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1 Introduction

Over the last century, integral inequalities have attracted the interest of a good many
researchers because of the importance in applied and pure mathematics. For example,
Hermite—Hadamard inequalities, based on convex functions, have an important place in
many areas of mathematics, specifically optimization theory. These inequalities, intro-
duced by C. Hermite and J. Hadamard, express that if & : I — R is a convex mapping on

the interval I of real numbers and ¢,d € I with ¢ < d, then

d
w(%) < ﬁ/c w(x)dx < M (1.1)

If w is concave, both inequalities hold in the opposite direction. The best known results
associated with these inequalities are midpoint and trapezoid inequalities which are fre-
quently used in special means and estimation errors (see [16, 25]). After that, the authors
also gave the fractional version of inequality (1.1) in [49]. For instance, the weighted ver-
sion of inequality (1.1), which is also named Hermite-Hadamard-Fejér inequality, was

established by Fejér in [18] as follows.

Theorem 1 Suppose that @ : [¢c,d] — R is a convex function, and let ¢ : [c,d] — R be

nonnegative, integrable, and symmetric about x = % (i.e. p(x) = ¢(c + d — x)). Then we
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have the inequality

d d a
w(t‘i)/c q)(x)dxf/c @ (x)g(x) dx < M/ ¢ (x)dx. (1.2)

Many mathematicians derived some generalizations and new results involving fractional
integrals regarding inequality (1.2) to obtain new bounds for the left- and right-hand sides
of inequality (1.2) (see [17, 47, 48]). In addition to all these generalizations, a good many of
authors have worked on Hermite—Hadamard type inequalities for the product of two con-
vex functions in recent years. Moreover, some of them obtained Hermite—Hadamard type
results and included fractional integrals in their works. For instance, Pachpatte provided
novel inequalities for the product of two nonnegative and convex mappings in [40]. After
that, some authors examined how the results were obtained by multiplying two mappings
selected from various convex function classes in the references [3, 10-12, 21, 22, 26, 50—
52]. What is more, some inequalities involving the product of two co-ordinated convex
mappings were observed by Latif and Alomari in [27]. Thereafter, Ozdemir et al. [38, 39]
deduced more general versions of the inequalities presented in [27] by considering the
product of two co-ordinated s-convex and the product of two co-ordinated /-convex map-
pings. In [6], by using the products of two co-ordinated convex mappings, new Hermite—
Hadamard type results including fractional integrals were proved by Budak and Sarikaya.

On the other hand, interval analysis is handled as one of the methods for solving inter-
val uncertainty; it is an important material which is used in mathematical and computer
models. Although this theory has a long history which may be dated back to Archimedes’
calculation of the circumference of a circle, a considerable study had not been published in
this field until 1950s. The first book [33] about interval analysis was published by Ramon
E. Moore, known as the pioneer of interval calculus, in 1966. Thereafter, a great many re-
searchers started to investigate the theories and applications of interval analysis. Recently,
many authors have focused on integral inclusions obtained by using interval-valued func-
tions. For example, Sadowska [46] established the Hermite—Hadamard inclusion for set-
valued functions, that is, a more general version of interval-valued mappings, as follows.

Theorem 2 ([46]) Supposethat I : [0, ] — R isan interval-valued convex function such
that F (9) = [F (9), F (9)]. Then we have the inclusions

0+¢ 1 s F(o)+F(s)
,r( 5 )Qa(ﬂe)/g F(x)dng. (1.3)

Furthermore, well-known inclusions such as Ostrowski, Minkowski, and Beckenbach
and some of their applications have been provided by considering interval-valued func-
tions in [8, 9, 19, 44]. In addition, some inclusions involving interval-valued Riemann-
Liouville fractional integrals have been derived by Budak et al. in [7]. In [28], Liu et al.
gave the definition of interval-valued harmonically convex functions, and so they have
some Hermite—Hadamard type inclusions including interval fractional integrals. For more
details about this topic, you can look over the references [13, 14, 32, 34—36, 45, 55, 56].

The general structure of this paper consists of four main sections including introduc-
tion. In this section, we give some necessary inclusions and the concept of interval analysis,
and we also mention some related works in the literature. In Sect. 2, some basic informa-
tion about the interval calculus which forms the basis of this work is presented. In Sect. 3,
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we provide Fejér type inclusions for the product of interval-valued convex functions, and
we examine the relation between our results and the inclusions presented in the earlier
works. Finally, we establish interval-valued Fejér type inclusions including fractional in-
tegrals by applying the inclusions given in Sect. 3 to interval-valued fractional integrals in
Sect. 4. Briefly, the most important property of this study is that it contains interval-valued
Fejér type inclusions for classical and fractional integrals. We note that the opinion and

technique of this work may inspire new research in this area.

2 Preliminaries of interval calculus and some inclusions

In this part, we give some necessary notions and notations related to interval analysis,
which forms the basis of this paper. The set of all closed intervals of R, the set of all closed
positive intervals of R, and the set of all closed negative intervals of R are denoted by
Rz, RY, and R7, respectively. We also suppose that A = [g,¢] x [¢,t]. For more details

regarding the interval analysis, interested readers can see [1, 15, 30, 41].

Definition 1 ([46]) Let F : [0, ] — R} be an interval-valued function such that f (¢) =
[F(9),F(9)]. We say that £ is a convex interval-valued function if, for all &, 7 € [0, 5] and
¥ € (0,1), we have

DF(€)+(1L=9)F (n) S F (9€+(1-9)n).

Definition 2 ([54]) Suppose that 4 : [¢,¢] — R is a nonnegative function with (0,1) C
[¢,t], h#0and F :[o,5] — RY is an interval-valued function such that f(¢) = [F (9),
F (9)]. We say that [ is an k-convex interval-valued function if, for all £&,7 € [, ¢] and
¥ € (0,1), we have

h@O)F (§) + k(1= 9)F () C F (96 + (1 - 9)n). (2.1)

Remark 1 If we set () = ¢ in Definition 2, then Definition 2 reduces to Definition 1.
Similarly, if we choose /(%) = ¥ in Definition 2, then Definition 2 transforms into s-convex
interval-valued functions given in [2].

In [42], Piatek gave the notion of the integral of interval-valued functions and provided
its relation with the Riemann integral in the following form.

Theorem 3 Assume that I : [0, ] — R is an interval-valued function such that I () =
[F(9),F (9)]. A function € TR} if and only if F (9), F (9) € Ryo,c)) and

(IR)/gF(ﬁ)dﬁ = [/gﬂ(ﬂ)dﬁ,/gf(ﬁ)dﬁ],
o

4 Q

where TR o,c1) and Rjp,c)) denote all Riemann integrable interval-valued functions and
Riemann integrable functions, respectively.

In [54], Zhao et al. gave the following inclusions of Hermite—Hadamard type for /-
convex interval-valued functions by using Theorem 3.
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Theorem 4 Let [ : [0,5] — R% be an interval-valued function such that F (9) =
[F®),F(®)] and F € IRy, h: [0,1] — R be a nonnegative function and h( ) #0.
If F is an h-convex interval-valued function, then the following inclusion holds:

1 0+¢ 1 s 1
2h(%)F( 2 )2 g_Q(IR)/Q F(&)dé 2 [F(Q)+F(§)]/0 h()do. (2.2)

Remark 2
(i) If k() = ¥, then inclusion (2.2) reduces to (1.3).
(ii) If h(9) = v*, then (2.2) reduces to the following result:

25_1F<Q+§) IR)/ F(Q)+F(§),

s+1

which is obtained by Osuna-Gémez et al. in [37].

Now, let us give the notations A (&;m, n) and Bi(§; m, n) used throughout the study:

A(E;m,m) = / (- £Pwi(§)d  and
Bi(&sm,n) = f (n-E)E —mwe&)de, k=1,2,

where wy : [0, ¢] — R is a function.

Budak et al. presented the following results.

Theorem 5 ([5]) Suppose that w; : [0,5] — R is nonnegative, integrable, and symmet-
ric about & = % (ie. wi(&) =wilo+ ¢ - ). If F,Q: [0,¢5] = R% are two interval-
valued, nonnegative, and convex interval-valued functions such that [ (9) = [F (), F (9)]
and Q) = [Q(), )], then we have the following inclusion:

M(o, s )Al(S, o)+ N(o,¢)

0P o7 5 B1(&;50,6)s (2.3)

(IR) / I (&)RE)m (8)dE 2
where

M(o,5) = F (0)R(0) + I (s)(s) and N(o,¢) =1 (0)2s) + I (5)R(0).

Theorem 6 ([5]) Suppose that the conditions of Theorem 5 hold, then we have the following

inclusion:
S
2F(Q;§>Q(Q;§)/ Wy () dE (2.4)
Q
: M(o,5) ) N(o,5)
®) /Q FORAMEE + B0+ o A0, ),

where M(p, ¢) and N(o, ¢) are defined as in Theorem 5.

Page 4 of 16
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Motivated by the continuing studies, the authors introduced the fractional integrals for
interval-valued functions and proved some associated inclusions of Hermite—Hadamard

type.

Definition 3 ([7, 29]) Assume that /- : [0, c] — RY is an interval-valued function such
that F(9) = [F(?), F (9)]. Then interval-valued Riemann-Liouville integrals JgiF and
J;‘_F of order « > 0 with o > 0 are defined by

o 1 g a—1
%+F(5)=W(IR)/£?(§—ﬁ) F@)d9, Eso

and

o 1 ¢ a-1
TEF ) = 15 UR) /E @ - e F0)dD, €<,

respectively. Here, I'(«) is the gamma function and *7;)+F & =07 gO_F &) =F(&).

Theorem7 ([7]) IfF = [F (9),F ()] : o, s] — Ry is an interval-valued function, then one
has

Taok (€)= [Ig, F (), 15, F ()]
and
TEF (€)= I FE)I2 T ),

where Iy, and I?_ are lefi-sided and right-sided Riemann—Liouville fractional integrals of
the functions F : [0, ¢] — R, respectively (see [20, 24, 31, 43]).

Theorem 8 ([7]) Let F = [F (¥),F (9)]: [0, ] — R% be a convex interval-valued function
and a > 0, then we have the following inclusion:

0+¢s Fd+a) o, « F(e)+F(s)
F < 5 ) 2 = aF [T F (6)+ TEF (0)] 2 ———. (2.5)

In addition to all these results, Liu et al. refined Hermite—Hadamard type inclusions for
interval-valued mappings in [28].

Theorem 9 ([28]) Suppose that w: [o, ] — R is nonnegative, integrable, and symmet-
ric about & = % (e wE)=wlo+c—8).IfF =[F®), F®)]:[o,s] > RL is a convex
interval-valued function, then we have the following inclusion:

F(%) [12,w(c) + I*_w(o)]

2 [Tg F(s)w(s) + TEF (0)w(o)]

DF(Q)+F(§)

5) T L) + 12 w(o)]

fora>0.
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Recently, Zhao et al. introduced the co-ordinated convexity of interval-valued functions
and proved some new Hermite—Hadamard inclusions like the following.

Definition 4 ([53]) Let F : A C R* — R% be an interval-valued function such that
F(9,s) = [F(9,5),F (9,5)]. Then [ = [[(9,s),F (¢,5)] : A — R% is said to be a co-
ordinated convex interval-valued function if the following inclusion holds:

F(O§+Q-9)n,su+(1-s)w)

D UsF (&, u) + (L -9)F (§,w)+s(1-D)F (n,u) + (1 -s)(1=2)F (n,w)
for all (¢,7),(u,w) € A and s, € [0,1].

Lemma 1 ([53]) A function F = [F (9,s),F (9,s)] : A — RY% is a co-ordinated convex
interval-valued function if and only if there exist two functions [ ¢ : [{,1] = RL, F¢(w) =

F (& w),and Iy :lo,5] = RY, F () = F (u,n) are convex interval-valued functions.

Theorem 10 ([53]) Let f,2: A — R be two co-ordinated convex interval-valued func-
tions such that F (8,s) = [F (9,5), F (¢,s)] and Q9,s) = [2(8,5), 2, 5)], then the following
Hermite—Hadamard type inclusions hold:

1 s pu
o™ QG ) dnd 2.6
(Q—Q)(z—;)( )/Q /{F(E nAE, n) dn dé 06

1 1 .

2 §I((Q’ 5‘1;;[)4' 1_8[L(Q’g’§’t)+M(Qr§,§,L)] + %N(ng,é‘,t)
and

0+s §Ht\o(ets L+t
4F( 2 72 )Q< 272 ) (2.7)

1 s pu s
——— (IR ,n)QUE, dnd ® Kooz,
2(S'—Q)(L—;)( )/Q_/:F(gﬂ) (577)775+36 (0,6,¢51)
7 2
b2 [Le 6 60+ M(@:6.,0] + 5N, 6.2,
where

K(Q,g,;,t)ZF(Q,f)Q(Q,f)+F(g,;)Q(g,C)+F(Q,L)Q(Q,L)+F(g,t)g(g,L),
L0,5,¢5,0) = F(0,0)s,8) + F (5,8)(0,¢) + F (0,025, 1) + F (5,0)R(0,1),

M(Q,s‘,{,t):F(Q,Z)Q(Q,L)+F(§,§)Q(§,L)+F(Q,L)Q(Q,{)+F(§,L)Q(g,§),

and

N(o,s,¢,0) =F (0,0)(s,1) + F (5, 0)R(0,0) + F (0,)R(5,¢) + F (5,00, 2).

For more recent results related to inclusions (2.6) and (2.7), one can read [23].

Page 6 of 16
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The definitions of the interval-valued Riemann—-Liouville fractional integrals of function

F (&,7) are given as follows.

Definition 5 ([4, 23]) Let F : A C R?> — R be an interval-valued function such that
F(9,8) = [F(9,5), F(¥,s)] and F € TR} The Riemann-Liouville fractional integrals
j;;iw Qa;f?_, j;_"?“, and j;’i’i of order o, 8 > 0 with g, ¢ > 0 are defined by

§ prn
T &) = @) [ [ €= tn-9t @, 9dsds, €5,
o J¢

_
C(e)T(B)

1 £
o, _ _ a-1¢. p-1
TehF (61 = s IR fg /n@ )1 =) (9,9)dsdD, €50,
o,p _ 1 (" _E=ya-l o \B-1
T F (€)= s (OR) /S /{ @ =) -9 (0,5)dsd9, E<cn>,

j). } (E,T’) = 7(113)/‘ / (ﬁ —é) (S—T]) } (l?,S)deﬁ, E<S,n<[,
o I (Q)I (ﬂ) & n
IeSpeCtlvely.

3 Main results
Theorem 11 Let [,Q2: A CR*> — R be two co-ordinated convex interval-valued func-
tions on A such that F (9,s) = [F (9,s),F (9,s)] and Q(D,s) = [Q(D,s), D, s)]. In addi-

tion, w1 : [0, ¢] — R is nonnegative, integrable, and symmetric about & = 25 (i.e. wi(€) =

2
wi(o + ¢ —§)) and wy : [£,] — R is nonnegative, integrable, and symmetric about 1 = %

Then we have the following Hermite—Hadamard—Fejér type inclusion:

1

(c-0)t=¢)
Ax(n;¢,0)

T (c-0Pt-¢)p

Bay(n;¢,1)

(c-0P-¢)?

s pt
(IR) / / F (& n)RAE, mws (E)w(n) diy de

o ¢
[K(o,5,¢,0A1(550,6) + L0, 5, ¢,0B1(50,6)]

[M(o; 5, ¢,0A1(550,6) +N(o, 5, ¢,0Bi(50,6)),

where K(o,¢,¢,1), L(0,6,¢,1), M(0, 6,¢,1), and N(o, 6, ¢, 1) defined as in Theorem 10.

Proof Since f and 2 are two co-ordinated convex interval-valued functions on A, the
functions [ ¢(n) = F (§,7n) and Q¢(n) = Q2(§,n) are convex interval-valued on [¢,¢]. If in-
clusion (2.3) is applied to the functions / ; and €2, then we obtain

%(Ue) [ remectmanan (3.1)
) AZ(U;C7L)
T (-0

Ba(n; ¢,1)

+ W[F;@msa) +F Q2]

[Fe(0)(0) + F (0]
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This implies that

L w / (&, m)QUE, m)wa(n) dn (3:2)
t—¢ ¢

) Az(ﬁ;fﬂ)
= =¢)p

+ 82(7’);{’5)
(t-¢)?

[F(E¢§)Q(E’§) + F(E,L)Q(%‘,L)]

[F (& 0)QE )+ F (E,0Q6E0)]

Multiplying (3.2) by %(? and integrating the resultant one with respect to & over [, 5],

we get
1 I
(R MG, dnd 3.3
(§—Q)(t—§)( )/Q /{F(S mMQUE, Mwi(&)wa(n) dn dk (3.3)
As(n;¢,0) S
B mm /Q [F (£,0Q(,¢) + F (£,090,0]wi1(8) d&
-0 /Q [ (€,0206,0+ 1 0206, 0)]wi (©) ds.

Applying (2.3) to each integral in (3.3), we have

S
(IR) / £ (&, 0)QE O (€) de (3.4)
o

5 Ai(§;0,¢6)
T (c-0)?
.\ Bi(;0,¢)
(c—0)?

S
(R f F (6, 0RE, Dy () dE (3.5)
o

[F(0:0)0.0)+F (5,05, )]

[F(0:0)2(s,0) + F (5,0)0, 7)),

5 Ai(&0,9)
- (¢-0)?
Bl(s;Qr g)
+
(c-0)?

S
(IR) / £ (&, 0)QE, gwn () de (3.6)
o

[F (0,)9(0,0) + F (5,0R(s,1)]

[F (0,090 + F (s,09(0,1),

5 Ai(&0,¢)
~ (c-0)?
Bi(&;0,¢)
+
(¢ -0)?

[F(0:0)R(0,0) + F (5,2)2(s,0)]

[F(0,0)Q(s,0) + F (5,0)2(0,0)],
and

S
(IR) / F (& 0QE, i (€) de (3.7)
o
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5 Ai&0,9)
T (c-0)?
Bi(&0,9)

+ W[f (0,09(s,0) + F (5,0R(0,0)]-

[F(Qr 0)RQ(0,¢) + F (s,09(s, g)]

Substituting (3.4)—(3.7) in (3.3) and by arranging the resultant one, we get the desired re-
sult. On the other hand, the same result can be obtained by using the convexity of interval-
valued functions f,(§) = F (§,71) and ©2,(§) = Q(&, n). O

Theorem 12 Let f,Q2: A C R? — RY be two co-ordinated convex interval-valued func-
tions on A such that F(9,s) = [F (9,s), F (¢,5)] and Q9,s) = [Q(9,s), 2, s)]. In addi-
tion, wy : [0, ¢] — R is nonnegative, integrable, and symmetric about & = % (i.e. wi(§) =
wio + ¢ — &)) and wy : [£, ] — R is nonnegative, integrable, and symmetric about n = %

Then we have the following Hermite—Hadamard—Fejér type inclusion:

St _(o+g ¢+t 0+6 L+t
4(IR)/Q /{F( T )Q< D) )wl(é)m(n)dndS

¢ prt
> (IR) f f (&)U, m)wa (&) war) iy i
4 ¢

+ K(Q’ S‘ré-’t)
(c-0)*(t-¢)?
+Bi(&;0,6)By(n; ¢, 0)]
L(o,5,¢,1)
(c-0)*(t-¢)?
+A1($;Q»§)82(ﬂ;§;t)]
+ M(Qr S‘:;rl)
(c-0)*(t-¢)?
+By(§;0,6)Ax(m;¢,0)]
+ N(Q’ 5’4’5)
(c-0)*(t-¢)?
+ Ay(n:2,0A1(850,6)]

[B1(&50, ) A2(n:,0) + Ba(n; £,0) A€ 05 6)
[B2(n; ¢, 0B1(E5 0, 6) + Ax(m;,0) A1(E5 0, 6)
[B2(n; ¢, 0B1(E5 0, 6) + A3, 1) A1(E5 0, 6)

[A1(E 0, )Ba(n;8,0) + Ax(n; £, 0Ba(E5 0, 6)

Proof Since F and 2 are co-ordinated convex interval-valued functions on A, the func-
tions f ¢, Q¢, [, and 2, are convex interval-valued. Applying (2.4) for the functions
F (&, %) and Q(&, %) and multiplying the resultant by 2]; wo(n) dn, we get

ar (Qgg,C;‘)QC);?g;‘)/:/;wl(awm)dnds (38)
> 20R) /g i f; (&5 )6 S Jnemtnands
vl (e )ale ) (055 a5
X (/{ Wz(n)dn>31(é;a,g)
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2 ¢+t ¢+t g+ g+t
+(§—Q)2[F<Q’ 2 )Q(§’7>+F<g'7)g(g’7>]
x(/ Wz(ﬂ)dTI)-Al(é:;Q’S‘)'

3

Similarly, if we apply (2.4) for the functions f (%=

5=,n) and (%=, 7) and multiply the re-

sultant inclusion by 2 ng w1 (§) d&, we get

0+¢ L+t o+¢ T+t st
4r( SRS )sz( s )/Q /Cwl(S)Wz(n)dndE (3.9)
4 L
S 2(R) /Q /4_ F<¥,n)ﬂ(%,n)wl(@m(n)dw&
2 0+g 0+g 0+g 0+g
*o-oz[F( 2 '4)‘2(7‘)”(7")9( 2 ")]
S
x( / wl(E)d€>Bz(n;§,t)
o
2 o0+g 0+g o+g o+g
*u-;)z[F(T’C)ﬂ(T")*F( 2 ”>9< 2 ’4)]
S
x(f wl(s)ds)Az(n;;,z).
o

Using (2.4) for each term in the right-hand sides of (3.8) and (3.9), we have

2F (9, %)9(9, %) / wa(n) dn (3.10)
¢

2> (IR)/ F(0,m(0, n)wa(n)dn
¢

[F(Q»E)Q(Q,g“) +F (0,)R(0,1)
+
(t—2¢)?

) [F(Q:Q)Q(Q»(Z)_’f;z(g")g(@’g )}Al(n;;,z),

2F(§,%)Q<§,%) /LWz(n)dn (3.11)
¢

> (R) / (6, ), mwa(n) dn
¢

}Bl(n;i,t)

[F(gyé)ﬂ(g,g“)+F(§,L)Q(§,t)
+
(t—2¢)?

. I:F(grg-)g(g’(j)j';s;g’L)Q(g,g)}Al(mg’L);

zp(e,%)ﬂ(;,%) f wan) dn (3.12)
¢

> (R) / (002, mwa(n) dn
¢

:|Bl(77;§:5)

. [F(Q» 2)Qs,¢) + F (0,095, 1)

(7P ]Bl(n;i,t)
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+[F(Q Z) (g(i)_:;(g Qs g)]Al(n;C,L),

C+1 C+1 ¢
2F(g, —)Q(g, —)f wa(n)dn
2 2 ) ).

- (IR)/ F(s,mSAo, mwa(n)dn
¢

[F(g,C)Q(Q,C) + I (s,09(0,1)
+
(t-2¢)?

s I:r(grf)Q(Q’(i)j{;(g’ L)Q(Q'g)]fh(n;f,‘)’

0+g o+¢ g
2F( 5 ;)Q( 5 c)/g w1(§)dé

S
> (IR) / [ (&, 0)QUE, O)wy (&) de
o

]Blw;g,n

N [F(Q,C)Q(Q,E) +F(5,0)s, )
(s -0)?
[F(Q,C)Q(g,;“) +F(5,¢)Q(0,¢)
+
(¢ —0)?

s
ZF(QJ;g,t>Q<Q;§,t>/Q wi(&)d&

S
> (IR) / (&0, Jwi () de
o

]Bl(é;a,g)

[F(Q»l)Q(Q,l) +F(5,0)(s,1)
+
(¢ —0)?

. [F(Q,L)Q(S': 0+ F iw)g(@' ‘)]Al(é;a,g),
(¢-0)

13
2F(Q;§,L)Q(Q;§,L)/Q wi(§)dE

S
> (IR) / (&, 0Q0E, wi () de
o

]Bl(é;e,g)

[f (0,02(0,0) + F (5,0)(s,1)
+
(¢ —0)?
I:F(er)Q(S"l) +F(5,0)(0,1)
+
(c—0)?

0+g 0+¢ s
ZF( 5 ;)Q( 5 L>/g w1(§)dé

S
> (IR) f 16 0)RE, )i (€) de
o

]31(5;@5‘)

]Al(é;e,g),

[F(Q,;“)Q(Q,t)+F(§,§)Q(§,L)
+
(¢ —0)?
N [F(Q,é)ﬁ(g,t) +F (5, 0)R(0,0)
(¢ -0)?

]Bl(é;g,g)

]Al(é;gr g);

]Al(%‘;@,g),

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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0+¢ o+g s
ZF( 5 ¢>Q( 2,§)L w1(§)dé

S
> (IR) / 1 (&, 0QE, Own () dE
o

[F@ﬁﬂm&0+F@MQ@£)
+
(¢ —0)?
[FQMQQJNHTQOQQK)
(¢ -0)?

]Bﬂagsﬂ

]Aﬂ&gsl

Putting (3.10)—(3.18) in (3.8) and (3.9) and adding the resultant one, we obtain

s pu
sF(Qf f;‘)sz(‘?;g,“‘)/ /wl(am(n)dnds
S
> 2(1R) / / (s ﬂ) (s ﬂ)wl@)m( Ydn di
+2(1R)// (Q c ) (Qgg,n>W1(E)W2(n)dndE

(é@g)

L / F (0,200 m) + F (5, mRAs, )| wa() i
Adé@;)
(s -0)?

+ Ba(n; ¢,
(t=¢)
+Aﬂm,0
(t=¢)?
. 2K(0,6,¢,1)
(s -0)-¢)?
. 2L(0,5,¢,1)
(s =0)-¢)?
. 2M(0, 6,851
(s -0)3-¢)?
. 2N(0,6,¢,1)
(s —0)3-¢)?

(IR) / [F (oS, m) + (6 m)RAes )] waln) i
I3

) (m) / (6 O)QE ) + F (& 0QE ) |w (€) di

(R) /Q [F (6 0)RE D+ (6,0906,0)]wi (6) de
Bi(&0,6)Ba(n; ¢,0)
Ai(§;0,6)B2(n5¢,0)
Bi(&0,6)A2(n;¢,0)

Al(é;Q; §)A2(77; C,L).

By applying (2.4) to the functions F (&, ch‘) and Q(&, {“) we get

2(1R)// ( “‘) ( g“;‘)wl@)m(mdnds

D (IR) F(&,n)Q2(&, Ywa(n)dnd
//{ (& mQUE, m)wa (&) walin) iy
+Bﬂm90

(t-12)?

+Aﬂm90
(t-¢)?

S
(m{/[F@JKN£O+F@JKX£NWﬂ9d$
o

S
(IR) / [F(6 0RED + F (£ QA O)]wn(6) de.
o

(3.18)

(3.19)

(3.20)
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Similarly, if we apply (2.4) to the functions f (%%, 7) and (%=, 7), then we have

s
2(1R)/ f F(Q ; gw)ﬂ("’ i g,n)wl(s)m(n)dnds (3.21)
o ¢

2
Iy
> (R) / / (& m)QE, mwi (&) waln) diy de
o ¢

+Bﬂ&@§)
(¢ —0)?

Al(é?@: g)
(c—0)?

(IR) / [F (0 mRAerm) + F ()25, )]waln)dn
¢

. (IR) / [ (o mSs,n) + F (6 mAesm)]waln) .
¢

Substituting (3.20) and (3.21) in (3.19), we have

o+¢ C+1 o+¢ C+t s
8F< SRS )sz( s i )/Q /zwl(avvz(n)dnds (3:22)

ISy
> 2(R) / / (& mQUE )W () wa(n) iy i
o ¢

+ZBN&@§)

(c-0)?
+2Aﬂa@§)

(¢ -0)?
+23ﬂméﬁ

(t—2¢)?
24,(n;¢,0)

(t-2¢)?
+ ZK(Q:S-!LL)
(c-0)*t—-¢)?
+ 2L(Qr§’§rl)
(c-0)*t—-¢)?
+ 2M(Q’§’§rt)
(c-0)*t—-¢)?
+ 2N(Q’§r§’L)
(c-0)*t—-¢)?

(IR) / [F (0o merm) + F (5 mAs, )]waln) i
¢

(IR) / [F (0m)As,m) + F (5 mAe,)]waln) dn
¢

S
(m{/[F@JNN§O+F@MQ@MhM@d§
o
S
(m{/[F@JﬂN£O+F@MQ@£ﬂWNSd$
4
BI(S;Q’ 5‘)52(77;9!)
AI(S;Q: 5)82(777 ¢, L)
31(5;07 S‘)Az(ﬂ, &, L)
Ai&;0,6)A2(n58,0).

By applying (2.3) to each integral in (3.22), we obtain the desired result. O

Remark 3 If we choose wi(§) = 1 and wy(n) = 1 in Theorem 11 and Theorem 12, we get
(2.6) and (2.7), respectively.

Remark 4 If we choose w;(£) = #[(g — &) 4 (£ — 0)* 1] with o > 0 and wy(y) =

H%[(L —n)#1 4 (n - ¢)#!] with B > 0 in Theorem 11 and Theorem 12, we get

Fae+1I(B+1)
4(c-0)(t-¢)F
x [T F(6,09(s,0 + T8 F(6,009(s,0) + T2 F(0,09(0,0)
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+ T _F(0,0)(0,¢)]

DF-——JL——ME-——E——ﬁK(gf”
=127 B+DB+ |2 @rD@r2) | @SS

1
) ]L(Q,g,;“,t)

+ | =

o
_2‘w+DW+me+nm+m

[ B 1 o ” |
’ _(/3+1)(,3+2)][5_ (Ol+1)(ot+2):| 0,686,851

B P N
+ _(ﬁ+1)(ﬂ+2)][(a+1)(a+2):| (0,6:¢,1)

and

4F(g+g,{+t)9<g+g,§+t>
2 2 2 2
5 M+ 1B +1)
T Ac-0)*(t-¢)
< [Tt F(6,09(s,0) + T F (5, 0)R(s,0) + T, F(0,02(0,0)
+ T2 F (0,6)2(0,0)]

o

* 2(ot+1)(ot+2)+|:(ﬁ+1)(,8+2)1|[ (a+1)a 2)]}1«@,;,;,9

1M1 B L
" 5[5 (x+1) a+2i| |:a+1)(a+2)][(ﬂ+l)(ﬂ+2)]} 06:¢,1

] [ 2 | + B+ Z ( ’S’;’L)
[ C{ 2 )3+ I B (é 5’;’[)

which are proved by Kara et al. in [4].

S

4 Concluding remarks

In this research, some new Hermite—Hadamard—Fejér type inclusions for the product of
two co-ordinated convex interval-valued functions are offered. We also proved that the
results given in this work generalize the results given in [4, 53]. It is an interesting and
new problem that the upcoming researchers can obtain similar inclusions for different
kinds of convexities and integrals in their future investigation.
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