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Abstract
The aim of this research is to construct an SIR model for COVID-19 with fuzzy
parameters. The SIR model is constructed by considering the factors of vaccination,
treatment, obedience in implementing health protocols, and the corona virus-load.
Parameters of the infection rate, recovery rate, and death rate due to COVID-19 are
constructed as a fuzzy number, and their membership functions are used in the
model as fuzzy parameters. The model analysis uses the generation matrix method to
obtain the basic reproduction number and the stability of the model’s equilibrium
points. Simulation results show that differences in corona virus-loads will also cause
differences in the transmission of COVID-19. Likewise, the factors of vaccination and
obedience in implementing health protocols have the same effect in slowing or
stopping the transmission of COVID-19 in Indonesia.

Keywords: SIR model; Fuzzy parameter; COVID-19; Vaccination; Treatment; Health
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1 Introduction
A new virus that can cause an increase in pneumonia first appeared in Wuhan, China, at
the beginning of December 2019. The virus was called SARS-COV-2 and the disease as-
sociated with the virus was called COVID-19 [1]. The rapid spread of the disease through-
out the world has made the World Health Organization declare the COVID-19 outbreak
a global pandemic on March 12, 2020 [2]. COVID-19 is transmitted by a person infected
with COVID-19 through physical contact with another person, or through small droplets
from the mouth of a person with COVID-19 that is touched by another person. According
to the data collected by John Hopkins University, as of the beginning of November 2020,
COVID-19 has spread to 219 countries in the world with the total number of cases infected
with COVID-19 reaching 53,699,160, with 1,308,261 deaths, and 37,469,072 people have
been declared cured.

The spread of COVID-19 to Indonesia has been evident since the first confirmed case on
March 2, 2020. COVID-19 is continuing to spread to all provinces, and as of the beginning
of November 2020 it has reached a total of 457,735 infected cases, 15,037 deaths, and
385,094 people have been declared cured [3].

A number of mathematicians have performed various studies to make a model and pre-
dict the spread of COVID-19 since it is becoming a pandemic. The first study [4] to pre-
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dict COVID-19 in China was conducted using GLM method and Richard’s model. Then
[5] predicted COVID-19 in Indonesia based on early endemic data using Richard’s curve.
Other models and predictions using statistical approaches [6–10] or those using SIR, SEIR,
and their extensions [11–16] have been widely performed. Moreover, some researchers
used fractional order in epidemic models to model the spread of COVID-19. Fractional
order derivative with Mittag-Leffler function as a nonsingular kernel type [17] and Caputo
derivative [18–20] are used in modeling the transmission of COVID-19. Then [21, 22]
considered the fractal-fractional derivative in the Atangana–Baleanu sense to obtain the
stability of the model, and [23] presented the existence and uniqueness solution of the
model via fractal-fractional operators. However, the parameters used in any existing SIR
epidemic model and its extensions employ crisp numbers, whereas uncertainty in param-
eters and heterogeneity in the population are very possible to occur. Therefore the use of
uncertain parameters or fuzzy parameters is very important, because the model will re-
flect the real world problems. Supporting studies could be used as references, such as the
fuzzy epidemic models for human infectious diseases [24–26], other models considering
the uncertainty of parameter space and heterogeneity of a population [27, 28], fuzzy dy-
namic systems [29], and dynamic behavior of an epidemic model with fuzzy transmission
[30].

In this study, we consider a mathematical model of SIR in a normalized form with three
control parameters, namely vaccination control, treatment control and implementation
of health protocols. The parameters of infection rate, recovery rate, and death rate due to
COVID-19 are treated as fuzzy numbers that depend on individual virus-load.

2 Method
The method used to construct the model is the SIR model by considering vaccination,
treatment, and the implementation of health protocols as control parameters. The param-
eters of the infection rate, recovery rate, and death rate due to COVID-19 are constructed
as a membership function of a fuzzy number [28]. These parameters depend on the corona
virus-load in an individual and control parameters. The model analysis uses the generation
matrix method to obtain the basic reproduction number and stability of the SIR model for
the spread of COVID-19. The numerical simulation of the model uses data on the number
of COVID-19 cases in Indonesia [3]. The parameters of vaccination effectiveness, treat-
ment effectiveness, the level of obedience in implementing health protocols, and corona
virus-load are assumed in this simulation.

3 Results and discussion
3.1 SIR model of COVID-19
Consider an SIR model for COVID-19 that describes the dynamics of direct transmis-
sion of COVID-19 with interactions between suspected and infected, change from being
infected to recovering, pure birth/death rates, vaccine effectiveness, treatment effective-
ness, obedience in implementing health protocols, and deaths due to the COVID-19 in-
fection. The schematic diagram of the COVID-19 transmission flow is given in Fig. 1, and
the model is mathematically described as follows:

dS
dt

= μ – β(1 – τ )(1 – π )SI – (μ + τ + π )S, (1)
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Figure 1 The schematic of the model SIR of
COVID-19 spread transmission flow

dI
dt

= β(1 – τ )(1 – π )SI –
(
μ + μC + θ + γ

)
I, (2)

dR
dt

= (θ + γ )I + (π + τ )S – μR, (3)

where S is the proportion of susceptible individuals, I is the proportion of infected indi-
viduals, R is the proportion of recovered individuals, β is the infection rate parameter; γ

is the recovery rate parameter; μ is the natural birth/death rate parameter, τ is the vaccine
effectiveness parameter, θ is the treatment effectiveness parameter, π is the effectiveness
of obedience in implementing health protocols, μC is the death rate parameter due to
COVID-19. Now, we can extend the SIR model (1)–(3) by considering the heterogeneity
of the corona virus-load in each individual, where individuals with different amount of the
corona virus-load contribute differently in transmitting COVID-19.

3.2 The SIR fuzzy model of COVID-19 spread
Consider the SIR model for COVID-19 in (1)–(3). Let � be the corona virus-load in an
individual. Now, we consider the heterogeneity in the model by considering the power to
infect in each individual as a function of the corona virus-load �. Therefore, the higher the
corona virus-load in an individual, the higher the chance of the corona virus transmission
in a contact interaction. By considering the corona virus-load � in each individual, the
parameters β , μC , and γ can be viewed as a function of the corona virus-load �. Thus,
model (1)–(3) can be extended to a model, which we hereinafter call the fuzzy SIR model,
represented as follows:

dS
dt

= μ – β(�)(1 – τ )(1 – π )SI – (μ + τ + π )S, (4)

dI
dt

= β(�)(1 – τ )(1 – π )SI –
(
μ + μC(�) + θ + γ (�)

)
I, (5)

dR
dt

=
(
θ + γ (�)

)
I + (π + τ )S – μR. (6)

Let β = β(�) be the chance of transmission between a suspected and an infected indi-
vidual with the amount of the corona virus-load �. Some values of β are more reasonable
compared to some others, and it turns β into a membership function of fuzzy numbers. To
construct the membership function, we assume that if the number of corona virus-loads
in an individual is relatively low, the chance of transmission is negligible, and there is a
minimum corona virus-load �min needed to be able to transmit to other individuals. Fur-
thermore, there is a certain amount of corona virus-load �0, where the transmission rate
is maximum and equal to one. However, we assume that the total amount of corona virus-
load � on a person is limited by �max [28]. We can also consider that the vaccination and
the discipline to follow health protocols will affect the infection rate of COVID-19. Let τ
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Figure 2 The graph of membership function of β

Figure 3 The graph of the membership function of
μC

and π be the parameters representing the vaccine effectiveness and the level of discipline
in implementing health protocols, respectively. Then fuzzy membership function of the
infectivity contact rate is given as follows:

β(�) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if � ≤ �min,
(�–�min)(1–τ )(1–π )

�0–�min
if �min < � < �0,

(1 – τ )(1 – π ) if �0 ≤ � < �max.

(7)

The graphic of β(�) is given in Fig. 2.
The death rate due to COVID-19 infection can also be assumed as a membership func-

tion of a fuzzy number. The function is an increasing function of corona virus-load �.
However, due to some reasons, such as a person infected with COVID-19 suffering from
other diseases, immunity power, availability of medicine, etc., the function might not reach
its maximum value equal to one. Likewise, treatment for COVID-19 will affect the death
rate due to COVID-19 infection. Therefore, we assume that the maximum value of the
function μC(�) is (1 – ϑ)(1 – θ ) + μC

0 θ , with (0 ≤ ϑ ≤ 1); (0 ≤ θ ≤ 1). Thus, we can define
the function μC(�) as follows (depicted in Fig. 3):

μC(�) =

⎧
⎨

⎩
((1 – ϑ) – μC

0 )(1 – θ ) �
�0

+ μC
0 if 0 ≤ � < �0,

(1 – ϑ)(1 – θ ) + θμC
0 if �0 ≤ �,

(8)

where μC
0 ; (0 < μC

0 < 1) is the lowest death rate due to COVID-19 infection and θ is the
treatment effectiveness.

The recovery rate of the COVID-19 infection group γ = γ (�) is also a function of the
corona virus-load �. The higher the corona virus-load �, the longer the recovery process
will take from infection. So, γ (�) is a decreasing function. Moreover, we can also consider
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Figure 4 The graph of the membership function of
γ

the effect of the treatment on the rate of recovery. Thus the fuzzy membership function
can be defined as follows (depicted in Fig. 4):

γ (�) =

⎧
⎨

⎩
(γ0 – 1)(1 – θ ) �

�0
+ 1 if 0 ≤ � < �0,

γ0(1 – θ ) + θ if � ≥ �0,
(9)

where γ0 is the lowest recovery rate.
In the fuzzy SIR model, the membership function of the infection rate β(�), the recov-

ery rate γ (�), and the death rate μC(�) due to COVID-19 infection are treated as fuzzy
parameters of the model.

3.3 The equilibrium points and the basic reproduction number
There are two equilibrium points in model (4)–(6), namely the disease-free equilibrium
point and the endemic equilibrium point. To determine these two equilibrium points, each
of the equations in the equations must be equal to zero, that is, dS

dt = 0, dI
dt = 0, dan dR

dt = 0
so that:

μ – β(�)(1 – τ )(1 – π )SI – (μ + τ + π )S = 0, (10)

β(�)(1 – τ )(1 – π )SI –
(
μ + μC(�) + θ + γ (�)

)
I = 0, (11)

(
θ + γ (�)

)
I + (π + τ )S – μR = 0, (12)

then the equilibrium points for S, I , and R are as follows.

3.3.1 The disease-free equilibrium point for the SIR fuzzy model
The points of equilibrium for disease free are conditions where there is no spread of
COVID-19, namely I = I0 = 0. Thus, from Eq. (4), we obtain

S = S0 =
μ

π + τ + μ
, (13)

from Eq. (6) and Eq. (13), we obtain

R = R0 =
π + τ

π + τ + μ
. (14)

Thus, the disease-free equilibrium point for the SIR fuzzy model (4)–(6) is

E0 =
(
S0, I0, R0) =

(
μ

π + τ + μ
, 0,

π + τ

π + τ + μ

)
. (15)



Abdy et al. Advances in Difference Equations        (2021) 2021:105 Page 6 of 17

3.3.2 The endemic equilibrium point for the SIR fuzzy model
Endemic equilibrium points are conditions where there is the possibility of disease spread,
namely S = S∗ �= 0, I = I∗ �= 0, and R = R∗ �= 0. Thus, from Eqs. (4)–(6), we obtain the en-
demic equilibrium points for the SIR fuzzy model as follows:

S∗ =
θ + μC(�) + γ (�) + μ

β(�)(1 – π )(1 – τ )
, (16)

I∗ =
μ

θ + μC(�) + γ (�) + μ
–

π + τ + μ

β(�)(1 – τ )(1 – π )
, (17)

R∗ =
(θ + γ (�))I∗ + (π + τ )S∗

μ
. (18)

Thus,

E1 =
(
S∗, I∗, R∗) =

⎛

⎜
⎜
⎝

θ+μC (�)+γ (�)+μ

β(1–π )(1–τ ) ,
μ

θ+μC (�)+γ (�)+μ
– π+τ+μ

β(�)(1–τ )(1–π ) ,
(θ+γ (�))I∗+(π+τ )S∗

μ

⎞

⎟
⎟
⎠ . (19)

The basic reproductive number �0 for system (1)–(3) is determined using the next gen-
eration matrix method [31]. Based on Eqs. (1)–(3), to determine �0:

Let F = β(1 – τ )(1 – π )SI and V = (μ + μC + θ + γ )I , then we obtain

F ′ = β(1 – τ )(1 – π )S, V ′ = μ + μC + θ + γ , and
(
V ′)–1 =

1
μ + μC + θ + γ

.

The dominant eigenvalue of F ′(V ′)–1 represents �0 = ρ(F ′(V ′)–1), which is

�0 =
βμ(1 – τ )(1 – π )

(π + τ + μ)(θ + μC + γ + μ)
. (20)

As in this case, we have taken β = β(�), μC = μC(�), and γ = γ (�), then we write

�0(�) =
β(�)μ(1 – τ )(1 – π )

(π + τ + μ)(θ + μC(�) + γ (�) + μ)
, (21)

�0(�) is the basic reproductive number which is a function of virus-load �. β(�), μC(�),
and γ (�) are fuzzy parameters which are a function of the virus-load �.

3.4 Stability analysis
Theorem 1 If �0(�) < 1, then the disease-free equilibrium point for system (4)–(6) is lo-
cally asymptotically stable, and if �0(�) > 1, then the disease-free equilibrium point of the
system is unstable.

Proof From equation system (4)–(6), we write the Jacobian matrix J as follows:

J =

⎡

⎣
–β(�)(1 – τ )(1 – π )I – (π + τ + μ) –β(�)(1 – τ )(1 – π )S 0

β(�)(1 – τ )(1 – π )I β(�)(1 – τ )(1 – π )S – (θ + μC(�) + γ (�) + μ) 0
0 0 –μ

⎤

⎦.
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Substituting the value I = 0 and S = μ

π+τ+μ
, we obtain matrix J0

J0 =

⎡

⎢
⎣

–(π + τ + μ) –β(�)(1 – τ )(1 – π ) μ

π+τ+μ
0

0 β(�)(1 – τ )(1 – π )S – (θ + μC(�) + γ (�) + μ) 0
0 0 –μ

⎤

⎥
⎦ ,

eigen(J0)

= (λ + π + τ + μ)(λ + μ)
((

λ + θ + μC(�) + γ (�) + μ
)

–
β(�)μ(1 – τ )(1 – π )

π + τ + μ

)
,

we obtain

λ1 = –(π + τ + μ),

λ2 = –μ,

λ3 = –
(

–
β(�)μ(1 – τ )(1 – π )

(π + τ + μ)
+

(
θ + μC(�) + γ (�) + μ

))

= –
(
θ + μC(�) + γ (�) + μ

)
(

–
β(�)μ(1 – τ )(1 – π )

(π + τ + μ)(θ + μC(�) + γ (�) + μ)
+ 1

)

= –
(
θ + μC(�) + γ (�) + μ

)(
–�0(�) + 1

)
.

If �0(�) < 1, then λ3 < 0, and if �0(�) > 1, then λ3 > 0. �

Theorem 2 If �0(�) > 1, then the endemic equilibrium point of system (4)–(6) is locally
asymptotically stable.

Proof From equation system (4)–(6) and the endemic equilibrium point, we obtain Jaco-
bian matrix J1 as follows:

J1 =

⎡

⎣
–β(�)(1 – τ )(1 – π )I∗ – (π + τ + μ) –β(�)(1 – τ )(1 – π )S∗ 0

β(�)(1 – τ )(1 – π )I∗ β(�)(1 – τ )(1 – π )S∗ – (θ + μc(�) + γ (�) + μ) 0
0 0 –μ

⎤

⎦.

We assume that j1 = β(�)(1 – τ )(1 – π )I∗ + (π + τ + μ), j2 = β(�)(1 – τ )(1 – π )S∗, j3 =
β(�)(1 – τ )(1 – π )I∗, and j4 = β(�)(1 – τ )(1 – π )S∗ – (θ + μc(�) + γ (�) + μ). Thus,

J1 =

⎡

⎢
⎣

–j1 –j2 0
j3 j4 0
0 0 –μ

⎤

⎥
⎦ .

The eigenvalues of J1 are roots of P1(λ):

P1(λ) = (λ + μ)
[
(λ + j1)(λ – j4) + j2j3

]

= (λ + μ)
[
λ2 + (j1 – j4)λ – j1j4 + j2j3

]
= (λ + μ)P2(λ).

It is easy to see that λ1 = –μ is one of the eigenvalues P1(λ). The other eigenvalues are the
solutions of P2(λ) = 0. Based on the Routh–Hurwitz condition, P2(λ) has two roots which
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have a negative real part if j1 – j4 > 0 and j2j3 – j1j4 > 0.

j1 – j4 =
[
β(�)(1 – τ )(1 – π )I∗ + (π + τ + μ)

]

–
[
β(�)(1 – τ )(1 – π )S∗ –

(
θ + μc(�) + γ (�) + μ

)]

=
[(�0(�) – 1

)
(π + τ + μ) + (π + τ + μ)

]

–
[
β(�)(1 – τ )(1 – π )

(
μ – (θ + μc(�) + γ (�) + μ) (�0(�)–1)(π+τ+μ)

β(�)(1–τ )(1–π )

π + τ + μ

)

–
(
θ + μc(�) + γ (�) + μ

)]

= �0(�)(π + τ + μ) +
(
1 – �0(�)

)(
θ + μc(�) + γ (�) + μ

)

+
(
θ + μc(�) + γ (�) + μ

)(�0(�) – 1
)

= �0(�)(π + τ + μ).

It is clear that j1 – j4 > 0 if �0(�) > 0.

j2j3 – j1j4 =
[(

β(�)(1 – τ )(1 – π )S∗)(β(�)(1 – τ )(1 – π )I∗)]

–
[(

β(�)(1 – τ )(1 – π )I∗ + (π + τ + μ)
)(

β(�)(1 – τ )(1 – π )S∗

–
(
θ + μc(�) + γ (�) + μ

))]

=
[(

β(�)(1 – τ )(1 – π )μ
π + τ + μ

–
(
θ + μc(�) + γ (�) + μ

)(�0(�) – 1
))

× (�0(�) – 1
)
(π + τ + μ)

]

=
(�0(�) – 1

)
(π + τ + μ)

(
θ + μc(�) + γ (�) + μ

)
.

It is easy to see that j2j3 – j1j4 > 0 if �0(�) > 1. �

Since the disease-free equilibrium is stable if �0(�) < 1 and unstable for �0(�) > 1, then
system (4)–(6) is at a bifurcation point when �0(�) = 1. Let �∗ be the bifurcation value of
the system, then �∗ is the solution of the equation

β(�)(1 – τ )(1 – π )μ = (π + τ + μ)
(
θ + μC(�) + γ (�) + μ

)
,

that is,

�∗ = μ((1 – τ )(1 – π ))2�0�min + �0(�0 – �min)(π + τ + μ)(μC
0 + 1)

μ�0((1 – τ )(1 – π ))2 – ((π + τ + μ)(�0 – �min))((1 – ζ ) – μC
0 )(1 – θ ) + (γ0 – 1)(1 – θ ))

,

where �∗ ≤ �0.
In this way, we can think of �∗ as a parameter related to the corona virus control in

the sense that if a corona virus is transmitted in some number of individuals, it should be
noted that � is not higher than �∗.

Corollary The disease-free equilibrium and the endemic equilibrium of system (4)–(6) are
locally asymptotically stable for � < �∗ and � > �∗, respectively.
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3.5 Numerical simulation for transmission of COVID-19 in Indonesia
Numerical simulations are carried out using the initial values for N , S, I , and R as in Ta-
ble 1. The parameters β , γ , and μC are calculated based on Eqs. (7)–(9) and the parameters

Table 1 Initial value of the SIR fuzzy model for COVID-19 in Indonesia

Variable Value Reference

N(0) 269,600,000 [32]
S(0) 268,757,171 [3]
I(0) 457,735 [3]
R(0) 385,094 [3]

Table 2 Parameter value of the SIR fuzzy model for COVID-19 in Indonesia

Variable Value Reference

μC
0 2.2114× 10–4 [3]

γ0 1.042× 10–3 [3]
μ 6.25× 10–3 [32]

Table 3 Assumption parameter value and �0 value of the SIR fuzzy model for COVID-19 in Indonesia

Simulation ϑ �min �0 � θ τ π �0

1 0.9 10 100 100 0 0 0 9.32
2 0.9 10 100 56 0 0 0 1
3 0.9 10 100 20 0 0 0 0.13
4 0.9 10 100 100 20% 0 0 2.05
5 0.9 10 100 100 47% 0 0 1
6 0.9 10 100 100 85% 0 0 0.58
7 0.9 10 100 100 0 2% 0 2.13
8 0.9 10 100 100 0 4.5% 0 1
9 0.9 10 100 100 0 10% 0 0.44
10 0.9 10 100 100 0 0 2% 2.13
11 0.9 10 100 100 0 0 4.5% 1
12 0.9 10 100 100 0 0 10% 0.44

Figure 5 Variation in the number of suspected population for different values of �



Abdy et al. Advances in Difference Equations        (2021) 2021:105 Page 10 of 17

Figure 6 Variation in the number of infected population for different values of �

Figure 7 Variation in the number of recovered population for different values of �

in Table 2 and Table 3. The values of �0, �min, and � should be determined by a virolo-
gist, while the value of parameter ϑ should be determined by a physician. For each of the
controlled parameters, namely the parameters of vaccine effectiveness, level of obedience
in implementing health protocols, treatment effectiveness, and corona virus-load, simu-
lations are carried out three times for each parameter with different values, as in Table 3.

Based on Table 3, it can be explained that if a treatment, vaccination, and health proto-
cols have not been implemented, the basic reproduction number is 9.32, which means that
a person with COVID-19 can infect nine other people. Meanwhile, if the effectiveness of
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Figure 8 Variation in the number of suspected population for different values of θ

Figure 9 Variation in the number of infected population for different values of θ

treatment is 20% without vaccination and without implementing health protocols, it can
reduce the basic reproductive number to 2.13 so that a person with COVID-19 can infect
two other people. However, if the effectiveness of the treatment reaches 85%, then the ba-
sic reproduction number is reduced to 0.58, which means that the spread of COVID-19
can be controlled. Furthermore, if the effectiveness of vaccination or the effectiveness of
implementing health protocols is more than 10%, then the basic reproductive number is
less than 0.44, meaning that the COVID-19 outbreak will disappear in the population.
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Figure 10 Variation in the number of recovered population for different values of θ

Figure 11 Variation in the number of suspected population for different values of π

The simulation results for the corona virus-load are presented in Fig. 5, Fig. 6, and Fig. 7.
Based on these figures, by giving 100 the corona virus-load, the COVID-19 outbreak will
never vanish in the population, and the recovery rate tends to remain, but it is smaller than
those infected with COVID-19. Meanwhile, if the virus corona-load is 50, the epidemic
tends to decrease, and if � = 20, the COVID-19 outbreak will vanish in the population.

The simulation results of treatment effectiveness are presented in Fig. 8, Fig. 9, and
Fig. 10. From the figures, it can be seen that if treatment is only 2% effective, COVID-19
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Figure 12 Variation in the number of infected population for different values of π

Figure 13 Variation in the number of recovered population for different values of π

will become endemic, while if the treatment effectiveness is 47% and 85%, the COVID-19
outbreak will disappear in the population.

The simulation results of the effectiveness of vaccination are presented in Fig. 11, Fig. 12,
and Fig. 13. Based on these figures, if the effectiveness of vaccination is only 2%, then
COVID-19 will become endemic, while if the effectiveness is more than 4.5%, the COVID-
19 outbreak tends to vanish in the population.
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Figure 14 Variation in the number of suspected population for different values of τ

Figure 15 Variation in the number of infected population for different values of τ

The simulation results of obedience in implementing health protocols are presented in
Fig. 14, Fig. 15, and Fig. 16. Based on these figures, if obedience in implementing health
protocols is only 2%, then COVID-19 will become endemic in the population. However,
if obedience to follow health protocols is more than 4.5%, then the COVID-19 outbreak
will vanish in the population. From the simulation results of vaccine effectiveness and the
level of adherence to follow health protocols, it can be seen that, for the same π and τ

values, the results will be the same. This shows that vaccination and the implementation
of health protocols have the same effect on the spread of COVID-19 in Indonesia.
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Figure 16 Variation in the number of recovered population for different values of τ

4 Conclusion
A study using an SIR model for the spread of COVID-19 in Indonesia taking into account
the factors of vaccination, treatment, implementation of health protocols and the corona
virus-load has been performed. In this study, the parameters β , γ , and μC are treated as
membership functions of fuzzy numbers and are represented as fuzzy parameters. Those
parameters depend on the corona virus load �. The points of disease-free equilibrium
and endemic equilibrium are locally asymptotically stable for �0(�) < 1 and �0(�) > 1,
respectively. Based on the simulation results, it is found that vaccination and the imple-
mentation of health protocols have a significant effect in slowing or stopping the spread
of COVID-19 in Indonesia. Likewise, treatment has an effect in slowing or stopping the
rate of infection of COVID-19 but not as much as the effect of vaccination and the imple-
mentation of health protocols.
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Zadrożny, S., Atanassov, K., Krawczak, M. (eds.) Advances in Fuzzy Logic and Technology 2017. EUSFLAT 2017,
IWIFSGN 2017. Advances in Intelligent Systems and Computing, vol. 643. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-66827-7_45

29. Ortega, N.R.S., Sallum, P.C., Massad, E.: Fuzzy dynamical systems in epidemic modeling. Kybernetes 29, 201–218 (2000)

https://covid19.go.id/peta-sebaran
https://doi.org/10.3389/fams.2020.00040
https://doi.org/10.1007/s11071-020-05743-y
https://doi.org/10.3389/fpubh.2020.00230
https://doi.org/10.1186/s13662-020-02997-z
https://doi.org/10.1016/j.aej.2020.07.014
https://doi.org/10.1016/j.aej.2020.08.028
https://doi.org/10.1016/j.rinp.2020.103669
https://doi.org/10.1016/j.rinp.2020.103588
https://doi.org/10.1016/j.aej.2020.02.033
https://doi.org/10.1186/s13662-020-02882-9
https://doi.org/10.1016/j.rinp.2020.103433
https://doi.org/10.1007/978-3-319-66827-7_45


Abdy et al. Advances in Difference Equations        (2021) 2021:105 Page 17 of 17

30. Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Dynamical behavior of an epidemic model in a fuzzy transmission. Int. J.
Uncertain. Fuzziness Knowl.-Based Syst. 23, 651–665 (2015)

31. Van den Driessche, P., Watmough, J.: Further notes on the basic reproduction number. In: Brauer, F., Driessche, P., Wu,
J. (eds.) Mathematical Epidemiology. Lecture Notes in Mathematics, pp. 159–178 (2008)

32. Anonim: Proyeksi Jumlah Penduduk Indonesia 2020 (2020).
https://databoks.katadata.co.id/datapublish/2020/01/02/inilah-proyeksi-jumlah-penduduk-indonesia-2020.
Accessed on November 2020

https://databoks.katadata.co.id/datapublish/2020/01/02/inilah-proyeksi-jumlah-penduduk-indonesia-2020

	An SIR epidemic model for COVID-19 spread with fuzzy parameter: the case of Indonesia
	Abstract
	Keywords

	Introduction
	Method
	Results and discussion
	SIR model of COVID-19
	The SIR fuzzy model of COVID-19 spread
	The equilibrium points and the basic reproduction number
	The disease-free equilibrium point for the SIR fuzzy model
	The endemic equilibrium point for the SIR fuzzy model

	Stability analysis
	Numerical simulation for transmission of COVID-19 in Indonesia

	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


