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Abstract
Based on the effects of white noise and colored noise, we propose a stochastic
Holling-III predator–prey model in an impulsive polluted environment. Firstly, we
prove an existence and uniqueness theorem of the presented model. Secondly, we
establish sufficient criteria of extinction, nonpersistence in mean, and weak
persistence in mean for both prey and predator species. Thirdly, with the aid of
Lyapunov functions, we prove that this system is ergodic and has a unique stationary
distribution under certain conditions. Finally, we verify the theoretical results by
performing some numerical simulations.
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1 Introduction
Environmental pollution from various industries attracts more and more demographers
and ecologists because it has seriously threatened the survival of humans and other ex-
posed living organisms [2, 26, 38]. In the early years, the survival analysis of populations
in the polluted environment was carried out by establishing deterministic models. For
example, Hallam et al. [3, 6–8] used some deterministic models to show the effects of tox-
icant on populations, He and Wang [10, 11] analyzed the dynamics of two single-species
models in polluted environments, and so on.

The deterministic models are not suitable for modeling the ubiquitous noise-driven sys-
tems, so stochastic models in the polluted environment are frequently used to explore the
dynamics behavior of species [27]. Generally, there are two main types of environmental
noise, white noise and colored noise. For white noise-driven models, Gard [5] investigated
a stochastic single-species model to explain the influence of the toxicant on organisms
and compared it to the corresponding deterministic model. Liu and Wang [20] studied
the dynamics of stochastic single-species population models with and without pollution.
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Wei et al. [36, 37] further investigated the stochastic single-species population model in
a polluted environment. In addition, Lv et al. [23] introduced a new impulsive stochas-
tic chemostat model. On the other hand, to illustrate the switching between two or more
environmental regimes, it is meaningful to consider the influence of colored noise on the
population [4, 32]. Liu and Wang [21] proposed a stochastic single-specie model under
regime switching. Moreover, a stochastic two-species model is presented in [44]. For the
dynamics behaviors of the populations with environmental toxins and noises, we also refer
the readers to [22, 34, 39, 43] and references therein.

Many models mentioned are based on the Lotka–Volterra model with linear functional
responses. However, these models ignore some important natural phenomena (compared
with the models with nonlinear functional responses), especially for the predator–prey
case [9, 28]. To this end, Holling [12, 13] proposed the most widely used functional re-
sponses and classified them into three basic types (denoted types I, II, and III). As a typical
nonlinear functional response, Holling type III [29] has a powerful role in describing the
predation behavior of vertebrates, for example, some predators learn more special skills
for hunting or prey handling. Recently, some important models with Holling type III has
been discussed. For instance, Huang et al. [14] established a prey–predator model with
Holling-III response function and a prey refuge to show that the refuge has a steadying
influence on prey–predator interactions. Su et al. [33] indicated that both periodically
varying environment and stochastically released natural enemies have a great impact on
the survival of the species by using the predator–prey system with generalized Holling-III
type functional response. Wu and Li [40] combined Holling-III type with Hassell–Varley
type functional responses to demonstrate the permanence and global attractivity of a dis-
crete predator–prey system. More recently, Sengupta et al. [30] analyzed the dynamics of
the deterministic and stochastic models with Holling-III response function, respectively.

To the best of our knowledge, there are rare results on the effects of pollution inputs
and noise fluctuations for the dynamics behavior of Holling-III predator–prey systems.
Undoubtedly, the theoretical analysis of Holling type-III is more challenging than other
functional responses because its nonlinear form is more complicated. In this paper, we
are devoted to two main goals:

• to analyze the long-time behavior of stochastic Holling-III predator–prey systems
with regime switching in an impulsive polluted environment, and

• to investigate the effects of pollution inputs and noise fluctuations on the dynamics of
predators and preys.

In particular, when the considered model of this paper reduces to that of [30], our condi-
tions in Theorem 3.2 are more convenient to verify the weak persistence in the mean of
predator species in comparison with [30, Theorem 4.4].

This paper is organized as follows. In Sect. 2, we begin to state our model and prepare
some preliminaries including the existence of a unique positive solution. In Sect. 3, we
obtain some sufficient conditions of the extinction and weak persistence in mean for two
species. In Sect. 4, we investigate the existence and uniqueness of stationary distribution.
In Sect. 5, we present numerical simulations confirming our theoretical results. Finally, in
the last section, we give a brief conclusion.
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2 The model and preliminaries
We begin this section by stating the stochastic Holling-III predator–prey model with
Markovian switching in an impulsive polluted environment step by step and prepare some
preliminaries including the existence and uniqueness theorem.

2.1 The model
First, let us introduce the deterministic Holling-III predator–prey model [41]

⎧
⎨

⎩

dx(t) = [a1x(t) – b1x(t)2 – αx(t)2

1+βx(t)2 y(t)] dt,

dy(t) = [–a2y(t) – b2y(t)2 + kαx(t)2

1+βx(t)2 y(t)] dt
(2.1)

with the initial value (x(0), y(0)) ∈R
2
+, where x(t) and y(t) denote the population densities

of prey and predator species at time t, respectively, a1 and a2 stand for the intrinsic growth
rate of prey population and the death rate of predator population, respectively. Both b1

and b2 represent intraspecific coefficients of competition. The nonlinear function αx2

1+βx2 is
the Holling-III functional response, where α stands for the predation rate of predators on
prey populations, β denotes the handling time of predators for each prey that is consumed,
and k denotes the conversion rate concerning the number of newborn predators for each
captured prey. All parameters of the model are positive.

Taking into account the impact of environmental pollution on species [3, 6–8], most of
the existing studies assume that the exogenous input of toxicant is continuous. However,
the actual situation is that the toxin is released in regular pulses; for example, the facto-
ries drain sewage into rivers on a regular basis. Therefore we focus on the case of toxic
exogenous pulse input and then obtain the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [a1x(t) – b1x(t)2 – αx(t)2

1+βx(t)2 y(t)

– r1C1(t)x(t)] dt,

dy(t) = [–a2y(t) – b2y(t)2 + kαx(t)2

1+βx(t)2 y(t)

– r2C2(t)y(t)] dt,

dCi(t) = [eiCE(t) – (gi + mi)Ci(t)] dt,

dCE(t) = –hCE(t) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nρ, n ∈N,

�x(t) = 0, �y(t) = 0,

�Ci(t) = 0 (i = 1, 2), �CE(t) = u,

⎫
⎬

⎭
t = nρ, n ∈N,

(2.2)

where �χ (t) = χ (t+) – χ (t) with χ = x, y, C1, C2, CE , C1(t), C2(t), and CE(t) stand for the
concentrations of toxicant in the organism of the prey, predator, and environment at time
t, respectively, r1 and r2 denote the dose-response of the prey and predator to the toxicant,
respectively, ei is the uptake rate of toxicant from environment, gi and mi indicate the
excretion and depuration rates of toxicant, respectively, h is the loss rate of toxicant, and
u and ρ represent the toxicant input amount and the period of the exogenous toxicant
input, respectively. Here we assume that the environmental capacity is large enough so
that the effects of toxins excreted by the organism into the environment have negligible
influences on the concentration of environmental toxins.
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Now we further take the white noise into consideration. Following the approach used in
[15, 17, 19], the parameters a1 and –a2 of system (2.2) are perturbed with

a1 → a1 + σ1Ḃ1(t) and – a2 → –a2 + σ2Ḃ2(t),

where the dot denotes the time formal derivative, B1(t) and B2(t) are mutually independent
one-dimensional standard Brownian motions defined on the complete probability space
(�,F , {Ft}t≥0,P), and σ 2

i (i = 1, 2) are the intensities of the white noises. Thus system (2.2)
becomes the stochastic Holling-III predator–prey model in the impulsive polluted envi-
ronment

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [a1x(t) – b1x(t)2 – αx(t)2

1+βx(t)2 y(t)

– r1C1(t)x(t)] dt + σ1x(t) dB1(t),

dy(t) = [–a2y(t) – b2y(t)2 + kαx(t)2

1+βx(t)2 y(t)

– r2C2(t)y(t)] dt + σ2y(t) dB2(t),

dCi(t) = [eiCE(t) – (gi + mi)Ci(t)] dt,

dCE(t) = –hCE(t) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nρ, n ∈N,

�x(t) = 0, �y(t) = 0,

�Ci(t) = 0 (i = 1, 2), �CE(t) = u,

⎫
⎬

⎭
t = nρ, n ∈N.

(2.3)

It is worth pointing out that there are many phenomena that cannot be modeled by
Brownian motion-driven stochastic differential equations (SDEs) [45]; for example, when
the growth environment of some species changes significantly, their birth and death rates
will be much different [1, 46]. In general, the switching among different environments is
memoryless, and the waiting time of the next switch obeys an exponential distribution.
Hence these random changes can be described by a continuous-time Markov chain ξ (t),
t > 0, taking values in a finite-state space S = {1, 2, . . . , N} with the generator 	 = (γij)N×N

given by

P
{
ξ (t + �t) = j|ξ (t) = i

}
=

⎧
⎨

⎩

γij�t + o(�t) if i �= j,

1 + γii�t + o(�t) if i = j,

where γij > 0 is the transition rate from state i to state j if i �= j, and γii = –
∑

j �=i γij. Finally,
model (2.3) can be formulated as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [a1(ξ (t))x(t) – b1(ξ (t))x(t)2 – α(ξ (t))x(t)2

1+β(ξ (t))x(t)2 y(t)

– r1(ξ (t))C1(t)x(t)] dt + σ1(ξ (t))x(t) dB1(t),

dy(t) = [–a2(ξ (t))y(t) – b2(ξ (t))y(t)2 + k(ξ (t))α(ξ (t))x(t)2

1+β(ξ (t))x(t)2 y(t)

– r2(ξ (t))C2(t)y(t)] dt + σ2(ξ (t))y(t) dB2(t),

dCi(t) = [eiCE(t) – (gi + mi)Ci(t)] dt,

dCE(t) = –hCE(t) dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nρ, n ∈N,

�x(t) = 0, �y(t) = 0,

�Ci(t) = 0 (i = 1, 2), �CE(t) = u,

⎫
⎬

⎭
t = nρ, n ∈N,

(2.4)
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where all functions ai, bi, ri,σi (i = 1, 2) and α,β , k are R+-valued. In addition, we assume
that ξ (t) is irreducible and independent of Brownian motions Bi(t) (i = 1, 2). In fact, the
Markov chain ξ (t) has a unique stationary distribution π = (π1,π2, . . . ,πN ) ∈R

1×N , which
can be obtained by solving the linear equation π	 = 0 subject to

∑N
j=1 πj = 1 and πj > 0, j ∈

S. As a result, for any vector θ = (θ (1), . . . , θ (N))T , limt→∞ 1
t
∫ t

0 θ (ξ (s)) ds =
∑

i∈S πiθ (i). In
reality, environmental noise has little effect on the toxin concentration of the organism, so
we assume that the parameters ei, gi, mi, and h are independent of noises.

2.2 Preliminaries
For convenience, define f ∗ = lim supt→∞ f (t), f∗ = lim inft→∞ f (t), 〈f 〉 = 1

t
∫ t

0 f (s) ds, ǧ =
maxi∈S g(i), and ĝ = mini∈S g(i). For the subsystem of model (2.4),

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dCi(t) = [eiCE(t) – (gi + mi)Ci(t)] dt,

dCE(t) = –hCE(t) dt,

⎫
⎬

⎭
t �= nρ, n ∈N,

�Ci(t) = 0 (i = 1, 2), �CE(t) = u, t = nρ, n ∈N

(2.5)

with initial values Ci(0) ∈ (0, 1) (i = 1, 2) and CE(0) ∈ (0, 1), the following lemma is taken
from [18].

Lemma 2.1 For subsystem (2.5), we have:
(1) it admits a unique positive ρ-periodic solution (C1(t), C2(t), CE(t))T ;
(2) for any ε > 0 and sufficiently large t,

Ci(t) – ε < Ci(t) < Ci(t) + ε, i = 1, 2; (2.6)

(3) and

lim
t→∞

1
t

∫ t

0
Ci(s) ds = lim

t→∞
1
t

∫ t

0
Ci(s) ds =

eiu
h(gi + mi)ρ

=:
Gi

ρ
, i = 1, 2. (2.7)

Because C1(t), C2(t), and CE(t) can be obtained only from (2.5), system (2.4) reduces to
the subsystem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx(t) = [a1(ξ (t))x(t) – b1(ξ (t))x(t)2 – α(ξ (t))x(t)2

1+β(ξ (t))x(t)2 y(t)

– r1(ξ (t))C1(t)x(t)] dt + σ1(ξ (t))x(t) dB1(t),

dy(t) = [–a2(ξ (t))y(t) – b2(ξ (t))y(t)2 + k(ξ (t))α(ξ (t))x(t)2

1+β(ξ (t))x(t)2 y(t)

– r2(ξ (t))C2(t)y(t)] dt + σ2(ξ (t))y(t) dB2(t)

(2.8)

with initial values

x(0) > 0, y(0) > 0 and ξ (0) ∈ S. (2.9)

Subsystem (2.8) can be written as the SDE

dz(t) = f
(
z(t), ξ (t)

)
dt + g

(
z(t), ξ (t)

)
dB(t) (2.10)
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with initial value (z(0), ξ (0)) = (z0, ξ0), where the drift coefficient f : Rn × S → R
n, the

diffusion coefficient g : Rn × S → R
n×d , and B(t) is a d-dimensional Brownian motion.

Let D(z, k) = g(z, k)g(z, k)T = (dij(z, k)). For a a twice continuously differentiable function
V (z, k) : Rn × S→R, we define the diffusion operator L by

LV (z, k) =
n∑

i=1

fi(z, k)
∂V (z, k)

∂zi
+

1
2

n∑

i,j=1

dij(z, k)
∂2V (z, k)

∂zizj
+

N∑

l=1

γklV (z, l). (2.11)

We end this section with the following existence and uniqueness theorem.

Theorem 2.1 For any given initial value (x(0), y(0), ξ (0)) ∈ R
2
+ × S, there exists a unique

global solution to system (2.8), and (x(t), y(t), ξ (t)) ∈R
2
+ × S a.s.

Proof Since both the drift and diffusion coefficients of equation (2.8) satisfy the local Lip-
schitz condition, there is a unique local solution (x(t), y(t), ξ (t)) on t ∈ [0, τe), where τe de-
notes the explosion time (see [25]). To verify that the solution is global, we need to prove
that τe = ∞ a.s. Let m0 > 1 be sufficiently large such that x(0), y(0) ∈ [1/m0, m0]. For each
integer m ≥ m0, define the stopping time

τm = inf

{

t ∈ [0, τe) : min
{

x(t), y(t)
} ≤ 1

m
or max

{
x(t), y(t)

} ≥ m
}

with convention inf∅ = +∞. It is clear that τm increases as m → ∞. Let τ∞ = limm→∞ τm,
so that τ∞ ≤ τe. Thus we only need to prove that τ∞ = ∞ a.s. If this were not true, then
there would be constants T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε and an integer
m1 ≥ m0 such that

P{τm ≤ T} ≥ ε, ∀m ≥ m1. (2.12)

Define the C2-function V: R2
+ × S→R+ as follows:

V (x, y, i) = (x – 1 – ln x) + (y – 1 – ln y).

According to the definition of the operator L (see (2.11)) and the vertex formula of
quadratic functions, we have

LV (x, y, i)

=
(

1 –
1
x

)[

a1(i)x – b1(i)x2 –
α(i)x2y

1 + β(i)x2 – r1(i)C1x
]

+
1
2
σ1(i)2

+
(

1 –
1
y

)[

–a2(i)y – b2(i)y2 +
k(i)α(i)x2y
1 + β(i)x2 – r2(i)C2y

]

+
1
2
σ2(i)2

≤ –b1(i)x2 +
(
a1(i) + b1(i)

)
x – b2(i)y2 +

(

b2(i) + α(i) +
k(i)α(i)

β(i)

)

y

+ a2(i) + r1(i)C1 + r2(i)C2 +
1
2
(
σ1(i)2 + σ2(i)2) ≤ H ,



Qin et al. Advances in Difference Equations         (2021) 2021:80 Page 7 of 19

where H is a finite positive constant. Then the generalized Itô’s formula [25] yields

dV ≤ H dt + σ1(i)
(
x(t) – 1

)
dB1(t) + σ2(i)

(
y(t) – 1

)
dB2(t),

which implies

E
[
V

(
x(τm ∧ T), y(τm ∧ T), ξ (τm ∧ T)

)]

≤ E
[
V

(
x(0), y(0), ξ (0)

)]
+ HT , (2.13)

where τm ∧T = min{τm, T}. On the other hand, set �m = {τm ≤ T} for m ≥ m1, so P(�m) ≥
ε by (2.12). Note that for all ω ∈ �m, at least one of x(τm,ω) and y(τm,ω) equals either m
or 1/m. Then

V
(
x(τm,ω), y(τm,ω), ξ (τm,ω)

) ≥ (m – 1 – ln m) ∧
(

1
m

– 1 – ln
1
m

)

.

Reviewing (2.13), we can claim that

E
[
V

(
x(0), y(0), ξ (0)

)]
+ HT ≥ E

[
1�m V

(
x(τm,ω), y(τm,ω), ξ (τm,ω)

)]

≥ ε

[

(m – 1 – ln m) ∧
(

1
m

– 1 – ln
1
m

)]

,

where 1�m is the indicator function of the set �m. Letting m → ∞ leads to

∞ > E
[
V

(
x(0), y(0), ξ (0)

)]
+ HT = ∞,

a contradiction, so that τ∞ = ∞ a.s. The proof is complete. �

Remark 2.1 By the existence and uniqueness theorem it follows from [42, Lemma 1] that
the solution (x(t), y(t), ξ (t)) of (2.8) satisfies

lim sup
t→∞

[
x(t) + y(t)

]
< ∞ a.s.,

lim
t→∞

1
t

∫ t

0
σ1

(
ξ (s)

)
x(s) dB1(s) = 0 a.s.,

lim
t→∞

1
t

∫ t

0
σ2

(
ξ (s)

)
y(s) dB2(s) = 0 a.s.

3 Extinction and persistence
This section aims to investigate the extinction, nonpersistence in mean, and weak persis-
tence in mean of both prey x(t) and predator y(t) separately.

Definition 3.1 ([21, 35]) The population z(t) is called:
(1) extinct if limt→∞ z(t) = 0 a.s.;
(2) nonpersistent in mean if lim supt→∞

1
t
∫ t

0 z(s) ds = 0 a.s.; and
(3) weakly persistent in mean if lim supt→∞

1
t
∫ t

0 z(s) ds > 0 a.s.
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For convenience, we define

A1 =
N∑

i=1

πi

[

a1(i) –
1
2
σ 2

1 (i)
]

, B1 =
〈
r1

(
ξ (t)

)
C1(t)

〉

∗,

A2 =
N∑

i=1

πi

[

–a2(i) –
1
2
σ 2

2 (i) +
k(i)α(i)

β(i)

]

, B2 =
〈
r2

(
ξ (t)

)
C2(t)

〉

∗,

A3 =
N∑

i=1

πi

[

a1(i) – a2(i) –
σ 2

1 (i)
2

–
σ 2

2 (i)
2

–
(2

√
δk(i)α(i) – (a1(i) + b1(i)))2

4(b1(i) – δβ(i))

]

–
〈
r1

(
ξ (t)

)
C1(t)

〉

∗ –
〈
r2

(
ξ (t)

)
C2(t)

〉

∗ – δ.

Theorem 3.1 The prey x(t) of (2.8) is
(1) extinct if A1 – B1 < 0;
(2) nonpersistent in mean if A1 – B1 = 0; and
(3) weakly persistent in mean if A1 – B1 > 0.

Proof Applying generalized Itô’s formula to (2.8) yields

1
t

ln
x(t)
x(0)

=
1
t

∫ t

0

[

a1
(
ξ (s)

)
–

1
2
σ 2

1
(
ξ (s)

)
– b1

(
ξ (s)

)
x(s) –

α(ξ (s))x(s)y(s)
1 + β(ξ (s))x(s)2

]

ds

–
1
t

∫ t

0
r1

(
ξ (s)

)
C1(s) ds +

M1(t)
t

, (3.1)

1
t

ln
y(t)
y(0)

=
1
t

∫ t

0

[

–a2
(
ξ (s)

)
–

1
2
σ 2

2
(
ξ (s)

)
– b2

(
ξ (s)

)
y(s)

+
k(ξ (s))α(ξ (s))x(s)2

1 + β(ξ (s))x(s)2

]

ds –
1
t

∫ t

0
r2

(
ξ (s)

)
C2(s) ds +

M2(t)
t

, (3.2)

where Mi(t) =
∫ t

0 σi(ξ (s)) dBi(s) (i = 1, 2) satisfy (see [24, Theorem 3.4])

lim
t→∞

Mi(t)
t

= 0 a.s., i = 1, 2. (3.3)

Firstly, it follows from equation (3.1) that

1
t

ln
x(t)
x(0)

≤ 1
t

∫ t

0
a1

(
ξ (s)

)
–

1
2
σ 2

1
(
ξ (s)

)
– r1

(
ξ (s)

)
C1(s) ds +

M1(t)
t

. (3.4)

Using (3.3) and the ergodicity of ξ (t), we obtain

[
1
t

ln
x(t)
x(0)

]∗
≤ A1 – B1 < 0 a.s.,

which implies that limt→∞ x(t) = 0 a.s., so the prey x(t) is extinct, and (1) is proved.
Secondly, for given ε > 0 small, there exists a constant T̃ > 0 such that for all t > T̃ ,

1
t

∫ t

0
a1

(
ξ (s)

)
–

1
2
σ 2

1
(
ξ (s)

)
ds ≤ A1 +

ε

2
,

1
t

∫ t

0
r1

(
ξ (s)

)
C1(s) ds ≥ B1 –

ε

2
.

(3.5)
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Inserting (3.5) into (3.1) leads to

1
t

ln
x(t)
x(0)

≤ A1 – B1 + ε –
1
t

∫ t

0
b̂1x(s) ds +

M1(t)
t

.

By [19, Lemma 2], if A1 – B1 ≥ 0, then

〈
x(t)

〉∗ ≤ A1 – B1 + ε

b̂1
a.s. (3.6)

In particular, when A1 – B1 = 0, it follows from (3.6) and the arbitrariness of ε that 〈x(t)〉∗ =
0 a.s., which states that the prey x(t) is nonpersistent in mean. So (2) is proved.

Thirdly, taking the upper limits of both sides of (3.1) shows

[
1
t

ln
x(t)
x(0)

]∗
≥ A1 – B1 –

〈

b1
(
ξ (t)

)
x(t) +

(
α2(ξ (t))
4β(ξ (t))

+ 1
)

y(t)
〉∗

. (3.7)

Recalling that x(t)∗ < ∞ a.s. (see Remark 2.1), we get that the left side of (3.7) is nonposi-
tive. Then

b̌1
〈
x(t)

〉∗ +
(

α̌2

4β̂
+ 1

)
〈
y(t)

〉∗ ≥ A1 – B1 > 0, (3.8)

which shows that 〈x(t)〉∗ > 0. Otherwise, for all ω ∈ {ω : 〈x(t,ω)〉∗ = 0}, estimate (3.8) gives
〈y(t)〉∗ > 0. However, since k(ξ )α(ξ )x2

1+β(ξ )x2 ≤ ǩα̌x
2β̂1/2 , x ∈R+, another equation (3.2) yields

[
ln y(t,ω)

t

]∗
≤ –

∑

i∈S
πi

[

a2(i) +
σ 2

2 (i)
2

]

< 0 a.s.,

which shows that 〈y(t)〉∗ = 0, a contradiction, so 〈x(t)〉∗ > 0 a.s., that is, the prey x(t) is
weakly persistent in mean. Hereto, all conclusions of the theorem are proved. �

Theorem 3.2 The predator y(t) of (2.8) is
(1) extinct if A2 – B2 < 0;
(2) nonpersistent in mean if A2 – B2 = 0; and
(3) weakly persistent in mean if there exists a constant δ ∈ (0, b̂1

β̌
) such that A3 > 0.

Proof Firstly, using equation (3.2), we have

1
t

ln
y(t)
y(0)

≤ 1
t

∫ t

0
–a2

(
ξ (s)

)
–

1
2
σ 2

2
(
ξ (s)

)
+

k(ξ (s))α(ξ (s))
β(ξ (s))

– r2
(
ξ (s)

)
C2(s) ds +

M2(t)
t

. (3.9)

Analogously, taking the upper limits on both sides of (3.9) yields

[
1
t

ln
y(t)
y(0)

]∗
≤ A2 – B2 < 0 a.s.,

which implies that limt→∞ y(t) = 0 a.s., and thus (1) is proved.
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Secondly, for given ε > 0 small, there exists a constant T̃ > 0 such that for all t > T̃ ,

1
t

∫ t

0
–a2

(
ξ (s)

)
–

1
2
σ 2

2
(
ξ (s)

)
+

k(ξ (s))α(ξ (s))
β(ξ (s))

ds ≤ A2 +
ε

2
,

1
t

∫ t

0
r2

(
ξ (s)C2(s)

)
ds ≥ B2 –

ε

2
.

(3.10)

Inserting (3.10) into (3.2), we arrive at

1
t

ln
y(t)
y(0)

≤ A2 – B2 + ε –
1
t

∫ t

0
b̂2y(s) ds +

M2(t)
t

.

If A2 – B2 ≥ 0, then

〈
y(t)

〉∗ ≤ A2 – B2 + ε

b̂2
a.s. (3.11)

In particular, if A2 – B2 = 0, then follows from (3.11) and the arbitrariness of ε that 〈y(t)〉∗ =
0 a.s., and thus (2) is proved.

Finally, by (3.1), (3.2), and the first equation of (2.8) we get

1
t

ln
x(t)
x(0)

+
1
t

ln
y(t)
y(0)

–
(x(t) – x(0))

t

=
1
t

∫ t

0

[

–
α(ξ (s))x(s)y(s)
1 + β(ξ (s))x2(s)

+
k(ξ (s))α(ξ (s))x2(s)

1 + β(ξ (s))x2(s)
+

α(ξ (s))x2(s)y(s)
1 + β(ξ (s))x2(s)

]

ds

+
1
t

∫ t

0

[

a1
(
ξ (s)

)
– r1

(
ξ (s)

)
C1(s) –

1
2
σ 2

1
(
ξ (s)

)
– a2

(
ξ (s)

)
– r2

(
ξ (s)

)
C2(s)

–
1
2
σ 2

2
(
ξ (s)

)
+ b1

(
ξ (s)

)
x2(s) –

[
b1

(
ξ (s)

)
+ a1

(
ξ (s)

)
– r1

(
ξ (s)

)
C1(s)

]
x(s)

– b2
(
ξ (s)

)
y(s)

]

ds +
M1(t)

t
+

M2(t)
t

–
1
t

∫ t

0
σ1

(
ξ (s)

)
x(s) dB1(s).

Applying the reverse Young inequality

mn ≥ 2
√

δm – δn–1, δ, m, n > 0, (3.12)

we get kαx2

1+βx2 ≥ 2
√

δkαx – δ(1 + βx2), x ∈ R+. Then, using the inequality – αx
1+βx2 y ≥

– (1+β)α
2β

y, x, y ∈R+, we derive that

1
t

ln
x(t)
x(0)

+
1
t

ln
y(t)
y(0)

≥ 1
t

∫ t

0

[

a1
(
ξ (s)

)
– r1

(
ξ (s)

)
C1(s) –

1
2
σ 2

1
(
ξ (s)

)
– a2

(
ξ (s)

)
– r2

(
ξ (s)

)
C2(s)

–
1
2
σ 2

2
(
ξ (s)

)
–

(2
√

δk(ξ (s))α(ξ (s)) – [b1(ξ (s)) + a1(ξ (s))])2

4[b1(ξ (s)) – δβ(ξ (s))]
– δ

]

ds

–
1
t

∫ t

0

[

b2
(
ξ (s)

)
+

[1 + β(ξ (s))]α(ξ (s))
2β(ξ (s))

]

y(s) ds +
M1(t)

t
+

M2(t)
t
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–
1
t

∫ t

0
σ1

(
ξ (s)

)
x(s) dB1(s) –

x(0)
t

,

where we used the vertex formula of quadratic functions. On the other hand, Remark 2.1
reads

[
1
t

ln
x(t)
x(0)

+
1
t

ln
y(t)
y(0)

]∗
≤ 0 and

[
1
t

∫ t

0
σ1

(
ξ (s)

)
x(s) dB1(s)

]∗
= 0.

Thus 〈y(t)〉∗ > 0 a.s. Hereto, all conclusions of this theorem are proved. �

Remark 3.1 According to Theorems 3.1 and 3.2, we can observe that
(1) the greater the values of σi (i = 1, 2), the greater the risk of extinction of x(t) and y(t);

see Figs. 1 and 2(a);
(2) the distribution π of Markov chain ξ (t) plays a significant role in the survival of x(t)

and y(t); see Figs. 1 and 2(b);
(3) the smaller the value of the impulsive input period ρ , the greater the risk of

extinction x(t) and y(t); see Figs. 1 and 3.

Remark 3.2 When model (2.4) of this paper reduces to [30, model (5)], compared with
[30, Theorem 4.4(3)], Theorem 3.2(3) is more convenient to verify the weak persistence
in the mean of predator species y(t), because the conditions of Theorem 3.2(3) are only
related to the parameters of equation (2.4).

4 Stationary distribution
In this section, we prove that the solution of model (2.8) has a unique stationary distribu-
tion under certain conditions. To facilitate its proof, we will first prove a useful lemma.

Lemma 4.1 ([31, 45]) Suppose that all of the following conditions hold:
(1) γij > 0 for all i �= j;
(2) For all k ∈ S, the symmetric D(·, k) admits a constant � ∈ (0, 1] such that

�|ζ |2 ≤ ζ T D(z, k)ζ ≤ �–1|ζ |2, ζ , z ∈R
n;

(3) There exists a bounded open set D ⊂R
n with a regular boundary satisfying that for

all k ∈ S, there exists a twice continuously differentiable function V (·, k) : Dc →R+

such that for some ς > 0,

LV (z, k) ≤ –ς , (z, k) ∈Dc × S.

Then the solution (z(t), ξ (t)) of (2.10) is ergodic and positive recurrent, that is, it has a
unique stationary distribution.

Theorem 4.1 If there exists a constant δ ∈ (0, b̂1
β̌

) such that λ :=
∑N

i=1 πi�i > 0, where

�i = a1(i) – r1(i)(C1(t))∗ – a2(i) – r2(i)(C2(t))∗ – 1
2 (σ 2

1 (i) + σ 2
2 (i)) – δ – (b1(i)+a1(i)–2

√
δk(i)α(i))2

4(b1(i)–δβ(i)) –
(b2(i)–a2(i))2

4b2(i) , then the solution (x(t), y(t), ξ (t)) of model (2.8) is ergodic and has a unique sta-
tionary distribution in R

2
+ × S.
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Proof To use Lemma 4.1, we need to verify its three conditions. The first two conditions of
Lemma 4.1 can be easily verified by the same proof of [31], so we omit it. Thus we mainly
verify condition (3) of Lemma 4.1. For simplicity, define the C2-function U : R2

+ →R as

U(x, y) = –M(ln x – x + ln y – y) +
1
2

(ǩx + y)2,

where M = 2
λ

max{2, sup(x,y)∈R2
+
{– d1

2 x3 + d2x2 – d3
2 y3 + d4

2 y2}} > 0, and the positive constants
di (i = 1, 2, 3, 4) will be fixed later. Based on the fact that U(x, y) has a unique minimum
point U(x∗, y∗), we proceed to define the Lyapunov function V : R2

+ × S→R+ as

V (x, y, i) = –M(ln x – x + ln y – y) +
1
2

(ǩx + y)2 – U
(
x∗, y∗) + M

(
ωi + |ω|)

=: V1(x, y) + V2(x, y) – U
(
x∗, y∗) + V3(i),

where ω = (ω1,ω1, . . . ,ωN ), |ω| = (ω2
1 + ω2

2 + · · · + ω2
N )1/2 with ωi (i ∈ S) to determined later.

For sufficiently large t, taking into account (2.6) and using generalized Itô’s formula, to-
gether with the facts α

1+βx2 xy ≤ αxy, – kαx2

1+βx2 ≤ –2
√

δkαx + δ(1 + βx2), kαx2

1+βx2 y ≤ kα

2β1/2 xy for
all δ, x, y ∈R+, as well as the vertex formula of quadratic functions, we have

LV1(x, y, i)

= –M
[(

1
x

– 1
)(

[
a1(i) – r1(i)C1(t)

]
x – b1(i)x2 –

α(i)x2y
1 + β(i)x2

)

–
1
2
σ 2

1 (i)

+
(

1
y

– 1
)(

–
[
a2(i) + r2(i)C2(t)

]
y – b2(i)y2 +

k(i)α(i)x2y
1 + β(i)x2

)

–
1
2
σ 2

2 (i)
]

≤ M
(

α̌ +
ǩα̌

2β̂1/2

)

xy – M
(

a1(i) – r1(i)C1(t) – a2(i) – r2(i)C2(t) – δ

–
1
2
(
σ 2

1 (i) + σ 2
2 (i)

)
–

(b1(i) + a1(i) – 2
√

δk(i)α(i))2

4(b1(i) – δβ(i))
–

(b2(i) – a2(i))2

4b2(i)

)

≤ M
(

α̌ +
ǩα̌

2β̂1/2

)

xy – M�i, (4.1)

where

�i = a1(i) – r1(i)
(
C1(t)

)∗ – a2(i) – r2(i)
(
C2(t)

)∗ –
1
2
(
σ 2

1 (i) + σ 2
2 (i)

)
– δ

–
(b1(i) + a1(i) – 2

√
δk(i)α(i))2

4(b1(i) – δβ(i))
–

(b2(i) – a2(i))2

4b2(i)
.

Using generalized Itô’s formula again, we have

LV2(x, y, i)

= (ǩx + y)
(

ǩ
[
a1(i) – r1(i)C1(t)

]
x – ǩb1(i)x2 –

ǩα(i)x2y
1 + β(i)x2

–
[
a2(i) + r2(i)C2(t)

]
y – b2y2 +

kα(i)x2y
1 + β(i)x2

)

+
1
2
(
ǩ2σ 2

1 x2 + σ 2
2 y2)
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≤ –ǩ2b1(i)x3 + ǩ2
(

a1(i) +
1
2
σ 2

1 (i)
)

x2 – b2(i)y3 +
1
2
σ 2

2 (i)y2 + ǩa1(i)xy (4.2)

and

LV3(i) = M
N∑

j=1

γijωj. (4.3)

On the other hand, we can observe that

N∑

i=1

πi = 1 and π
[
� – (π�)IN

]
= 0,

where � = (�1,�2, . . . ,�N )T and IN = (1, 1, . . . , 1)T ∈ RN . Since � is irreducible, there ex-
ists a solution ω = (ω1,ω2, . . . ,ωN )T to the following equation (see [16, Lemma 2.3]):

	ω = � – (π�)IN ,

which implies that

–�i +
N∑

j=1

γijωj = –
N∑

j=1

πj�j = –λ, i = 1, 2, . . . , N . (4.4)

Now, combining (4.1)–(4.4), we arrives at

LV (x, y, i) ≤ –Mλ – d1x3 + d2x2 – d3y3 + d4y2 + d5xy,

where d1 = ǩ2b̂1, d2 = ǩ2(ǎ1 + 1
2 σ̌ 2

1 ), d3 = b̂2, d4 = 1
2 σ̌ 2

2 , and d5 = M(α̌ + ǩα̌

2β̂1/2 ) + ǩǎ1. To verify
condition (3) of Lemma 4.1, we consider the bounded closed subset

Dε =
{

(x, y) ∈ R
2
+|ε ≤ x ≤ 1

ε
, ε ≤ y ≤ 1

ε

}

,

where ε is sufficiently small such that

0 < ε < min

{
Mλ

4d5
,

d3

2d5
,

d1

2d5

}

, (4.5)

1 – Mλ + M1 ≤ min

{
d1

2ε3
,

d3

2ε3

}

, (4.6)

where

M1 = sup
(x,y)∈R2

+

{

–
d1

2
x3 + d2x2 –

d3

2
y3 + d4y2 +

d5

2
(
x2 + y2)

}

.

Finally, it remains to prove

LV (x, y, i) ≤ –1, (x, y, i) ∈Dc
ε × S,
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where the complement Dc
ε can be split as Dc

ε = D1
ε ∪D2

ε ∪D3
ε ∪D4

ε with

D1
ε =

{
(x, y) ∈R

2
+|0 < x < ε

}
, D2

ε =
{

(x, y) ∈R
2
+|0 < y < ε

}
,

D3
ε =

{

(x, y) ∈ R
2
+|x >

1
ε

}

, D4
ε =

{

(x, y) ∈R
2
+|y >

1
ε

}

.

Case 1: (x, y, i) ∈D1
ε × S. It follows from the estimate xy ≤ εy ≤ ε(1 + y3), the definition of

M, and (4.5) that

LV (x, y, i) ≤ –Mλ – d1x3 + d2x2 – d3y3 + d4y2 + εd5 + εd5y3

≤ –
Mλ

4
–

(
Mλ

4
– εd5

)

–
(

d3

2
– εd5

)

y3 –
Mλ

2

–
d1

2
x3 + d2x2 –

d3

2
y3 + d4y2

≤ –
Mλ

4
≤ –1 on D1

ε × S.

Case 2: (x, y, i) ∈D2
ε × S. Since xy ≤ εx ≤ ε(1 + x3), we also have

LV (x, y, i) ≤ –Mλ – d1x3 + d2x2 – d3y3 + d4y2 + εd5 + εd5x3

≤ –
Mλ

4
–

(
Mλ

4
– εd5

)

–
(

d1

2
– εd5

)

x3 –
Mλ

2

–
d1

2
x3 + d2x2 –

d3

2
y3 + d4y2

≤ –
Mλ

4
≤ –1 on D2

ε × S.

Case 3: (x, y, i) ∈D3
ε × S. Based on (4.6), we have

LV (x, y, i) ≤ –Mλ – d1x3 + d2x2 – d3y3 + d4y2 + d5

(
x2

2
+

y2

2

)

≤ –Mλ –
d1

2
x3 –

d1

2
x3 + d2x2 –

d3

2
y3 + d4y2 + d5

(
x2

2
+

y2

2

)

≤ –Mλ –
d1

2ε3 + M1 ≤ –1 on D3
ε × S.

Case 4: (x, y, i) ∈D4
ε × S. Similarly,

LV (x, y, i) ≤ –Mλ –
d3

2
y3 –

d1

2
x3 + d2x2 –

d3

2
y3 + d4y2 + d5

(
x2

2
+

y2

2

)

≤ –Mλ –
d3

2ε3 + M1 ≤ –1 on D4
ε × S.

To summarize, condition (3) of Lemma 4.1 is satisfied. Therefore we obtain the desired
assertion. �
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5 Numerical simulations
In this section, we perform some numerical simulations to verify the theoretical results
established in the previous sections.

Example 5.1 Consider the following stochastic Holling-III predator–prey model with
Markovian switching in an impulsive polluted environment:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx = [a1(ξ (t))x – b1(ξ (t))x2 – αx2y
1+βx2 – r1C1x] dt

+ σ1x dB1(t),

dy = [–a2(ξ (t))y – b2y2 + kαx2y
1+βx2 – r2C2y] dt

+ σ2y dB2(t),

dC1 = (0.4CE – 1.1C1) dt,

dC2 = (0.2CE – 0.4C2) dt,

dCE = –0.4CE dt,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

t �= nρ, n ∈N,

�x(t) = 0, �y(t) = 0, �C1(t) = 0,

�C2(t) = 0, �CE(t) = 0.3, t = nρ, n ∈N,

(5.1)

with the initial value (x(0), y(0), C1(0), C2(0), CE(0)) = (x0, y0, 0.03, 0.03, 0.3), where ξ (t) is a
Markov chain with ξ (0) = 1 and state space S = {1, 2}.

(i) In Fig. 1, we take π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04), α = 0.2, β = 0.1,
r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.2, ρ = 1.2, x0 = 5, y0 = 4.
By simple calculation, A1 – B1 = –183/2750 < 0 and A2 – B2 = –9/100 < 0. Theorems 3.1
and 3.2 indicate that both x(t) and y(t) will go to extinction. Figure 1 is consistent with the
result.

(ii) In Fig. 2(a), we take π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04), α = 0.2, β = 0.1,
r1 = 0.9, σ1 = 0.1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.1, ρ = 1.2, x0 = 5, y0 = 4.
The only difference between the parameters of Figs. 1 and 2(a) is the noise intensities σ1

and σ2. Because A1 – B1 = 524/1223 > 0 and A2 – B2 = –3/40 < 0, Theorems 3.1 and 3.2
show that x(t) is weakly persistent in mean and y(t) is extinct. Figure 2(a) supports the
result.

(iii) In Fig. 2(b), we take π = (0.1, 0.9), a1 = (0.62, 0.8), b1 = (0.021, 0.04), α = 0.2, β = 0.1,
r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.2, ρ = 1.2, x0 = 5, y0 = 4.
The only difference between the parameters of Figs. 1 and 2(b) is the distribution π of the
Markov chain ξ (t). Based on A1 – B1 = 213/2750 > 0 and A2 – B2 = –1/4 < 0, Theorems 3.1
and 3.2 imply that x(t) is weakly persistent in mean and y(t) is extinct. Figure 2(b) confirms
the result.

(iv) In Fig. 3, we take π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04), α = 0.2, β = 0.1,
r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.2, ρ = 1.86, x0 = 5, y0 = 4.
The only difference between the parameters of Figs. 1 and 3 is the impulsive input period
ρ . Since A1 – B1 = 59/9776 > 0 and A2 – B2 = –1/775 < 0, Theorems 3.1 and 3.2 reveal that
x(t) is weakly persistent in mean and y(t) is extinct, which coincides with Fig. 3.

(v) In Fig. 4, we take π = (0.9, 0.1), a1 = (0.78, 0.72), b1 = (0.52, 0.48), α = 0.98, β = 0.84,
r1 = 0.1, σ1 = 0.1, a2 = (0.24, 0.18), b2 = 0.1, k = 0.86, r2 = 0.1, σ2 = 0.2, ρ = 4, x0 = 1.4, y0 =
1.6. By simple calculation, A1 – B1 = 1048/1375 > 0 and A3 = 496/3919 > 0 when δ = b̌1

2β
=
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Figure 1 The sample paths of stochastic model (5.1) with π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04),
α = 0.2, β = 0.1, r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.2, ρ = 1.2, x0 = 5, y0 = 4

Figure 2 The sample paths of stochastic model (5.1), where (a) π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04),
α = 0.2, β = 0.1, r1 = 0.9, σ1 = 0.1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.1, ρ = 1.2, x0 = 5, y0 = 4; (b)
π = (0.1, 0.9), a1 = (0.62, 0.8), b1 = (0.021, 0.04), α = 0.2, β = 0.1, r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2,
r2 = 0.8, σ2 = 0.2, ρ = 1.2, x0 = 5, y0 = 4

2/7. Thus Theorems 3.1 and 3.2 state that both x(t) and y(t) are weakly persistent in mean,
which is illustrated in Fig. 4(a). On the other hand, if δ = b̌1

2β
= 2/7, then λ = 611/7556 > 0.

Hence Theorem 4.1 indicates that model (5.1) has a unique stationary distribution, which
is confirmed by Figs. 4(c) and 4(d).

6 Conclusions and future work
In this paper, we explore a stochastic Holling-III predator–prey system and regime switch-
ing in an impulsive polluted environment.

The major contributions of this work are:
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Figure 3 The sample paths of stochastic model (5.1) with π = (0.9, 0.1), a1 = (0.62, 0.8), b1 = (0.021, 0.04),
α = 0.2, β = 0.1, r1 = 0.9, σ1 = 1, a2 = (0.2, 0.4), b2 = 0.04, k = 0.2, r2 = 0.8, σ2 = 0.2, ρ = 1.86, x0 = 5, y0 = 4

Figure 4 (a), (b) The sample paths of stochastic model (5.1) with π = (0.9, 0.1), a1 = (0.78, 0.72),
b1 = (0.52, 0.48), α = 0.98, β = 0.84, r1 = 0.1, σ1 = 0.1, a2 = (0.24, 0.18), b2 = 0.1, k = 0.86, r2 = 0.1, σ2 = 0.2, ρ = 4,
x0 = 1.4, y0 = 1.6; (c), (d) The density function diagrams of x(t) and y(t), respectively

• We obtain sufficient conditions for the extinction, nonpersistence in mean, and weak
persistence in mean. More specifically, for the prey x(t), A1 – B1 is the threshold of the
extinction and weak persistence in mean. That is, if A1 – B1 < 0, then x(t) is extinct; if
A1 – B1 > 0, then x(t) is weakly persistent in mean. For the predator y(t), if A2 – B2 < 0,
then y(t) is extinct; if there exists a constant δ ∈ (0, b̂1

β̌
) such that A3 > 0, then y(t) is

weakly persistent in mean.
• From Theorems 3.1 and 3.2 we can see that both intensities σi (i = 1, 2) of white noise

and the distribution π of Markov chain ξ (t) are related to the values of A1 and A2,
which will change the survival of x(t) and y(t). To be specific, the greater the values of
σi (i = 1, 2), the greater the risk of extinction of x(t) and y(t); see Figs. 1 and 2(a). Also,
the distribution π of Markov chain ξ (t) plays a significant role in the survival of x(t)
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and y(t); see Figs. 1 and 2(b). In addition, the smaller the value of impulsive input
period ρ , the greater the risk of extinction of x(t) and y(t); see Figs. 1 and 3.

• Finally, we discuss the positive recurrence and ergodicity of the stochastic model,
namely, there exists a unique stationary distribution under some conditions by
constructing Lyapunov functions.

Nowadays, environmental pollution has become a concern of people around the world.
And environmental noise makes a huge difference to the biological systems in real life.
Besides Holling type, we can also consider the stochastic models with other meaningful
functional responses under regime switching, such as Beddington–DeAngelis type and
Watt type. Furthermore, we will try to collect the real data to validate our theoretical re-
sults and explain biological significance.
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