Local stability
In this section, we study the local stability behaviors at the different steady states of the
model.

Theorem 1 If χ0 < 1, then the noninfected steady state S1 is locally asymptotically stable
in � while for χ0 > 1 it becomes unstable.

Proof For the noninfected steady state S1, the Jacobian matrix J(S1) is given by

J(S1) =

⎛

⎜
⎝

–dE 0 –βEp(0)
0 –dE∗ βEp(0)
0 πv –dv

⎞

⎟
⎠ . (5.1)

The characteristic equation of the matrix J(S1) is

λ3 + a1λ
2 + a2λ + a3 = 0, (5.2)

where

a1 = dE + dE∗ + dv,

a2 = dE(DE∗ + dv) + dE∗dv(1 – χ0),

a3 = dEdE∗dv(1 – χ0),

a1a2 – a3 = d2
E(dE∗ + dv) + dE(dE∗ + dv)2 + dE∗dv(dE∗ + dv)(1 – χ0).

Therefore, if χ0 < 1, then all the conditions of the Routh–Hurwitz criterion are satisfied.
Hence, the noninfected steady state S1 becomes locally asymptotically stable if χ0 < 1 and
unstable if χ0 > 1. �
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Theorem 2 The virus-infected steady state S2 is locally asymptotically stable whenever
χ0 > 1.

Proof For the infected steady state S2, the Jacobian matrix J(S2) is given by

J(S2) =

⎛

⎜
⎝

–dE – β v̄ 0 –βEp

β v̄ –dE∗ βEp

0 πv –dv

⎞

⎟
⎠ . (5.3)

The characteristic equation of the above matrix becomes

λ3 + b1λ
2 + b2λ + b3 = 0, (5.4)

where

b1 = dE + β v̄ + dE∗ + dv,

b2 = (dE + β v̄)(dE∗ + dv),

b3 = β v̄dE∗dv,

b1b2 – b3 = (dE + β v̄ + dE∗ )(dE + β v̄)(dE∗ + dv) + dvdE(dE∗ + dv) + d2
vβ v̄.

Thus, b1 > 0, b2 > 0, b3 > 0, and b1b2 – b3 > 0 whenever χ0 > 1. This implies that all condi-
tions of the Routh–Hurwitz criterion are satisfied. Hence, the infected steady state S2 is
locally asymptotically stable whenever it exists. �

6 Global stability
From local stability analysis, the behaviors of the system (2.1) near the steady states are
obtained. For the behavior of the system (2.1) far away from the steady states, we have
carried out a global stability analysis in this section.

Theorem 3 If χ0 ≤ 1, then the noninfected steady state S1 approaches a globally asymp-
totically stable state in � and it becomes unstable if χ0 > 1.

Proof Define Lyapunov functional of the model (2.1) as

L =
πv

dE∗
E∗

p + v. (6.1)

Now, we differentiate w.r.t. time to obtain

dL
dt

= dvv
(

πvβEp

dE∗dv
– 1

)
≤ dvv(χ0 – 1). (6.2)

It is clear from (6.2) that when χ0 ≤ 1, dL
dt ≤ 0. Define S to represent the set of solutions

of model (2.1) where dL
dt = 0. We have dL

dt = 0 when v = 0 or χ0 = 1 and Ep ≤ Ep(0). Using
Lyapunov–Lasalle theorem [20], we have all curves in � approach the set S which is also
positively invariant. Again, on the boundary of � where v = 0, we have E∗

p = 0 and dEp(t)
dt =

dE(Ep(0)–Ep(t)). Hence, Ep → Ep(0) as t → ∞. Therefore, when χ0 ≤ 1, all solution curves
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in the domain � go to the virus-free steady state S1 and hence S1 is globally asymptotically
stable.

From J(S1), it can be easily seen that for χ0 > 1, one root of the characteristic equation
will be positive. Hence, the noninfected steady state S1 is unstable when χ0 > 1. �

Now, the global behavior of the virus-infected steady state S2 whenever it exists will
be studied by applying Li and Muldowney criterion [21]. It is easy to visualize the simple
connectedness of the interior of set �. Also, for χ0 > 1, the system (2.1) has the unique
steady state S2 in int(�). Theorem 3 verifies that H ⊂ � exist where H is an absorbing
compact set for model (2.1). Hence, all the assumptions for Li and Muldowney global
stability criterion [21] are satisfied, and we have the following theorem.

Theorem 4 The infected steady state S2 is globally asymptotically stable whenever R0 > 1.

Proof The Jacobian matrix of the model (2.1) is

J =

⎛

⎜
⎝

–dE – βv 0 –βEp

βv –dE∗ βEp

0 πv –dv

⎞

⎟
⎠ . (6.3)

The associated second compound matrix J [2] [21, 22] is given by

J [2] =

⎛

⎜
⎝

–dE – dE∗ – βv βEp βEp

πv –dE – dv – βv 0
0 βv –dE∗ – dv

⎞

⎟
⎠ . (6.4)

Defining

W =

⎛

⎜⎜
⎝

1 0 0
0 E∗

p
v 0

0 0 E∗
p

v

⎞

⎟⎟
⎠ ,

to compute the matrix Wf , each entry wij of matrix W has to be replaced by its derivative
in the direction of f . Then,

Wf W –1 =

⎛

⎜⎜
⎝

0 0 0

0 E∗
p
′

E∗
p

– v′
v 0

0 0 E∗
p
′

E∗
p

– v′
v

⎞

⎟⎟
⎠

and

B = Wf W –1 + WJ [2]W –1

=

⎛

⎜
⎜⎜
⎝

–dE – dE∗ – βv βEp
v

E∗
p

βEp
v

E∗
p

πv
E∗

p
v

E∗
p
′

E∗
p

– v′
v – dE – dv – βv 0

0 βv E∗
p
′

E∗
p

– v′
v – dE∗ – dv

⎞

⎟
⎟⎟
⎠
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=

(
B11 B12

B21 B22

)

,

where B11 = (–dE – dE∗ – βv), B12 =
(

βEp v
E∗p βEp v

E∗p
)
, B21 =

(
πv

E∗p
v

0

)
, and

B22 =

⎛

⎝
E∗

p
′

E∗
p

– v′
v – dE – dv – βv 0

βv E∗
p
′

E∗
p

– v′
v – dE∗ – dv

⎞

⎠ .

Now, define Lozinskii measure as follows:

μ(B) ≤ max{g1.g2}, (6.5)

where g1 = μ(B11) + |B12| and g2 = |B21| + μ(B22). Here, |B12| and |B21| are with respect to
vector norm.

Now,

μ(B11) = –dE – dE∗ – βv,

μ(B22) = max

{E∗
p
′

E∗
p

–
v′

v
– dE – dv – βv + βv,

E∗
p
′

E∗
p

–
v′

v
– dE∗ – dv

}

=
E∗

p
′

E∗
p

–
v′

v
– δ – dv where δ = min{dE , dE∗},

|B12| = βEp
v

E∗
p

, and |B21| = πv
E∗

p

v
.

Using model equations,

E∗
p
′

E∗
p

=
βEpv

E∗
p

– dE∗ and
v′

v
=

πvE∗
p

v
– dv.

Hence,

g1 =
E∗

p
′

E∗
p

– dE – βv,

g2 =
E∗

p
′

E∗
p

– δ.

Therefore, we get

μ(B) ≤ E∗
p
′

E∗
p

– δ

for large t. Let (Ep(t), E∗
p(t), v(t)) be an arbitrary solution such that (Ep(0), E∗

p(0), v(0)) ∈ H
and consider any solution (Ep(t), E∗

p(t), v(t)) ∈ H for all t ≥ t̄ where t̄ is a sufficiently large
time. Then, for t > t̄,

1
t

∫ t

0
μ(B) ds ≤ 1

t

∫ t̄

0
μ(B) ds +

1
t

ln
E∗

p(t)
E∗

p(t̄)
–

(
t – t̄

t

)
δ. (6.6)
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Figure 1 Dynamics of the numbers of virus-free epithelial cells, virus-infected epithelial cells, and SARS-CoV-2
virus when χ0 > 1

Consequently,

q̄2 := lim
t→∞ sup sup

x0∈H

1
t

∫ t

0
μ

(
B
(
x(s, x0)

))
ds < 0. �

7 Numerical simulation
This section is devoted to numerical simulations in order to substantiate the analytic re-
sults. Using Matlab software, analytic results are fitted with the parameters from biologi-
cally feasible range for SARS-CoV-2.

Based on chest radiograph score data, Li et al. [5] have estimated the parameters of the
model (2.1) using the Monte Carlo Markov Chain (MCMC) method. Using that parame-
ter set, more specifically, Ep(0) = 22.41, Ep∗ (0) = 2.59, v(0) = 0.061,πv = 0.24,β = 0.55, dE =
10–3, dE∗ = 0.11, and dv = 5.36, we have χ0 = 5.01716 > 1. Theorem 4 implies that the
infected equilibrium point S2(4.467, 0.163, 0.007) is globally asymptotically stable. Fig-
ure 1(a) verifies this analytic result. Also, Fig. 1(b) describes the dynamics the numbers
of virus-free epithelial cells, virus infected epithelial cells, and free virus.

In order to verify the analytic results of the noninfected steady point S1, we consider
lowering the infection rate from β to 0.1β by implementing a drug [5]. Hence with this
assumption, considering the other parameters the same as in the above simulation, we get
χ0 = 0.501716 < 1. As stated by Theorem 3, the noninfected steady state S1(22.41, 0, 0) is
globally asymptotically stable. This analytic result can be verified by Fig. 2(a). Also, the
dynamics of the numbers of virus-free epithelial cells, virus-infected epithelial cells, and
virus in this scenario are depicted by Fig. 2(b).

In the above simulations, we have considered that infection rate β can be lowered by
implementing a drug, which leads to the removal of the virus from the human body. But
with greater infection rate and other parameters in such a way that χ > 1, the viral load
cannot be controlled and infection persists in the human body. This situation can be han-
dled with a proper treatment strategy, otherwise the number of the virus-free epithelial
cells will decrease and those of the virus-infected epithelial cells and the free virus will
increase in a patient’s body with time. As a result, the patient’s condition will deteriorate
with time, which will lead to extreme conditions like death of the patient.
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Figure 2 Dynamics of the numbers of virus-free epithelial cells, virus-infected epithelial cells, and SARS-CoV-2
virus when χ0 < 1

8 Discussion
In this paper, we have considered a basic model for within-host dynamics of SARS-CoV-
2 used by Li et al. [5] and mathematically analyzed it. First of all, we have proved that
all analytic solutions of model (2.1) are nonnegative and uniformly bounded, conditions
which are necessary for a biologically feasible model. For the model, we have found two
biologically feasible steady states, noninfected and infected steady states. Local stability
of both steady states was discussed. Also, we have found the global stability criteria for
both steady states. Biologically, it follows that for the basic reproduction number χ0 < 1,
infection will be cleared from a human body without any treatment; otherwise we have to
implement some treatment in order to reduce and to remove the infection from the body.
It is our future work to apply different treatment policies in this model in order to clear the
virus from an infected human body. It is also found that if basic reproduction number is
greater than one then infection will persist for any amount of viral load in the host’s body.
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