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Abstract
This paper studies a controlled backward-forward linear-quadratic-Gaussian (LQG)
large population system in Stackelberg games. The leader agent is of backward state
and follower agents are of forward state. The leader agent is dominating as its state
enters those of follower agents. On the other hand, the state-average of all follower
agents affects the cost functional of the leader agent. In reality, the leader and the
followers may represent two typical types of participants involved in market price
formation: the supplier and producers. This differs from standard MFG literature and is
mainly due to the Stackelberg structure here. By variational analysis, the consistency
condition system can be represented by some fully-coupled backward-forward
stochastic differential equations (BFSDEs) with high dimensional block structure in an
open-loop sense. Next, we discuss the well-posedness of such a BFSDE system by
virtue of the contraction mapping method. Consequently, we obtain the
decentralized strategies for the leader and follower agents which are proved to satisfy
the ε-Nash equilibrium property.
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1 Introduction
Recently, the dynamic optimization of a (linear) large-population system has attracted
extensive research attention from academic communities. Its most significant feature is
the existence of numerous insignificant agents, denoted by {Ai}N

i=1, whose dynamics and
(or) cost functionals are coupled via their state-average. To design low-complexity strate-
gies for a large-population system, one efficient method is mean-field game (MFG) which
enables us to derive the decentralized strategies. We recall that there is a large body of
related works on MFG. Since the independent works by Huang, Caines, and Malhamé
[11, 12] and Lasry and Lions [13–15], MFG theory and its applications have enjoyed rapid
growth. Some related further developments on MFG theory may include Bardi [1], Ben-
soussan, Frehse, and Yam [4], Carmona and Delarue [6], Garnier, Papanicolaou, and Yang
[8], Guéant, Lasry, and Lions [9], and the references therein.
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(Single leader-follower game) In the case where N = 1, only a single follower with one
leader, our problem is reduced to the classical single-leader and single-follower game.
The leader-follower (Stackelberg) game was proposed in 1934 by H. von Stackelberg [23]
when he defined the concept of a hierarchical solution for markets in which some firms
have more power than of others and thus dominate them. This solution concept is termed
the Stackelberg equilibrium. An early study of stochastic Stackelberg differential games
(SSDGs) was conducted by Basar [2]. Another relevant study was performed by Yong
[26], where an LQ leader-follower stochastic differential game (SDG) was introduced and
studied in its open-loop information case. The setting in [26] is general: its coefficients of
system and cost functionals may be random, the controls enter the diffusion term of state
dynamics, and the weight matrices for controls in cost functionals are not necessarily pos-
itive definite. In a similar but nonlinear setting, Bensoussan, Chen, and Sethi [3] obtained
the global maximum principles for both open-loop (OL) and closed-loop (CL) SSDGs,
but the diffusion term did not contain the controls. This simplifies the related analysis to a
certain extent. In the special LQ setting, the solvability of related Riccati equations is also
discussed, and the state feedback Stackelberg equilibrium is thus obtained.

So far, almost all of these related research studies for mean-field Stackelberg games have
been based on the SDEs system state. To the best of our knowledge, the first paper that
does some research on the BSDEs system state is that by Huang, Wang, and Wu [10]. This
paper can be regarded as the follow-up work of that one. We formulate more general LQ
mean-field Stackelberg games with BSDEs system state. Unlike the forward SDE with given
initial condition, the terminal condition is pre-specified in the BSDE as a priori, and its so-
lution becomes an adapted process pair. Linear BSDEs were first introduced by Bismut [5],
and the general nonlinear BSDE was first studied in Pardoux and Peng [18]. The BSDE has
been applied broadly in many fields such as mathematical economics and finance, decision
making, and management science. One example is the representation of stochastic differ-
ential recursive utility by a class of BSDE (Wang and Wu [24], etc.). A BSDE coupled with
an SDE in their terminal conditions formulates the forward-backward stochastic differen-
tial equation (FBSDE). The FBSDE has also been well studied, and the interested readers
may refer to [7, 25–28].

The modeling of the leader agent by a BSDE and follower agents by a forward SDE is well
motivated and can be illustrated by the following example. The government announces the
target of interest-adjusted in future five years today. The related banks and individuals will
try to find the optimal investment plan based on the announcement. However, the gov-
ernment learns that the related banks and individuals will carry out their own investment
plans according to its announcement. So the government could adjust its announcement
to optimize its own goal. This is a typical mean-field Stackelberg game with the leader
agent modeled by a BSDE and follower agents modeled by a forward SDE. The model set-
ting has its own strengths in applications. In practice, the leader always sets a goal or target
for the group, and the followers in the group will find the optimal plan to achieve the goal.
The cost functional they consider may differ and the dynamics of the leader becomes a
BSDE and the dynamics of the followers are a series of SDEs. The traditional paper stud-
ies the leader-follower problems that are all based on SDEs dynamics and cannot represent
this kind of cases in practice.

The modeling of backward-leader and forward-followers will yield a large-population
system with backward-forward stochastic differential equation (BFSDE), which is struc-
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turally different to FBSDE in the following aspects. First, the forward and backward equa-
tions will be coupled in their initial rather than terminal conditions. Second, unlike FB-
SDE, there is no feasible decoupling structure by standard Riccati equations, as addressed
in Lim and Zhou (2001) [16]. This is mainly because some implicit constraints in the initial
conditions should be satisfied in the possible decoupling.

The introduction of BFSDE also brings some technical differences to its MFG studies. It
will bring a more complicated coupled structure to consistency condition derived in our
current backward-leader and forward-followers setup. The standard procedure of MFG
mainly consists of the following steps:

Step 1: Fix the decision of the leader, denoted respectively by (x0, u0). Given such fixed
quantities (x0, u0), introduce and solve the mean-field subgame faced by all followers which
are also competitive inside their interaction cycle. For such a subgame, an auxiliary prob-
lem can be constructed and some decentralized responses of the followers can be derived,
the related mass limit response of the followers is denoted by x̄ = x̄(x0, u0).

Step 2: Given the response functional of followers x̄, solve the decentralized stochas-
tic control problem of the leader A0, and denote the optimal solution pair by (x̄0, ū0) =
(x̄0(x̄), ū0(x̄)).

Step 3: Derive the consistency condition (CC) system to specify x̄; then, all decentralized
strategies for the leader and followers can sequentially be designed. An approximate Nash
equilibrium can then be obtained.

The main contributions of this paper can be summarized as follows:
• We formulate a general backward-leader and forward-followers LQ mean-field game.

To some degree, it has some applications in reality.
• We derive the CC system which is represented using a fully coupled mean-field-type

backward-forward stochastic differential equation (BFSDE) in an open-loop case.
• The existence and uniqueness of the related CC system is investigated in global

solvability case.
The rest of this paper is organized as follows. Section 2 provides the problem formula-

tion and presents some preliminary details. In Sect. 3, we introduce the auxiliary limiting
LQG optimization problems for MFG analysis. In Sect. 4, we discuss the open-loop strat-
egy of Stackelberg games. In Sect. 5, we determine the CC system based on an open loop,
which provides fully coupled BFSDEs. Section 6 is devoted to verifying the approximate
equilibrium of open-loop decentralized strategies.

2 Preliminaries and problem formulation
The following notations are used throughout this paper. Let Rn denote the n-dimensional
Euclidean space, Rn×m be the set of all (n × m) matrices, and let Sn be the set of all (n × n)
symmetric matrices. We denote the transpose by subscript �, the inner product by 〈·, ·〉,
and the norm by | · |. For t ∈ [0, T] and Euclidean space H, we introduce the following
function spaces:

Lp(t, T ;H) =
{
ψ : [t, T] →H

∣∣∣
∫ T

t

∣∣ψ(s)
∣∣p ds < ∞

}
, 1 ≤ p < ∞,

L∞(t, T ;H) =
{
ψ : [t, T] →H

∣∣ esssup
s∈[t,T]

∣∣ψ(s)
∣∣ < ∞

}
,

C
(
[t, T];H

)
=
{
ψ : [t, T] →H | ψ(·) is continuous

}
,
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and the spaces of process or random variables on a given filtrated probability space:

L2
Ft (�;H) =

{
ξ : � →H | ξ is Ft-measurable,E

[|ξ |2] < ∞}
,

L2
F (t, T ;H) =

{
ψ : [t, T] × � →H

∣∣∣ψ(·) is Ft-progressively measurable,

E

[∫ T

t

∣∣ψ(s)
∣∣2 ds

]
< ∞

}
.

On a given finite decision horizon [0, T], let (�,F , {Ft}0≤t≤T ,P) be a complete fil-
tered probability space on which a (1 + N)-dimensional standard Brownian motion
{W0(t), Wi(t); 1 ≤ i ≤ N}0≤t≤T is defined. We define by {Ft}0≤t≤T the natural filtration gen-
erated by {W0(·), Wi(·), xi0; 1 ≤ i ≤ N} augmented by all the P-null sets in F , it captures
the full information of agents; {Fw0

t }0≤t≤T is the natural filtration generated by {W0(·)}
augmented by all the P-null sets in F , it captures the information of the leader agent;
{Fwi

t }0≤t≤T is the natural filtration generated by {Wi(·)} augmented by all the P-null sets
in F , it captures the information of the ith follower agent; {F i

t }0≤t≤T is the natural fil-
tration generated by {W0(·), Wi(·)} augmented by all P-null sets in F . In this paper, we
consider a large-population system involving (1 + N) individual agents (where N is suffi-
ciently large), which represent two types of agents: leader agent A0 and follower agents
{Ai}N

i=1. The dynamics of A0, {Ai}N
i=1 are given sequentially by the following controlled

linear backward stochastic differential equations (BSDE, for short) and controlled linear
forward stochastic differential equations (SDE or FSDE, for short), respectively.

A0 :

⎧⎨
⎩

dx0(t) = {A0x0(t) + B0u0(t) + C0z0(t)}dt + z0(t) dW0(t),

x0(T) = ξ ,
(2.1)

and

Ai :

⎧⎪⎪⎨
⎪⎪⎩

dxi(t) = {Axi(t) + Bui(t) + Ex(N)(t) + αx0(t)}dt

+ {Cxi(t) + Dui(t) + Fx(N)(t) + βx0(t)}dWi(t),

xi(0) = xi0, i = 1, 2, . . . , N ,

(2.2)

where ξ ∈ L2
Fw0

T
(�;R), x(N)(t) = 1

N
∑N

i=1 xi(t) are called the state average or mean field term
of all follower agents; xi0 is the initial value of Ai. In this paper, for simplicity, we assume
the dimensions of state process and control process are both one-dimensional. Here, A0,
B0, C0, A, B, C, D, E, F , α, β are scalar constants. The admissible control u0 ∈ U0, ui ∈ Ui,
where

U0[0, T] � L2
Fw0 (0, T ;R),

Ui[0, T] � L2
F (0, T ;R), i = 1, 2, . . . , N .

(2.3)

Let u = (u0, u1, . . . , uN ) denote the set of all strategies of all (1 + N) agents; u–0 = (u1, . . . , uN )
the strategies except A0; u–i = (u0, u1, . . . , ui–1, ui+1, . . . , uN ) the strategies except the ith
agent Ai. Moreover, agents A0 and {Ai}1≤i≤N are further coupled via their cost functionals
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J0 and Ji as follows:

J0(u0, u–0) =
1
2
E

{∫ T

0

[
Q0

(
x0(t) – x(N)(t)

)2 + Q̃x2
0(t) + R0u2

0(t)
]

dt + H0x2
0(0)

}
(2.4)

for A0, where Q0 ≥ 0, Q̃ ≥ 0, R0 > 0, H0 ≥ 0; and

Ji(ui, u–i) =
1
2
E

{∫ T

0

[
Q
(
xi(t) – x(N)(t)

)2 + Ru2
i (t)

]
dt + Hx2

i (T)
}

, (2.5)

for Ai, 1 ≤ i ≤ N , where Q ≥ 0, R > 0, H ≥ 0. We introduce the following assumption:
(H1) The initial states xi0 are independent and identically distributed (iid, for short)

with E[xi0] = x, E[|xi0|2] < +∞ for each i = 1, . . . , N , and also independent of
{W0(t), Wi(t); 1 ≤ i ≤ N}.

It follows that (2.1) admits a unique adapted solution for all u0 ∈ U0[0, T] (refer to Par-
doux and Peng [18]). It is also well known that under (H1), (2.2) admits a unique adapted
solution for all ui ∈ Ui[0, T], 1 ≤ i ≤ N . Now, we can formulate the large population dy-
namic optimization problem.

Problem (I) Find the optimal strategies ū = (ū0, ū1, . . . , ūN ), which satisfy

Ji(ūi, ū–i) = inf
ui∈Ui

Ji(ui, ū–i), 0 ≤ i ≤ N ,

where ū–0 = (ū1, . . . , ūN ), ū–i = (ū0, ū1, . . . , ūi–1, ūi+1, . . . , ūN ) for 1 ≤ i ≤ N .

We notice that all agents are coupled not only in their state process but also in their
cost functionals with state averages. Roughly speaking, the game to be studied is carried
out as follows. First, the leader A0 announces his strategy u0(·) and commits to fulfilling
it. Next, the followers Ai provide their best response accordingly to minimize their cost
functionals Ji(ui(·), u–i(·)). This reduces some best response functionals for the follow-
ers depending on the control law of the leader. With this functional in mind, before the
announcement, the agent A0 will design his best response to minimize his own cost func-
tional J0(u0(·), u–0(·)). Notice the weak coupling among the agents in a large-population
system, the above game problem is essentially a high-dimensional Stackelberg–Nash dif-
ferential game. The influence of individual agents (leader or followers) on the population
should be averaged out when population size tends to infinity.

3 The limiting optimal control problem
Let us introduce the auxiliary limiting LQG optimization problems. Firstly, as N → +∞,
we suppose that x(N)(·) can be approximated by an Fw0

t -measurable function x̄(·). Then
the state process of the follower becomes

⎧⎪⎪⎨
⎪⎪⎩

dxi(t) = {Axi(t) + Bui(t) + Ex̄(t) + αx0(t)}dt

+ {Cxi(t) + Dui(t) + Fx̄(t) + βx0(t)}dWi(t),

xi(0) = xi0, i = 1, 2, . . . , N ,

(3.1)
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with the following auxiliary cost functionals:

Ji(ui) =
1
2
E

{∫ T

0

[
Q
(
xi(t) – x̄(t)

)2 + Ru2
i (t)

]
dt + Hx2

i (T)
}

(3.2)

for Ai, 1 ≤ i ≤ N . Then, introduce the following auxiliary limiting LQG optimization
problems for followers.

Problem (II) For given xi0, Fw0
t -measurable functions x̄(·), and the control u0(·) of the

leader agent A0, find the optimal response functional ūi[·] : U0[0, T] × L2
Fw0 (0, T ;R) →

Ui[0, T] of the following differential games among followers:

Ji
(
xi0, x̄(·), u0(·); ūi

[
u0(·), x̄(·)]) = inf

ui(·)∈Ui[0,T]
Ji
(
xi0, x̄(·), u0(·); ui(·)

)
.

The analysis of Problem (II) can be further decomposed into substeps using MFG theory.
Step 1 (SOC-F): Consider the Nash equilibrium response functional of Problem (II)

for the representative follower agent denoted by ūi[·, ·]. For given xi0, Fw0
t -measurable

functions x̄(·), and the control u0(·) of the leader A0, find an open-loop strategy ūi(·) =
ūi[u0(·), x̄(·)] ∈ Ui[0, T], 1 ≤ i ≤ N . In other words, find the Nash equilibrium response
functional ūi[·, ·] : U0[0, T] × L2

Fw0 (0, T ;R) → Ui[0, T] of the following Nash differential
games among followers:

Ji
(
xi0, x̄(·), u0(·); ūi

[
u0(·), x̄(·)]) = inf

ui(·)∈Ui[0,T]
Ji
(
xi0, x̄(·), u0(·); ui(·)

)
.

Step 2 (CC-F): Apply the state-aggregation method to determine the state-average limit
x̄ by the following consistency condition qualification:

E
[
x̄i
(
ūi
[
u0(·), x̄(·)])∣∣Fw0

t
]

= x̄.

By virtue of such steps, the Nash equilibrium response functional of the follower and
x̄ = x̄(u0) can be specified, given any admissible strategy announced by leaders. Given the
optimal response of all followers, we can turn to solve the problem of the leader.

4 Optimal strategy of auxiliary problems
From now on, we might suppress time variable t in case no confusion occurs. As men-
tioned before, we focus on the auxiliary limiting LQG optimization problems, i.e., Prob-
lem (II) first.

4.1 Optimal strategy of the follower
The main result of this section can be stated as follows.

Theorem 4.1 Under assumption (H1), let u0(·) ∈ U0[0, T], x̄(·) ∈ L2(0, T ;R) be given.
Then, for the initial value xi0, Problem (II) admits an optimal control ūi(·) ∈ Ui[0, T] if
and only if the following two conditions hold:
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(i) For i = 1, 2, . . . , N , the adapted solution (x̄i(·), ȳi(·), z̄i(·)) to the FBSDE on [0, T]

⎧⎪⎪⎨
⎪⎪⎩

dx̄i = {Ax̄i + Būi + Ex̄ + αx0}dt + {Cx̄i + Dūi + Fx̄ + βx0}dWi(t),

dȳi = –{Aȳi + Cz̄i + Q(x̄i – x̄)}dt + z̄i dWi(t),

x̄i(0) = xi0, ȳi(T) = Hx̄i(T),

(4.1)

satisfies the following stationarity condition:

Bȳi + Rūi + Dz̄i = 0, a.e. t ∈ [0, T], a.s. (4.2)

(ii) For i = 1, 2, . . . , N , the following convexity condition holds:

E

{∫ T

0

(
Qx̃2

i + Ru2
i
)

dt + Hx̃2
i (T)

}
≥ 0, ∀ui(·) ∈ Ui[0, T], (4.3)

where x̃i(·) is the solution of

⎧⎨
⎩

dx̃i = {Ax̃i + Bui}dt + {Cx̃i + Dui}dWi(t), t ∈ [0, T],

x̃i(0) = 0.
(4.4)

Or, equivalently, the mapping ui(·) �→ Ji(xi0, x̄(·), u0(·); ui(·)), defined by (3.2), is
convex (for i = 1, 2, . . . , N ).

Proof For given u0(·) ∈ U0[0, T], x̄(·) ∈ L2(0, T ;R) and ūi(·) ∈ Ui[0, T], let (x̄i(·), ȳi(·), z̄i(·))
be an adapted solution to FBSDE (4.1). For any ui(·) ∈ Ui[0, T] and ε ∈ R, let xε

i (·) be the
solution to the following perturbed state equation on [0, T]:

⎧⎨
⎩

dxε
i = {Axε

i + B(ūi + εui) + Ex̄ + αx0}dt + {Cxε
i + D(ūi + εui) + Fx̄ + βx0}dWi(t),

xε
i (0) = xi0.

Then, denoting by x̃i(·) the solution of (4.4), we have xε
i (·) = x̄i(·) + εx̃i(·) and

Ji
(
xi0, x̄(·), u0(·); ūi(·) + εui(·)

)
– Ji

(
xi0, x̄(·), u0(·); ūi(·)

)

=
ε

2
E

{∫ T

0

(
2Q(x̄i – x̄)x̃i + εQx̃2

i + 2Rūiui + εRu2
i
)

dt

+ 2Hx̄i(T)x̃i(T) + εHx̃2
i (T)

}

= εE

{∫ T

0

(
Q(x̄i – x̄)x̃i + Rūiui

)
dt + Hx̄i(T)x̃i(T)

}

+
ε2

2
E

{∫ T

0

(
Qx̃2

i + Ru2
i
)

dt + Hx̃2
i (T)

}
.

On the other hand, applying Itô’s formula to x̃iȳi and taking expectation, we obtain

E
[
Hx̄i(T)x̃i(T)

]
= E

[∫ T

0
(Bȳi + Dz̄i)ui – Q(x̄i – x̄)x̃i dt

]
.
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Hence,

Ji
(
xi0, x̄(·), u0(·); ūi(·) + εui(·)

)
– Ji

(
xi0, x̄(·), u0(·); ūi(·)

)

= εE

{∫ T

0
(Bȳi + Rūi + Dz̄i)ui dt

}
+

ε2

2
E

{∫ T

0

(
Qx̃2

i + Ru2
i
)

dt + Hx̃2
i (T)

}
.

It follows that

Ji
(
xi0, x̄(·), u0(·); ūi(·)

)≤ Ji
(
xi0, x̄(·), u0(·); ūi(·) + εui(·)

)
,

∀ui(·) ∈ Ui[0, T],∀ε ∈R,

if and only if (4.2) and (4.3) hold. �

By assumption R > 0, we can figure out that the optimal response is

ūi = –R–1(Bȳi + Dz̄i), (4.5)

so the related Hamiltonian system can be represented by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx̄i = {Ax̄i – BR–1(Bȳi + Dz̄i) + Ex̄ + αx0}dt

+ {Cx̄i – DR–1(Bȳi + Dz̄i) + Fx̄ + βx0}dWi(t),

dȳi = –{Aȳi + Cz̄i + Q(x̄i – x̄)}dt + z̄i dWi(t),

x̄i(0) = xi0, ȳi(T) = Hx̄i(T), i = 1, 2, . . . , N .

Based on the above analysis, we have

x̄(·) = lim
N→+∞

1
N

N∑
i=1

x̄i(·) = E
[
x̄i(·)

]
. (4.6)

Here, the first equality of (4.6) is due to the consistency condition by which the frozen
term x̄(·) should equal the average limit of all realized states x̄i(·); the second equality is
due to the law of large numbers on common noise. Thus, by replacing x̄ with E[x̄i], we get
the following system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx̄i = {Ax̄i – BR–1(Bȳi + Dz̄i) + EE[x̄i] + αx0}dt

+ {Cx̄i – DR–1(Bȳi + Dz̄i) + FE[x̄i] + βx0}dWi(t),

dȳi = –{Aȳi + Cz̄i + Q(x̄i – E[x̄i])}dt + z̄i dWi(t),

x̄i(0) = xi0, ȳi(T) = Hx̄i(T), i = 1, 2, . . . , N .

(4.7)

As all agents are statistically identical, we may suppress the subscript “i”, and the following
consistency condition system arises for a “representative” agent:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx̄ = {Ax̄ – BR–1(Bȳ + Dz̄) + EE[x̄] + αx0}dt

+ {Cx̄ – DR–1(Bȳ + Dz̄) + FE[x̄] + βx0}dW (t),

dȳ = –{Aȳ + Cz̄ + Q(x̄ – E[x̄])}dt + z̄ dW (t),

x̄(0) = x, ȳ(T) = Hx̄(T),

(4.8)
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where W (·) stands for a generic Brownian motion on (�,F ,P) that is independent of W0.
x is a representative element of {xi0}1≤i≤N , and x0(·) is a quantity need to be determined
by further consistency condition analysis, to be given later.

4.2 Optimal strategy of the leader
Once Problem (II) is solved, we turn to finding the optimal control of the leader (agent
A0). Note that when the followers take their optimal response ūi(·) given by (4.5), the
major leader ends up with the following state equation system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx0 = {A0x0 + B0u0 + C0z0}dt + z0 dW0(t),

dx̄ = {Ax̄ – BR–1(Bȳ + Dz̄) + EE[x̄] + αx0}dt

+ {Cx̄ – DR–1(Bȳ + Dz̄) + FE[x̄] + βx0}dW (t),

dȳ = –{Aȳ + Cz̄ + Q(x̄ – E[x̄])}dt + z̄ dW (t),

x0(T) = ξ , x̄(0) = x, ȳ(T) = Hx̄(T).

(4.9)

And its corresponding cost functional is

J0(u0) =
1
2
E

{∫ T

0

[
Q0

(
x0(t) – x̄(t)

)2 + Q̃x2
0(t) + R0u2

0(t)
]

dt + H0x2
0(0)

}
. (4.10)

We present the optimal control problem for the leader as follows.

Problem (III) When the followers take their optimal response ūi(·) given by (4.5), find
the optimal control ū0(·) ∈ U0[0, T] such that

J0
(
ū0(·)) = inf

u0(·)∈U0[0,T]
J0
(
u0(·)).

The main result of this section can be stated as follows.

Theorem 4.2 Under assumption (H1), the followers take their optimal response ūi(·) given
by (4.5). Then, for the terminal value ξ ∈ L2

Fw0
T

(�;R), Problem (III) admits an optimal
control ū0(·) ∈ U0[0, T] if and only if the following two conditions hold:

(i) The adapted solution (x̄0(·), z̄0(·), x̄(·), ȳ(·), z̄(·), ȳ0(·), p̄(·), q̄(·), k̄(·)) to the FBSDE on
[0, T]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄0 = {A0x̄0 + B0ū0 + C0z̄0}dt + z̄0 dW0(t),

dx̄ = {Ax̄ – BR–1(Bȳ + Dz̄) + EE[x̄] + αx̄0}dt

+ {Cx̄ – DR–1(Bȳ + Dz̄) + FE[x̄] + βx̄0}dW (t),

dȳ = –{Aȳ + Cz̄ + Q(x̄ – E[x̄])}dt + z̄ dW (t),

dȳ0 = –{A0ȳ0 + αp̄ + βq̄ + Q0(x̄0 – x̄) + Q̃x̄0}dt – C0ȳ0 dW0(t),

dp̄ = –{Ap̄ + Cq̄ + EE[p̄] + FE[q̄] + QE[k̄] – Q0(x̄0 – x̄) – Qk̄}dt

+ q̄ dW (t),

dk̄ = {B2R–1p̄ + BDR–1q̄ + Ak̄}dt + {BDR–1p̄ + D2R–1q̄ + Ck̄}dW (t),

x̄0(T) = ξ , x̄(0) = x, ȳ(T) = Hx̄(T),

ȳ0(0) = –H0x̄0(0), p̄(T) = –Hk̄(T), k̄(0) = 0,

(4.11)
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satisfies the following stationarity condition:

B0ȳ0 + R0ū0 = 0, a.e. t ∈ [0, T], a.s. (4.12)

(ii) The following convexity condition holds:

E

{∫ T

0

(
Q0(x̃0 – x̃)2 + Q̃x̃2

0 + R0u2
0
)

dt + H0x̃2
0(0)

}
≥ 0, ∀u0(·) ∈ U0[0, T], (4.13)

where (x̃0(·), z̃0(·), x̃(·), ỹ(·), z̃(·)) is the solution to the BFSDE

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̃0 = {A0x̃0 + B0u0 + C0z̃0}dt + z̃0 dW0(t), t ∈ [0, T],

dx̃ = {Ax̃ – BR–1(Bỹ + Dz̃) + EE[x̃] + αx̃0}dt

+ {Cx̃ – DR–1(Bỹ + Dz̃) + FE[x̃] + βx̃0}dW (t),

dỹ = –{Aỹ + Cz̃ + Q(x̃ – E[x̃])}dt + z̃ dW (t),

x̃0(T) = 0, x̃(0) = 0, ỹ(T) = Hx̃(T).

(4.14)

Or, equivalently, the mapping u0(·) �→ J0(u0(·)), defined by (4.10), is convex.

Proof For given ξ ∈ L2
Fw0

T
(�;R) and ū0(·) ∈ U0[0, T], let (x̄0(·), z̄0(·), x̄(·), ȳ(·), z̄(·), ȳ0(·), p̄(·),

q̄(·), k̄(·)) be an adapted solution to FBSDE (4.11). For any u0(·) ∈ U0[0, T] and ε ∈ R, let
(xε

0(·), zε
0(·), xε(·), yε(·), zε(·)) be the solution to the following perturbed state equation on

[0, T]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxε
0 = {A0xε

0 + B0(ū0 + εu0) + C0zε
0}dt + zε

0 dW0(t),

dxε = {Axε – BR–1(Byε + Dzε) + EE[xε] + αxε
0}dt

+ {Cxε – DR–1(Byε + Dzε) + FE[xε] + βxε
0}dW (t),

dyε = –{Ayε + Czε + Q(xε – E[xε])}dt + zε dW (t),

xε
0(T) = ξ , xε(0) = x, yε(T) = Hxε(T).

Then, denoting by (x̃0(·), z̃0(·), x̃, ỹ, z̃) the solution of (4.14), we have xε
0(·) = x̄0(·) + εx̃0(·),

zε
0(·) = z̄0(·) + εz̃0(·), xε(·) = x̄(·) + εx̃(·), yε(·) = ȳ(·) + εỹ(·), zε(·) = z̄(·) + εz̃(·), and

J0
(
ū0(·) + εu0(·)) – J0

(
ū0(·))

= εE

{∫ T

0

(
Q0(x̄0 – x̄)(x̃0 – x̃) + Q̃x̄0x̃0 + R0ū0u0

)
dt + H0x̄0(0)x̃0(0)

}

+
ε2

2
E

{∫ T

0

(
Q0(x̃0 – x̃)2 + Q̃x̃2

0 + R0u2
0
)

dt + H0x̃2
0(0)

}
.

On the other hand, applying Itô’s formula to x̃0ȳ0 + x̃p̄ + ỹk̄ and taking expectation, we
obtain

E
[
H0x̄0(0)x̃0(0)

]
= E

[∫ T

0

(
B0ȳ0u0 – Q0(x̄0 – x̄)(x̃0 – x̃) – Q̃x̄0x̃0

)
dt
]

.
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Hence,

J0
(
ū0(·) + εu0(·)) – J0

(
ū0(·))

= εE

{∫ T

0
(B0ȳ0 + R0ū0)u0 dt

}

+
ε2

2
E

{∫ T

0

(
Q0(x̃0 – x̃)2 + Q̃x̃2

0 + R0u2
0
)

dt + H0x̃2
0(0)

}
.

It follows that

J0
(
ū0(·))≤ J0

(
ū0(·) + εu0(·)), ∀u0(·) ∈ U0[0, T],∀ε ∈R,

if and only if (4.12) and (4.13) hold. �

Since R0 > 0, furthermore, we can compute out the optimal control for the leader agent
A0 is

ū0 = –R–1
0 B0ȳ0, (4.15)

so we can finally get the consistency condition for the auxiliary problems as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx̄0 = {A0x̄0 – B2
0R–1

0 ȳ0 + C0z̄0}dt + z̄0 dW0(t),

dx̄ = {Ax̄ – BR–1(Bȳ + Dz̄) + EE[x̄] + αx̄0}dt

+ {Cx̄ – DR–1(Bȳ + Dz̄) + FE[x̄] + βx̄0}dW (t),

dȳ = –{Aȳ + Cz̄ + Q(x̄ – E[x̄])}dt + z̄ dW (t),

dȳ0 = –{A0ȳ0 + αp̄ + βq̄ + Q0(x̄0 – x̄) + Q̃x̄0}dt – C0ȳ0 dW0(t),

dp̄ = –{Ap̄ + Cq̄ + EE[p̄] + FE[q̄] + QE[k̄] – Q0(x̄0 – x̄) – Qk̄}dt

+ q̄ dW (t),

dk̄ = {B2R–1p̄ + BDR–1q̄ + Ak̄}dt + {BDR–1p̄ + D2R–1q̄ + Ck̄}dW (t),

x̄0(T) = ξ , x̄(0) = x, ȳ(T) = Hx̄(T),

ȳ0(0) = –H0x̄0(0), p̄(T) = –Hk̄(T), k̄(0) = 0.

(4.16)

5 The consistency condition system
By the results in the last section, we can find the optimal response of the followers and the
optimal control of the leader if we can show the well-posedness of coupled BFSDE (4.16).
In this section, we turn to verify its well-posedness (refer to [19]) since it is important to the
decentralized strategy design. To get the well-posedness of (4.16), we give the following
assumption:

(H2) B0 �= 0, H0 > 0, Q̃ > 0.

Theorem 5.1 Under assumption (H2), FBSDE (4.16) is uniquely solvable.
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Proof Uniqueness. For the sake of notational convenience, in (4.16) we denote by b(φ),
σ (φ) the coefficients of drift and diffusion terms, respectively, for φ = ȳ0, x̄, k̄; denote by
f (ψ) the generator for ψ = x̄0, p̄, ȳ.

Define 
 := (ȳ0, x̄, k̄, x̄0, p̄, ȳ, z̄0, q̄, z̄), similar to the notation in Peng and Wu [19], we de-
note

A(t,
) :=
(
–f (x̄0), –f (p̄), –f (ȳ), b(ȳ0), b(x̄), b(k̄),σ (ȳ0),σ (x̄),σ (k̄)

)
,

which implies A(t,
) = (A0x̄0 – B2
0R–1

0 ȳ0 + C0z̄0, –(Ap̄ + Cq̄ + EE[p̄] + FE[q̄] + QE[k̄] –
Q0(x̄0 – x̄) – Qk̄), –(Aȳ + Cz̄ + Q(x̄ – E[x̄])), –(A0ȳ0 + αp̄ + βq̄ + Q0(x̄0 – x̄) + Q̃x̄0), Ax̄ –
B2R–1ȳ – BDR–1z̄ + EE[x̄] + αx̄0, B2R–1p̄ + BDR–1q̄ + Ak̄, –C0ȳ0, Cx̄ – BDR–1ȳ – D2R–1z̄ +
FE[x̄] + βx̄0, BDR–1p̄ + D2R–1q̄ + Ck̄).

Then, for any 
i = (ȳi
0, x̄i, k̄i, x̄i

0, p̄i, ȳi, z̄i
0, q̄i, z̄i), i = 1, 2, we have

E
〈
A
(
t,
1) – A

(
t,
2),
1 – 
2〉

= E
[
–B2

0R–1
0
(
ȳ1

0 – ȳ2
0
)2 – Q0

[(
x̄1 – x̄2) –

(
x̄1

0 – x̄2
0
)]2 – Q̃

(
x̄1

0 – x̄2
0
)2]

≤ E
[
–B2

0R–1
0
(
ȳ1

0 – ȳ2
0
)2 – Q̃

(
x̄1

0 – x̄2
0
)2]

:= E
[
–β1

(
ȳ1

0 – ȳ2
0
)2 – β2

(
x̄1

0 – x̄2
0
)2].

In the following, we are first going to show that (4.16) admits at most one adapted solution.
Suppose that 
i, i = 1, 2, are two solutions of (4.16). Setting 
̂ = (̂y0, x̂, k̂, x̂0, p̂, ŷ, ẑ0, q̂, ẑ) =
(ȳ1

0 – ȳ2
0, x̄1 – x̄2, k̄1 – k̄2, x̄1

0 – x̄2
0, p̄1 – p̄2, ȳ1 – ȳ2, z̄1

0 – z̄2
0, q̄1 – q̄2, z̄1 – z̄2) and applying Itô’s

formula to 〈̂y0, x̂0〉 + 〈̂x, p̂〉 + 〈̂k, ŷ〉, we have

–E〈̂y0, x̂0〉 = E

[∫ T

0

〈
A
(
t,
1) – A

(
t,
2), 
̂〉

ds
]

≤ –β1E

[∫ T

0

(
ȳ1

0 – ȳ2
0
)2 ds

]
– β2E

[∫ T

0

(
x̄1

0 – x̄2
0
)2 ds

]
.

It follows that

β1E

[∫ T

0

∣∣̂y0(s)
∣∣2 ds

]
+ β2E

[∫ T

0

∣∣̂x0(s)
∣∣2 ds

]
+ H0E

∣∣̂x0(0)
∣∣2 ≤ 0.

By (H2), we get β1 > 0 and β2 > 0. Then ŷ0(s) ≡ 0, x̂0(s) ≡ 0. Furthermore, there is ẑ0(s) ≡ 0.
Applying the basic technique to x̂(s) and ŷ(s) and using Gronwall’s inequality, we obtain
x̂(s) ≡ 0, ŷ(s) ≡ 0, and ẑ(s) ≡ 0. Similarly, we have k̂(s) ≡ 0, p̂(s) ≡ 0, and q̂(s) ≡ 0. Therefore,
(4.16) admits at most one adapted solution.
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Existence. In order to prove the existence of the solution, we first consider the following
family of FBSDEs parameterized by γ ∈ [0, 1]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dȳγ
0 = [–(1 – γ )x̄γ

0 β2 + γ b(ȳγ
0 ) + ϕ1

t ] dt + [γ σ (ȳγ
0 ) + λ1

t ] dW0(t),

dx̄γ
0 = [–(1 – γ )ȳγ

0 β1 – γ f (x̄γ
0 ) + κ2

t ] dt + z̄γ
0 dW0(t),

dx̄γ = [γ b(x̄γ ) + ϕ2
t ] dt + [γ σ (x̄γ ) + λ2

t ] dW (t),

dp̄γ = [–γ f (p̄γ ) + κ2
t ] dt + q̄γ dW (t),

dk̄γ = [γ b(k̄γ ) + ϕ3
t ] dt + [γ σ (k̄γ ) + λ3

t ] dW (t),

dȳγ = [–γ f (ȳγ ) + κ3
t ] dt + z̄γ dW (t),

ȳγ
0 (0) = –(1 – γ )x̄γ

0 (0) – γ H0x̄γ
0 (0) + a, x̄γ

0 (T) = γ ξ ,

x̄γ (0) = γ x, p̄γ (T) = –γ Hk̄γ (T), k̄γ = 0, ȳγ (T) = γ Hx̄γ (T),

(5.1)

where (ϕ1,ϕ2,ϕ3,λ1,λ2,λ3,κ1,κ2,κ3) ∈ L2
F (0, T ;R9), a ∈ L2

Fw0 (�;R). Clearly, when γ = 1,
the existence of (5.1) implies that of (4.16). When γ = 0, it is easy to obtain that (5.1)
admits a unique solution. Actually, the 2-dim FBSDE is very similar to the Hamiltonian
system of Lim and Zhou (2001) [16].

If, a priori, for each (ϕ1,ϕ2,ϕ3,λ1,λ2,λ3,κ1,κ2,κ3) ∈ L2
F (0, T ;R9) and a certain number

γ0 ∈ [0, 1), there exists a unique tuple (ȳγ
0 , x̄γ , k̄γ , x̄γ

0 , p̄γ , ȳγ , z̄γ
0 , q̄γ , z̄γ ) of (5.1), then for each

us = (ȳ0(s), x̄(s), k̄(s), x̄0(s), p̄(s), ȳ(s), z̄0(s), q̄(s), z̄(s)) ∈ L2
F (0, T ;R9), there exists a unique tu-

ple Us = (Ȳ0(s), X̄(s), K̄(s), X̄0(s), P̄(s), Ȳ (s), Z̄0(s), Q̄(s), Z̄(s)) ∈ L2
F (0, T ;R9) satisfying the fol-

lowing FBSDEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dȲ0 = [–(1 – γ0)X̄0β2 + γ0b(Ȳ0) + δ(x̄0β2 + b(ȳ0)) + ϕ1
t ] dt

+ [γ0σ (Ȳ0) + λ1
t ] dW0(t),

dX̄0 = [–(1 – γ0)Ȳ0β1 – γ0f (X̄0) + δ(ȳ0β1 – f (x̄0)) + κ2
t ] dt + Z̄0 dW0(t),

dX̄ = [γ0b(X̄) + δb(x̄) + ϕ2
t ] dt + [γ0σ (X̄) + λ2

t ] dW (t),

dP̄ = [–γ0f (P̄) – δf (p̄) + κ2
t ] dt + Q̄ dW (t),

dK̄ = [γ0b(K̄) + δb(k̄) + ϕ3
t ] dt + [γ0σ (K̄) + λ3

t ] dW (t),

dȲ = [–γ0f (Ȳ ) – δf (ȳ) + κ3
t ] dt + Z̄ dW (t),

Ȳ0(0) = –(1 – γ0)X̄0(0) – γ0H0X̄0(0) + δ(1 – H0)x̄0(0) + a,

X̄0(T) = γ0ξ + δξ ,

X̄(0) = γ0x + δx, P̄(T) = –γ0HK̄(T), K̄ = 0, Ȳ (T) = γ0HX̄(T).

(5.2)

In the following, we aim to prove that the mapping defined by

Iγ0+δ

(
u × x̄0(0)

)
= U × X̄0(0) : L2

F
(
0, T ;R9)× L2

F (�;R) → L2
F
(
0, T ;R9)× L2

F (�;R)

is a contraction.
Introduce u′ = (ȳ′

0, x̄′, k̄′, x̄′
0, p̄′, ȳ′, z̄′

0, q̄′, z̄′) ∈ L2
F (0, T ;R9), U ′ × X̄ ′

0(0) = Iγ0+δ(u′ × x̄′
0(0))

and set

û = (̂y0, x̂, k̂, x̂0, p̂, ŷ, ẑ0, q̂, ẑ)

=
(
ȳ0 – ȳ′

0, x̄ – x̄′, k̄ – k̄′, x̄0 – x̄′
0, p̄ – p̄′, ȳ – ȳ′, z̄0 – z̄′

0, q̄ – q̄′, z̄ – z̄′),
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Û = (Ŷ0, X̂, K̂ , X̂0, P̂, Ŷ , Ẑ0, Q̂, Ẑ)

=
(
Ȳ0 – Ȳ ′

0, X̄ – X̄ ′, K̄ – K̄ ′, X̄0 – X̄ ′
0, P̄ – P̄′, Ȳ – Ȳ ′, Z̄0 – Z̄′

0, Q̄ – Q̄′, Z̄ – Z̄′).
Applying Itô’s formula to 〈Ŷ0, X̂0〉 + 〈X̂, P̂〉 + 〈K̂ , Ŷ 〉, we have

(
γ0H0 + (1 – γ0)

)
E
∣∣X̂0(0)

∣∣2 + E

[∫ T

0

(
β1
∣∣Ŷ0(s)

∣∣2 + β2
∣∣X̂0(s)

∣∣2)ds
]

≤ δC1E

[∫ T

0

(|̂us|2 + |Ûs|2
)]

+ δC1E
∣∣X̂0(0)

∣∣2.
(5.3)

On the other hand, since Ȳ0 and Ȳ ′
0 are the solutions of SDEs with Itô’s type, applying the

usual technique, the estimate for the difference Ŷ0 = Ȳ0 – Ȳ ′
0 is obtained by

E

[∫ T

0

∣∣Ŷ0(s)
∣∣2 ds

]
≤ C1TδE

[∫ T

0
|̂us|2 ds

]
+ C1TE

∣∣X̂0(0)
∣∣2 + C1TδE

∣∣̂x0(0)
∣∣2

+ C1TE

[∫ T

0

(∣∣X̂0(s)
∣∣2 +

∣∣X̂(s)
∣∣2 +

∣∣̂P(s)
∣∣2 +

∣∣K̂(s)
∣∣2)ds

]
.

(5.4)

Similarly, estimates for the difference X̂ = X̄ – X̄ ′ and K̂ = K̄ – K̄ ′ are given by

sup
0≤s≤r

E
∣∣X̂(s)

∣∣2 ≤ C1δE

[∫ r

0
|̂us|2 ds

]
+ C1E

[∫ r

0

(∣∣Ŷ (s)
∣∣2 +

∣∣X̂0(s)
∣∣2)] (5.5)

and

sup
0≤s≤r

E
∣∣K̂(s)

∣∣2 ≤ C1δE

[∫ r

0
|̂us|2 ds

]
+ C1E

[∫ r

0

(∣∣Ŷ (s)
∣∣2 +

∣∣̂P(s)
∣∣2)], (5.6)

respectively, for 0 ≤ r ≤ T . In the same way, for the difference of the solutions (X̂0, Ẑ0) =
(X̄0 – X̄ ′

0, Z̄0 – Z̄′
0), (̂P, Q̂) = (P̄ – P̄′, Q̄ – Q̄′), and (Ŷ , Ẑ) = (Ȳ – Ȳ ′, Z̄ – Z̄′), applying the usual

technique to the BSDEs, we have

E

[∫ T

0

(∣∣X̂0(s)
∣∣2 +

∣∣Ẑ0(s)
∣∣2)ds

]
≤ C1δE

[∫ T

0
|̂us|2 ds

]
+ C1E

[∫ T

0

∣∣Ŷ0(s)
∣∣2 ds

]
, (5.7)

E

[∫ r

0

(∣∣̂P(s)
∣∣2 +

∣∣Q̂(s)
∣∣2)ds

]

≤ C1δE

[∫ r

0
|̂us|2 ds

]
+ C1E

[∫ r

0

(∣∣X̂0(s)
∣∣2 +

∣∣X̂(s)
∣∣2 +

∣∣K̂ (s)
∣∣2)ds

]
,

(5.8)

and

E

[∫ r

0

(∣∣Ŷ (s)
∣∣2 +

∣∣Ẑ(s)
∣∣2)ds

]

≤ C1δE

[∫ r

0
|̂us|2 ds

]
+ C1E

[∫ r

0

(∣∣X̂0(s)
∣∣2 +

∣∣X̂(s)
∣∣2)ds

] (5.9)

for ∀0 ≤ r ≤ T . Here, the constant C1 depends on the coefficients of (2.1)–(2.2), β1, β2,
and T . γ0H0 + (1 – γ0) ≥ μ, μ = min(1, H0) > 0.
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Under (H2), combining (5.3), (5.5)–(5.6), (5.8)–(5.9) and applying Gronwall’s inequality,
we obtain

E

[∫ T

0
|Ûs|2 ds

]
+ E

∣∣X̂0(0)
∣∣2 ≤ C2δ

(
E

∫ T

0
|̂us|2 ds + E

∣∣̂x0(0)
∣∣2),

where C2 depends on C1, μ, and T . Choosing δ0 = 1
2C2

, we get that, for each fixed δ ∈ [0, δ0],
the mapping Iγ0+δ is a contraction in the sense that

E

[∫ T

0
|Ûs|2 ds

]
+ E

∣∣X̂0(0)
∣∣2 ≤ 1

2

(
E

∫ T

0
|̂us|2 ds + E

∣∣̂x0(0)
∣∣2).

Then it follows that there exists a unique fixed point

Uγ0+δ =
(
Ȳ γ0+δ

0 , X̄γ0+δ , K̄γ0+δ , X̄γ0+δ
0 , P̄γ0+δ , Ȳ γ0+δ , Z̄γ0+δ

0 , Q̄γ0+δ , Z̄γ0+δ
)
,

which is the solution of (5.1) for γ = γ0 + δ. Since δ0 depends only on (C1,μ, T), we can
repeat this process N times with 1 ≤ Nδ0 < 1 + δ0.

Then it follows that, in particular, as γ = 1 corresponding to ϕi
t ≡ 0, λi

t ≡ 0, κ i
t ≡ 0, a = 0

(i = 1, 2, 3), (5.1) admits a unique solution, which implies the well-posedness of (4.16). The
proof is complete. �

6 ε-Nash equilibrium for Problem (I)
We characterized the decentralized strategies {ūi}0≤i≤N of Problem (I) through the auxil-
iary Problem (II) and the consistency condition system. Now, we turn to verify the ε-Nash
equilibrium of these decentralized strategies. We first present the definition of ε-Nash
equilibrium.

Definition 6.1 A set of controls (ū0, ū1, . . . , ūN ) ∈ U0 × U1 × · · · × UN for (1 + N) agents
is called to satisfy an ε-Nash equilibrium with respect to the costs (J0,J1, . . . ,JN ) if there
exists ε = ε(N) ≥ 0, limN→∞ ε(N) = 0 such that, for any fixed i = 1, 2, . . . , N , we have

⎧⎨
⎩
J0(ū0, ū–0) ≤ J0(u0, ū–0) + ε,

Ji(ūi, ū–i) ≤ Ji(ui, ū–i) + ε,
(6.1)

when any alternative control (u0, ui) ∈ U0 × Ui is applied by (A0,Ai).

At first, we present the main result of this section and defer its proof in later part.

Theorem 6.2 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, then {ūi}0≤i≤N

is an ε-Nash equilibrium of Problem (I) for the leader agent A0 and each of the follower
agents Ai, i = 1, 2, . . . , N . And {ūi}0≤i≤N is given by

⎧⎨
⎩

ū0(t) = –R–1
0 B0ȳ0(t),

ūi(t) = –R–1(Bȳi + Dz̄i(t))
(6.2)

for ȳ0(·), (ȳi(·), z̄i(·)) solved by (4.16).
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For the leader A0 and the followers Ai, the decentralized states (x̄0(·), z̄0(·)), and x̄i(·) are
given respectively by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dx̄0(t) = {A0x̄0(t) – R–1
0 B2

0ȳ0(t) + C0z̄0(t)}dt + z̄0(t) dW0(t),

dx̄i(t) = {Ax̄i(t) – R–1B2ȳi(t) – R–1BDz̄i(t) + Ex̄(N)(t) + αx̄0(t)}dt

+ {Cx̄i(t) – R–1BDȳi(t) – R–1D2z̄i(t) + Fx̄(N)(t) + βx̄0(t)}dWi(t),

x̄0(T) = ξ , x̄i(0) = xi0, i = 1, 2, . . . , N ,

(6.3)

where the processes ȳ0(·), (ȳi(·), z̄i(·)) are solved by (4.16). Let us first present several lem-
mas to be used later. Here, we may abuse the inner product notation 〈·, ·〉 with | · |2.

Lemma 6.3 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, there exists a
constant M independent of N such that

sup
0≤i≤N

E

[
sup

0≤t≤T

∣∣x̄i(t)
∣∣2] < M.

Proof From Theorems 4.1, 4.2, FBSDEs (4.11) and (4.1) have unique solutions ((x̄0, z̄0),
ȳ0) ∈ L2

F (0, T ;R3) and (x̄i, (ȳi, z̄i)) ∈ L2
F (0, T ;R3N ), 1 ≤ i ≤ N . Thus, BFSDEs system (6.3)

has also a unique solution

(
(x̄0, z̄0), x̄1, . . . , x̄N

) ∈ L2
F
(
0, T ;R2+N).

Noticing that BFSDEs system (6.3) is weakly coupled, in fact, we can compute the BSDE
part directly. So, we can easily show that there exists a constant M independent of N such
that

E

[
sup

0≤t≤T

∣∣x̄0(t)
∣∣2] < M.

Then we turn to estimate the SDE part of (6.3). By using the BDG inequality, there exists
a constant M independent of N such that, for any t ∈ [0, T],

E

[
sup

0≤s≤t

∣∣x̄i(s)
∣∣2]≤M + ME

[∫ t

0

∣∣x̄i(s)
∣∣2 +

∣∣x̄0(s)
∣∣2 +

∣∣x̄(N)(s)
∣∣2|2 ds

]

≤M + ME

[∫ t

0

∣∣x̄i(s)
∣∣2 +

1
N

N∑
i=1

∣∣x̄i(s)
∣∣2 ds

]

and by Gronwall’s inequality, we obtain

E

[
sup

0≤s≤t

∣∣x̄i(s)
∣∣2]≤ M + ME

[∫ t

0

1
N

N∑
i=1

∣∣x̄i(s)
∣∣2 ds

]
. (6.4)

Thus,

E

[
sup

0≤s≤t

N∑
i=1

∣∣x̄i(s)
∣∣2
]

≤ E

[ N∑
i=1

sup
0≤s≤t

∣∣x̄i(s)
∣∣2
]

≤ MN + 2ME

[∫ t

0

N∑
i=1

∣∣x̄i(s)
∣∣2
]

.
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By Gronwall’s inequality, it follows that E[sup0≤s≤t
∑N

i=1 |x̄i(s)|2] = O(N). By substituting
this estimate to (6.4), we have E[sup0≤s≤t |x̄i(s)|2] ≤ M. This completes the proof. �

Now, we recall that

x̄(N)(t) =
1
N

N∑
i=1

x̄i(t),

then we have the following.

Lemma 6.4 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, there exists a
constant M independent of N such that

E

[
sup

0≤t≤T

∣∣x̄(N)(t) – x̄(t)
∣∣2]≤ M

N
.

Proof In fact, we have

⎧⎨
⎩

d(x̄(N) – x̄) = (A + E)(x̄(N) – x̄) dt + 1
N
∑N

i=1[· · · ] dWi(t),

(x̄(N) – x̄)(0) = 0.
(6.5)

From (6.5), by using the BDG inequality and Lemma 6.3, there exists a constant M inde-
pendent of N such that, for any t ∈ [0, T],

E

[
sup

0≤s≤t

∣∣x̄(N) – x̄
∣∣2(s)

]
≤ M

N
+ ME

[∫ t

0

∣∣x̄(N) – x̄
∣∣2(s) ds

]
,

and by Gronwall’s inequality, we obtain

E

[
sup

0≤s≤t

∣∣x̄(N) – x̄
∣∣2(s)

]
≤ M

N
. �

Lemma 6.5 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, there exists a
constant M independent of N such that

∣∣Ji(ūi, ū–i) – Ji(ūi)
∣∣ = O

(
1√
N

)
, 0 ≤ i ≤ N .

Proof Let us first consider the leader agent A0. Recalling (2.4) and (4.10), we have

J0(ū0, ū–0) – J0(ū0)

=
1
2
E

{∫ T

0

[
Q0

(
x̄0(t) – x̄(N)(t)

)2 – Q0
(
x̄0(t) – x̄(t)

)2]dt
}

= E

{∫ T

0

[
Q0

(
x̄0(t) – x̄(t)

)(
x̄(N)(t) – x̄(t)

)]
dt
}

+
1
2
E

{∫ T

0

[
Q0

(
x̄(N)(t) – x̄(t)

)2]dt
}

.

(6.6)
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By Hölder’s inequality and Lemma 6.3, there exists a constant M independent of N such
that

E

{∫ T

0

[
Q0

(
x̄0(t) – x̄(t)

)(
x̄(N)(t) – x̄(t)

)]
dt
}

≤ E

{∫ T

0

∣∣x̄0(t) – x̄(t)
∣∣2 dt

} 1
2
E

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤ ME

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2
.

(6.7)

Noting (6.6), (6.7) and Lemma 6.4, there exists a constant M independent of N such that

E

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤
{
E

[
sup

0≤s≤t

∣∣x̄(N) – x̄
∣∣2(s)

]∫ T

0
|Q0|2 dt

} 1
2 ≤ M√

N
= O

(
1√
N

)
.

(6.8)

The remaining claims of the followers can be proved in the same way. �

Remark 6.6 We denote by M the common constant of different bounds. In the above lem-
mas, the constant M may vary line by line but it is always independent of the number of
follower agents N .

6.1 Leader agent’s perturbation
In this subsection, we prove that the control strategies set (ū0, ū1, . . . , ūN ) given by Theo-
rem 6.2 is an ε-Nash equilibrium of Problem (I) for the leader agent A0, i.e., there exists
ε = ε(N) ≥ 0, limN→∞ ε(N) = 0 such that

J0(ū0, ū–0) ≤ J0(u0, ū–0) + ε, ∀u0 ∈ U0[0, T].

Let us consider that the leader agentA0 applies an alternative strategy u0 and each follower
agent Ai uses the control ūi(t) = –R–1(Bȳi + Dz̄i(t)). To prove that (ū0, ū1, . . . , ūN ) is an
ε-Nash equilibrium for the leader agent, we need to show that for possible alternative
control u0, infu0∈U0[0,T] J0(u0, ū–0) ≥ J0(ū0, ū–0) – ε. Then we only need to consider the
perturbation u0 ∈ U0[0, T] such that J0(u0, ū–0) ≤ J0(ū0, ū–0). By the representation of a
cost functional in [21, 28], we can give the representation of a cost functional as follows.

Proposition 6.7 Let (H1)–(H2) hold. There exist a bounded self-adjoint linear operator
N0 : U0[0, T] → U0[0, T], a bounded linear operator N1 : R → U0[0, T], a bounded real-
valued function N2 : R →R such that

J0
(
ξ ; u0, ū–0[u0]

)
=

1
2
{〈

N0u0(·), u0(·)〉 + 2
〈
N1(ξ ), u0(·)〉 + N2(ξ )

}
,

∀(ξ , u0) ∈R× U0[0, T].

Proof Refer to Proposition 3.1 in [21]. �
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So, if we have that N0 � 0 from Lemma 6.5, then there exists a constant c > 0 such that

E

[∫ T

0

∣∣N 1
2

0 u0(t) + N– 1
2

0 N1(ξ )
∣∣2 dt

]

≤ J0(u0, ū–0) + c ≤ J0(ū0, ū–0) + c ≤ J0(ū0) + c + O
(

1√
N

)
,

which implies that E[
∫ T

0 |u0(t)|2 dt] ≤ M, where M is a constant independent of N . In fact,

by the bounded inverse theorem, N–1
0 is bounded, so there exists a constant 0 < γ ≤ ‖N

1
2

0 ‖
such that

γE

[∫ T

0

∣∣u0(t)
∣∣2 dt

]
≤ ∥∥N

1
2

0
∥∥E

[∫ T

0

∣∣u0(t) + N–1
0 N1(ξ )

∣∣2 dt
]

≤ J0(ū0) + c + O
(

1√
N

)
.

Then we have E[
∫ T

0 |u0(t)|2 dt] ≤ M. Similar to Lemma 6.3, we can show that

E

[
sup

0≤t≤T

∣∣x0(t)
∣∣2]≤ M. (6.9)

Remark 6.8 Here, in fact, we have N0 = R0 which is assumed to be a positive number. So we
clearly have the result of (6.9). If we have to deal with a more complicated cost functional,
we may use the representation of the cost functional in [21, 28]. But in this paper, we can
avoid this tool actually, and we just provide a method in case the problem is not so clear.

Lemma 6.9 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, for the leader
agent’s perturbation control u0, we have

∣∣J0(u0, ū–0) – J0(u0)
∣∣ = O

(
1√
N

)
.

Proof Recall (2.4) and (4.10), we have

J0(u0, ū–0) – J0(u0)

=
1
2
E

{∫ T

0

[
Q0

(
x0(t) – x̄(N)(t)

)2 – Q0
(
x0(t) – x̄(t)

)2]dt
}

= E

{∫ T

0

[
Q0

(
x0(t) – x̄(t)

)(
x̄(N)(t) – x̄(t)

)]
dt
}

+
1
2
E

{∫ T

0

[
Q0

(
x̄(N)(t) – x̄(t)

)2]dt
}

.

(6.10)

By Hölder’s inequality and (6.9), there exists a constant M independent of N such that

E

{∫ T

0

[
Q0

(
x0(t) – x̄(t)

)(
x̄(N)(t) – x̄(t)

)]
dt
}

≤ E

{∫ T

0

∣∣x0(t) – x̄(t)
∣∣2 dt

} 1
2
E

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤ ME

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2
.

(6.11)
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At last, same as Lemma 6.5, noting (6.10), (6.11), and Lemma 6.4, there exists a constant
M independent of N such that

E

{∫ T

0

∣∣Q0
(
x̄(N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤
{
E

[
sup

0≤s≤t

∣∣x̄(N) – x̄
∣∣2(s)

]∫ T

0
|Q0|2 dt

} 1
2 ≤ M√

N
= O

(
1√
N

)
.

(6.12)

�

Then, applying Lemmas 6.5 and 6.9, we can give the first part of the proof of Theo-
rem 6.2, i.e., the control strategies set (ū0, ū1, . . . , ūN ) given by Theorem 6.2 is an ε-Nash
equilibrium of Problem (I) for the leader agent.

Part A of the proof to Theorem 6.2 Combining Lemmas 6.5 and 6.9, we have

J0(ū0, ū–0) ≤ J0(ū0) + O
(

1√
N

)
≤ J0(u0) + O

(
1√
N

)
≤ J0(u0, ū–0) + O

(
1√
N

)
,

where the second inequality comes from the fact that J0(ū0) = infu0∈U0[0,T] J0(u0). Conse-
quently, Theorem 6.2 holds for the major leader agent with ε = O( 1√

N ). �

6.2 Follower agent’s perturbation
Now, let us consider the following perturbation: a given follower agent Ai uses an alter-
native strategy ui ∈ Ui[0, T], the leader agent A0 uses ū0. In fact, same as the argument of
the leader agent part, to prove (ū0, ū1, . . . , ūN ) is an ε-Nash equilibrium for each follower
agents, we only need to consider the perturbation ui ∈ Ui[0, T] satisfying

E

[∫ T

0

∣∣ui(t)
∣∣2 dt

]
≤ M,

where M is a constant independent of N . Then, similar to Lemma 6.3, we can show that

sup
1≤i≤N

E

[
sup

0≤t≤T

∣∣xi(t)
∣∣2]≤ M. (6.13)

Lemma 6.10 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, there exists a
constant M independent of N such that

E

[
sup

0≤t≤T

∣∣x(i,N)(t) – x̄(t)
∣∣2]≤ M

N
,

where x(i,N)(t) = 1
N (xi(t) +

∑
k �=i x̄k(t)).

Proof In fact, we have

x(i,N)(t) – x̄(N)(t) =
1
N

xi(t),

by (6.13), it yields

E

[
sup

0≤t≤T

∣∣x(i,N)(t) – x̄(N)(t)
∣∣2]≤ M

N
.
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Combined with Lemma 6.4, we can directly get

E

[
sup

0≤t≤T

∣∣x(i,N)(t) – x̄(t)
∣∣2]≤ M

N
. �

Lemma 6.11 Under assumptions (H1)–(H2) and those of Theorems 4.1, 4.2, for the fol-
lower agent’s perturbation control ui, we have

∣∣Ji(ui, ū–i) – Ji(ui)
∣∣ = O

(
1√
N

)
.

Proof Recall (2.5) and (3.2), we have

Ji(ui, ū–i) – Ji(ui)

=
1
2
E

{∫ T

0

[
Q
(
xi(t) – x(i,N)(t)

)2 – Q
(
xi(t) – x̄(t)

)2]dt
}

= E

{∫ T

0

[
Q
(
xi(t) – x̄(t)

)(
x(i,N)(t) – x̄(t)

)]
dt
}

+
1
2
E

{∫ T

0

[
Q0

(
x(i,N)(t) – x̄(t)

)2]dt
}

.

(6.14)

By the same technique, applying Hölder’s inequality, Lemma 6.10, and (6.13), there exists
a constant M independent of N such that

E

{∫ T

0

[
Q
(
xi(t) – x̄(t)

)(
x(i,N)(t) – x̄(t)

)]
dt
}

≤ E

{∫ T

0

∣∣xi(t) – x̄(t)
∣∣2 dt

} 1
2
E

{∫ T

0

∣∣Q(
x(i,N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤ ME

{∫ T

0

∣∣Q(
x(i,N)(t) – x̄(t)

)∣∣2 dt
} 1

2

≤
{
E

[
sup

0≤s≤t

∣∣x(i,N) – x̄
∣∣2(s)

]∫ T

0
|Q|2 dt

} 1
2 ≤ M√

N
= O

(
1√
N

)
.

(6.15)

�

Taking the advantage of Lemmas 6.5 and 6.11, we can give the second part of the proof
to Theorem 6.2, i.e., the control strategies set (ū0, ū1, . . . , ūN ) given by Theorem 6.2 is an
ε-Nash equilibrium of Problem (I) for each of the follower agents.

Part B of the proof to Theorem 6.2 Combining Lemmas 6.5 and 6.11, we have

Ji(ūi, ū–i) ≤ Ji(ūi) + O
(

1√
N

)
≤ Ji(ui) + O

(
1√
N

)
≤ Ji(ui, ū–i) + O

(
1√
N

)
,

where the second inequality comes from the fact that Ji(ūi) = infui∈Ui[0,T] Ji(ui). Conse-
quently, Theorem 6.2 holds for each of the follower agents with ε = O( 1√

N ). Finally, com-
bined with Part A, we complete the proof to Theorem 6.2. �

Remark 6.12 So far, we have solved the optimal strategy from the BFSDE, but in this case,
we cannot introduce a kind of Riccati equation to decouple the equation. Then we may
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consider how to apply the results in reality. Fortunately, there are lots of existing methods
helping us to do some explicit computation.

In the fields about numerical algorithms and simulations for BSDEs, Peng and Xu [20]
studied the convergence results of an explicit scheme based on approximating Brownian
motion by random walk, which is efficient in programming, and they developed a software
package based on this algorithm for BSDEs. Recently, the authors Sun, Zhao, and Zhou
[22] proposed an explicit θ -scheme for MF-BSDEs, and we can get more results about
MF-FBSDE simulations and numerical methods from other literature works of them.

Another common method to compute the solution of FBSDEs is computing the related
partial differential equations (PDEs), and one of the most famous methods is the four step
scheme introduced by Ma, Protter, and Yong [17]. By virtue of the quasilinear parabolic
PDE, the adapted solution can always be sought under some conditions. We can refer to
Chap. 9 of [28] to get more details about these numerical methods.
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