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Abstract
Our aim in this article is to solve the composite fractional relaxation differential
equation by using different definitions of the non-integer order derivative operator
Dα
t , more specifically we employ the definitions of Caputo, Caputo–Fabrizio and

Atangana–Baleanu of non-integer order derivative operators. We apply the Laplace
transform method to solve the problem and express our solutions in terms of Lorenzo
and Hartley’s generalised G function. Furthermore, the effects of the parameters
involved in the model are graphically highlighted.
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1 Introduction
In these days, fractional calculus (FC) modelling of dynamical setups is getting popular
due to the ability of non-integer order derivatives (NIOD) to explain well the complex
behaviour of several phenomena, for example the heredity and memory characteristics
of materials and processes [1]. Moreover, NIOD models have the potential of adequate
correlation with experimental data [2]. So, FC has attracted the scientists and investiga-
tors to renew their research for accurate modelling of dynamical systems in the frame-
work of fractional calculus. For details, see [3–8]. It is pertinent to mention here that
the most commonly used fractional derivative operators in dynamical model problems
are Riemann–Liouville and Caputo derivative operators [9], but they have a singular ker-
nel. In 2015 Caputo and Fabrizio [10], and later in 2016 Atangana and Baleanu [11], pro-
posed modern definitions of NIOD operator with non-singular kernel. Interestingly, these
nascent derivative operators hold all the properties of Caputo and Riemann–Liouville op-
erators but have smooth kernels. The Caputo and Fabrizio derivative operator is suitable
for both temporal and spatial variables, while the Atangana and Baleanu derivative oper-
ator, defined in terms of the Mittag-Leffler function [12], is useful in material and thermal
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sciences. During the past few years, the main properties of these operators have been ex-
plored and their advantages have been extensively investigated for various practical cases
[13–18].

The motion of the sphere dipped in an in-compressible viscous fluid poses a classical
problem, which has many practical implications in flows of geophysical and engineering
interest [19, 20]. In order to linearise the Navier–Stokes equations characterising the mo-
tion of fluid, the low Reynolds number limit or slow motion assumption is considered.
The problem of a sphere under the influence of gravity was first discussed independently
by Boussinesq [19] in 1885 and by Basset [20] in 1888, who further introduced a special
hydrodynamic force, regarding the history of the relative acceleration of the sphere, later
known as Basset force. Practically, for the case when a body is immersed in a fluid, the
acceleration of that body with respect to the fluid gives rise to an unsteady force that can
be divided into two parts, namely the virtual mass effect and the Basset force. The Basset
force deals with the viscous effects and explains the temporal-delay-in-boundary-layer-
development as the relative velocity changes with time [21]. It is also acknowledged as the
history term.

The fractional differential equation

du
dt

+ aDα
t u(t) + u(t) = f (t), t ≥ 0, (1)

along with the initial conditions u(0+) = u0 is referred to as composite fractional relaxation
equation (CFRE).

Here, Dα
t is an NOID operator of order α ∈ (0, 1). Moreover, in the equation a is a posi-

tive constant and a = ( 9ρf
2ρp+ρf

)α , where ρp and ρf denote the densities of particle and fluid
respectively, u(t) is the field variable, whereas the given function f (t) is presumed to be
continuous.

The composite fractional relaxation equation with α = 1/2 is called Basset problem in
fluid dynamics. For α = 1/4, 3/4, it is referred to as the generalised Basset problem [22, 23].
Furthermore, the well-posedness of Eq. (1) is discussed in [24].

Considering the NIOD operator in the sense of Caputo, this problem was discussed
by Basset and was first solved by Boggio [25] for α = 1/2 in terms of Gauss and Fresnel
integrals. Further, the solutions of the Basset problem are found in [26, 27]. Moreover,
Mainardi [22] solved the problem by using the Laplace transform method and expressed
the solution in terms of Mittag-Leffler functions. Later on, in 2014 Anjara and Solofoniaina
[28] solved the Basset problem by Adomian’s method.

In solving non-integer order differential equations (DEs) using the Laplace transform
method, the inverse Laplace transform is not trivial. In this regard we have to introduce
some special functions. For example, Mittag-Leffler function, Robotnov and Hartley’s
function, Lorenzo and Hartley’s generalised R function, generalised G functions etc. Such
functions produce a direct solution and give important interpretations for the fundamen-
tal linear non-integer order DEs and corresponding IVPs. These functions are helpful in
the solutions of the FC problems and more notably in the solution of fractional differential
equations. Our aim in this article is to solve the composite fractional relaxation equation
by using different definitions of NIOD operators, more specifically we employ the defini-
tions of Caputo, Caputo–Fabrizio and Atangana–Baleanu of NIOD operators. We apply
the Laplace transform method to solve the problem and express our solutions in terms
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of Lorenzo and Hartley’s generalised G function. Moreover, to get some understanding
regarding the influence of the two parameters α and a on the generalised as well as classi-
cal Basset problem, we present some diagrams for the particle’s velocity, analogous to the
solution of (1). For the sake of clarity, we assume a diminishing initial velocity condition
and f (t) = H(t) and sin(ωt).

The manuscript is structured in six sections. Following this short introductory section,
Sect. 2 describes some mathematical preliminaries. Section 3 discusses the solution of
the problem employing various definitions of NIOD operators, while some special cases
derived from the obtained results are reported in Sect. 4. Section 5 is devoted to the para-
metric analysis, and finally the useful conclusions are recorded in Sect. 6.

2 Mathematical preliminaries
In this section we present some basic definitions and properties of some important special
functions and Caputo, CF and AB-time fractional derivative operators [29–31].

2.1 Special functions
As already mentioned in the introduction, for solving the NIOD DEs using the Laplace
transform method, the inverse Laplace transform is not trivial. In this regard we have to
introduce some special functions [32]. For example, Mittag-Leffler function [33], Robot-
nov and Hartley’s function [34] and Lorenzo and Hartley’s functions [35]. Such functions
contribute a direct solution and critical insight for the fundamental linear fractional-order
DEs and associated IVPs. Moreover, they are appropriate in the solutions of the problems
related to FC and more importantly in the solution of NOIDEs.

In the following, we present some special functions together with their definitions,
Laplace transforms and some examples.

1. Mittag-Leffler function. It is a significant function and has many applications in the
field of FC. Analogous to the exponential function that arises in a natural way from
the solutions of differential equations of integer order, the Mittag-Leffler function
plays a similar role in the solution of non-integer order differential equations [36, 37].
As a matter of fact, the exponential function is a special form of it. The Mittag-Leffler
function is defined as [33]

Eα(t) =
∞∑

k=0

tk

�(kα + 1)
; α > 0.

It is not difficult to observe that, for α = 1, we get

E1(t) =
∞∑

k=0

tk

�(k + 1)
= et .

Moreover,

L
{

Eα

(
–atα

)}
= L

{ ∞∑

k=0

(–a)ktkα

�(kα + 1)

}
=

qα

q(qα + a)
; α > 0.
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2. Erdelyi’s function. It is the generalisation of Mittag-Leffler function and is defined as
[38]

Eα,β (t) =
∞∑

k=0

tk

�(kα + β)
; α,β > 0.

Setting β = 1, we have

Eα,1(t) =
∞∑

k=0

tk

�(kα + 1)
= Eα(t).

For α = 1 and β = 2, we have

E1,2(t) =
et – 1

t
.

Similarly, we have

E 1
2 ,1(t) = et2

erfc(–t)

and

E2,2
(
t2) =

sinh(t)
t

,

where erfc denotes the complementary error function and is defined as [32]
erfc(t) = 2√

π

∫ ∞
t e–u2 du.

Further,

L
{

Eα,β (t)
}

=
∞∑

k=0

�(k + 1)
�(kα + 1)

1
qk+1 ; α,β > 0.

3. Robotnov and Hartley function. This function was introduced by Hartley and Lorenzo
[34] and was studied by Robotnov for application to solid mechanics. It is defined as

Fα(–at) = tα–1
∞∑

k=0

(–a)ktkα

�(kα + 1)
; α > 0.

As

Eα

(
–atα

)
=

∞∑

k=0

(–a)ktkα

�(kα + 1)
, Fα(–at) = tα–1Eα

(
–atα

)
,

so

L
{

Fα(–at)
}

=
1

qα + a
; α > 0.



Zafar et al. Advances in Difference Equations         (2021) 2021:87 Page 5 of 16

4. Miller and Ross’ function. This function was introduced by Miller and Ross [39]. It is
defined as

Et(v, a) = tv
∞∑

k=0

(at)k

�(v + k + 1)
; Re(v) > 1,

L
{

Et(v, a)
}

=
q–v

q – a
; Re(v) > 1.

5. Generalised R-function. This function was introduced by Lorenzo and Hartley [35]
and is defined as

Rα,β(a, t) =
∞∑

k=0

akt(k+1)α–β–1

�((k + 1)α – β)
; Re(α – β) > 0.

It is easy to see that R1,0(a, t) = eat , aR2,0(–a2, t) = sin(at) and R2,1(–a2, t) = cos(at).
For a = 1, β = α – 1, we have

Rα,α–1(1, t) =
∞∑

k=0

(tα)k

�(kα + 1)
= Eα

(
tα

)
.

Similarly, setting a = 1, β = α – ν yields

Rα,α–ν(1, t) = tν–1
∞∑

k=0

(tα)k

�(kα + ν)
= tν–1Eα,ν

(
tα

)
.

Moreover,

L
{

Rα,β(a, t)
}

=
qβ

qα – a
; Re(α – β) > 0, Re(q) > 0.

6. Generalised G-function. This function was also introduced by Lorenzo and Hartley
[35], it is the generalisation of the R-function. It is defined as follows:

Gα,β ,γ (a, t) =
∞∑

k=0

ak�(γ + k)
�(γ )�(k + 1)

t(γ +k)α–β–1

�((k + 1)α – β)
; Re(αγ – β) > 0.

Setting γ = 1, we get

Gα,β ,1(a, t) =
∞∑

k=0

ak�(1 + k)
�(1)�(k + 1)

t(1+k)α–β–1

�((k + 1)α – β)
= Rα,β (a, t).

Also

∫ s

0
Gα,β ,γ (a, t) dt =

∞∑

k=0

ak�(γ + k)
�(γ )�(k + 1)

s(γ +k)α–β

((γ +k)α–β)�((k + 1)α – β)

=
∞∑

k=0

ak�(γ + k)
�(γ )�(k + 1)

s(γ +k)α–β

�((k + 1)α – β + 1)
= Gα,β–1,γ (a, s).



Zafar et al. Advances in Difference Equations         (2021) 2021:87 Page 6 of 16

Moreover,

L
{

Gα,β ,γ (a, t)
}

=
qβ

(qα – a)γ
; Re(αγ – β) > 0, Re(q) > 0,

∣∣∣∣
a
qα

∣∣∣∣ < 1.

Definition 2.1 Let h ∈ H1(a, b), a < b, p ∈ [0, 1), then the Caputo fractional derivative is
given by [9]

CDp
t h(t) =

⎧
⎨

⎩

1
�(1–p)

∫ t
0

h′(τ ) dτ

(t–τ )p , 0 < p < 1,
dh(t)

dt , p = 1,
(2)

or

CDp
t h(t) = kC(p, t) ∗ h′(t); 0 < p < 1,

where kC(p, t) = 1
�(1–p)

1
tp is the kernel of the derivative, “*” denotes the convolution, and

Laplace transform of CDp
t h(t) is defined as

L
{CDp

t h(t)
}

= qph̃(q) – qp–1f (0). (3)

Definition 2.2 Let h ∈ H1(a, b), a < b, p ∈ [0, 1), then the CF-fractional derivative is given
by [10, 29]

CF Dp
t h(t) =

⎧
⎨

⎩

1
(1–p)

∫ t
0 h′(τ ) exp(– p(t–τ )

1–p ) dτ , 0 < p < 1,
dh(t)

dt , p = 1,
(4)

or

CF Dp
t
{

h(t)
}

= kCF (p, t) ∗ h′(t); 0 < p < 1,

where kCF (p, t) = exp(– pt
1–p ), the kernel of the derivative.

Moreover,

L
{CF Dp

t h(t)
}

=
qh̃(q) – h(0)
(1 – p)q + p

(5)

and

CF Dα
t h(t) =

1
1 – α

∫ t

0
e– α(t–τ )

1–α h′(τ ) dτ ,

L
{CF Dα

t h(t)
}

=
qH(q) – h(0)
(1 – α)q + α

,

lim
α→1

L
{CF Dα

t h(t)
}

= qH(q) – h(0) = L
{

h′(t)
}

,

CF D1
t h(t) = h′(t).

(6)
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Definition 2.3 Let h ∈ H1(a, b), a < b, p ∈ [0, 1], then the ABC-NOID is given by [11, 31]

ABC
a Dp

t h(t) =
N(p)
1 – p

∫ t

a
h′(τ )Ep

[
–

p
1 – p

(t – τ )p
]

dτ = kABC(p, t) ∗ h′(t), (7)

where N(p) is a normalisation function fulfilling the condition N(0) = N(1) = 1, kABC(p, t)
is the kernel of the derivative

kABC(p, t) =
N(p)
1 – p

Ep

[
–

ptp

1 – p

]
, (8)

and Ep(·) is a one-parametric form of the Mittag-Leffler function [12].

Also

L
{ABC

0 Dp
t h(t)

}
=

N(p)qph̃(q)
(1 – p)qp + p

–
N(p)qp–1h(0)
(1 – p)qp + p

.

Furthermore, the normalisation function can be any function fulfilling the condition
N(0) = N(1) = 1. For example, it could be chosen as N(p) = 1 – p + p

�(p) [40]. In the present
work we choose N(p) to be identically one.

Again

L
{ABC

0 Dp
t h(t)

}
=

N(p)qpL{h(t)}
(1 – p)qp + p

–
N(p)qp–1h(0)
(1 – p)qp + p

. (9)

Taking the Laplace transform of (8), we get

L
{

kABC(p, t)
}

=
N(p)
1 – p

qp–1

qp + p
, (10)

also

L
{

kABC(0, t)
}

=
1
q

, L
{

kABC(1, t)
}

= 1,

kABC(0, t) = 1, lim
p→1

kABC(p, t) = δ(t),
(11)

where δ(t) is Dirac’s delta function.
Moreover,

ABC
a D1

t
{

h(t)
}

= kABC(1, t) ∗ h′(t) =
(
δ ∗ h′)(t) = h′(t) (12)

and

ABC
a D0

t
{

h(t)
}

= kABC(0, t) ∗ h′(t) =
(
I ∗ h′)(t) =

∫ t

0
h′(u) du = h(t) – h(0). (13)

Equation (12) and Eq. (13) represent the relation between the ABC-fractional derivative
and the classical derivative.
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3 Solution of the problem
In this part, we solve Eq. (1) by customising the operator Dα

t (·) according to Caputo,
Caputo–Fabrizio and Atangana–Baleanu.

3.1 Solution of the problem using Caputo NIOD operator
Replace the operator Dα

t (·) in Eq. (1) by using Definition 2.1, Eq. (9). Basset equation in
the sense of Caputo derivative operator becomes

du
dt

+ aCDα
t + u(t) = f (t), u

(
0+)

= u0, 0 < α < 1. (14)

Employing Laplace transform [41] to Eq. (14) and making use of the initial conditions lead
to

Ũ(q) =
1 + aqα–1

q + aqα + 1
u0 +

f̃ (q)
(q + aqα + 1)

(15)

or

Ũ(q) =

( ∞∑

k=0

(–1)kakqαk

(1 + q)k+1 + a
∞∑

k=0

(–1)kakqαk+α–1

(1 + q)k+1

)
u0

+
∞∑

k=0

(–1)kakqαk

(1 + q)k+1 f̃ (q).

(16)

Taking an inverse Laplace transform, we get

u(t) =
∞∑

k=0

(–1)kak(G1,αk,k+1(–1, t) + G1,α(k+1)–1,k+1(–1, t)
)
u0

+
∞∑

k=0

(–1)kak
∫ t

0
f (t – τ )G1,αk,k+1(–1, τ ) dτ ,

(17)

where G is the Lorenzo–Hartley generalised G function [35].

3.2 Solution of the problem using CF-NIOD operator
Replacing the operator Dα

t (·) in Eq. (1) by using Definition 2.2, Eq. (11), we get

du
dt

+ aCF Dα
t + u(t) = f (t), u

(
0+)

= u0, 0 < α < 1. (18)

Employing LT [41] to Eq. (18) and making use of the initial conditions, we get

Ũ(q) =
(1 – α)q + α – a

(1 – α)q2 + (a + 1)q + α
u0 +

(1 – α)q + α

(1 – α)q2 + (a + 1)q + α
f̃ (q), (19)

Ũ(q) =
q + α–a

1–α

q2 + ( a+1
1–α

)q + α
1–α

u0 +
q + α

1–α

q2 + ( a+1
1–α

)q + α
1–α

f̃ (q), (20)

Ũ(q) =
q + α–a

1–α

(q + a1)(q + a2)
u0 +

q + α
1–α

(q + a1)(q + a2)
f̃ (q), (21)
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where

a1 =
( a+1

1–α
) +

√
( a+1

1–α
)2 – 4α

1–α

2
, a2 =

( a+1
1–α

) –
√

( a+1
1–α

)2 – 4α
1–α

2
.

Employing the inverse LT, after long but straightforward computation, leads to

u(t) =
1 – α√

(a + 1)2 – 4α(1 – α)

((
α – a
1 – α

– a2

)
e–a2t –

(
α – a
1 – α

– a1

)
e–a1t

)

+
1 – α√

(a + 1)2 – 4α(1 – α)

×
∫ t

0
f (t – τ )

((
α – a
1 – α

– a2

)
e–a2τ –

(
α – a
1 – α

– a1

)
e–a1τ

)
dτ .

(22)

3.3 Solution of the problem using ABC-NIOD operator
Replacing the operator Dα

t (·) in Eq. (1) by using Definition 2.3, Eq. (13), we get

du
dt

+ aABCDα
t + u(t) = f (t), u

(
0+)

= u0, 0 < α < 1. (23)

Application of LT [41] to Eq. (23) and making use of the initial conditions lead to

Ũ(q) =
(1 – α)qα + aqα–1 + α

(1 – α)qα+1 + αq + (a + 1 – α)qα + α
u0

+
(1 – α)qα + 1

q((1 – α)qα+1 + αq + (a + 1 – α)qα + α)
,

(24)

Ũ(q) =
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m(
γ k q(1+α)k–αm+α

(qα+1 + γ )k+1

+
γ k+1

α

q(1+α)k–αm+α–1

(qα+1 + γ )k+1 + γ k+1 q(1+α)k–αm

(qα+1 + γ )k+1

)
u0

+
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m

×
(

γ k q(1+α)k–αm+α

(qα+1 + γ )k+1 +
γ k+1

α

q(1+α)k–αm

(qα+1 + γ )k+1

)
f̃ (q),

(25)

where γ = α
1–α

.
Finally, employing the inverse LT, we get

u(t) =
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m(
γ kGα+1,(1+α)k–αm,k+1(–γ , t)

+
γ k+1

α
Gα+1,(1+α)k–αm+α–1,k+1(–γ , t)

+ γ k+1Gα+1,(1+α)k–αm,k+1(–γ , t)
)

u0 (26)



Zafar et al. Advances in Difference Equations         (2021) 2021:87 Page 10 of 16

+
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m ∫ t

0
f (t – τ )

(
γ kGα+1,(1+α)k–αm+α,k+1(–γ , τ )

+
γ k+1

α
Gα+1,(1+α)k–αm,k+1(–γ , τ )

)
dτ .

4 Special cases
In this section, from our general solutions, we discuss two cases, namely when excitation
function is H(t) and sin(ωt).

For the first case, we take f (t) = H(t) in (17), (22) and (26), we get

uC(t) =
∞∑

k=0

(–1)kak(G1,αk,k+1(–1, t) + G1,α(k+1)–1,k+1(–1, t)
)
u0

+
∞∑

k=0

(–1)kakG1,αk–1,k+1(–1, t),

(27)

uCF (t) = 1 +
1 – α√

(a + 1)2 – 4α(1 – α)

(
2α – a – 1 –

√
(a + 1)2 – 4α(1 – α)

a + 1 +
√

(a + 1)2 – 4α(1 – α)

–
(
2α – 3a – 1 –

√
(a + 1)2 – 4α(1 – α)

)
u0

)
e–a1t

–
1 – α√

(a + 1)2 – 4α(1 – α)

(
2α – a – 1 –

√
(a + 1)2 – 4α(1 – α)

2(1 – α)

–
(
2α – 3a – 1 –

√
(a + 1)2 – 4α(1 – α)

)
u0

)
e–a1t ,

(28)

uABC(t) =
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m(
γ kGα+1,(1+α)k–αm,k+1(–γ , t)

+
γ k+1

α
Gα+1,(1+α)k–αm+α–1,k+1(–γ , t)

+ γ k+1Gα+1,(1+α)k–αm,k+1(–γ , t)
)

u0

+
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m(
γ kGα+1,(1+α)k–αm+α–1,k+1(–γ , t)

+
γ k+1

α
Gα+1,(1+α)k–αm–1,k+1(–γ , t)

)
,

(29)

where uC , uCF and uABC denote the solutions obtained by employing Caputo, Caputo–
Fabrizio and Atangana–Baleanu NIOD operators respectively.

Similarly, for the second case (sinusoidal excitation), we take f (t) = sin(ωt) in (17), (22),
(26) and get

uC(t) =
∞∑

k=0

(–1)kak(G1,αk,k+1(–1, t) + G1,α(k+1)–1,k+1(–1, t)
)
u0

+
∞∑

k=0

(–1)kak
∫ t

0
sin

(
ω(t – τ )

)
G1,αk,k+1(–1, τ ) dτ ,

(30)
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uCF (t) =
1 – α√

(a + 1)2 – 4α(1 – α)

((
α – a
1 – α

– a2

)
e–a2t –

(
α – a
1 – α

– a1

)
e–a1t

)

+
1 – α√

(a + 1)2 – 4α(1 – α)

×
∫ t

0
sin

(
ω(t – τ )

)((
α – a
1 – α

– a2

)
e–a2τ –

(
α – a
1 – α

– a1

)
e–a1τ

)
dτ

(31)

and

u(t) =
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m(
γ kGα+1,(1+α)k–αm,k+1(–γ , t)

+
γ k+1

α
Gα+1,(1+α)k–αm+α–1,k+1(–γ , t)

+ γ k+1Gα+1,(1+α)k–αm,k+1(–γ , t)
)

u0

+
∞∑

k=0

k∑

m=0

(–1)kk!
(k – m)!m!

(
aγ + α

α

)k–m ∫ t

0
sin

(
ω(t – τ )

)

×
(

γ kGα+1,(1+α)k–αm+α,k+1(–γ , τ )

+
γ k+1

α
Gα+1,(1+α)k–αm,k+1(–γ , τ )

)
dτ .

(32)

5 Analysis of the influence of parameters on the Basset problem
With the aim to have proper understanding associated with the influence of the param-
eters α and a on the classical as well generalised Basset problem, we prepare some dia-
grams for the velocity of the particle, analogous to the solution of (1). Further, for the sake
of clarity, we assume u(0) = 0, i.e. vanishing initial velocity and f (t) = H(t). We will dis-
cuss three scenarios for α, namely α = 1/2 (the classical Basset problem) and α = 1/4, 3/4
(the generalised Basset problem). For every α, we choose these values of a relating to
χ = ρp

ρf
= 0.5, 5, 20, 50. From Figs. 1–3, we compare velocities for each pair {α, ρp

ρf
} using

different definitions of NIOD operators in the composite fractional relaxation equation.
From Fig. 1, when the Caputo NOID operator is used, it is observed that velocities in-
crease for increasing values of α, and after some time they attain a constant value for large
times. Moreover, time to achieve that constant value is getting small for increasing values
of the ratio ρp

ρf
. For the case when the Caputo–Fabrizio derivative is used in the fractional

relaxation equation (see Fig. 2), the same trend is observed as in the case when the Caputo
derivative operator is employed. Additionally, it is reported that all velocities converge to
the same constant value showing that the influence of the fractional order parameter di-
minishes with time. From Fig. 3, it is noticed that when the Atangana–Baleanu definition
of NIOD is used for increasing values of α, velocity increases, and the range of velocity
is larger as compared to the case when Caputo or Caputo–Fabrizio derivative operators
are employed. In Fig. 4, the comparison of velocities with three definitions of fractional
derivatives is presented. It is noted that, for α = 1/4 and α = 3/4, the behaviour of velocity
when Caputo and Caputo–Fabrizio derivative operators are employed is the same. On the
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Figure 1 Profiles of velocity versus time for the case of Caputo derivative operator with
ρp
ρt

= 0.5, 5, 20, 50

Figure 2 Profiles of velocity versus time for the case of Caputo–Fabrizio derivative operator with
ρp
ρt

= 0.5, 5, 20, 50

other hand, for α = 1/2, the trend of velocities is significantly different for the case when
the Atangana–Baleanu derivative operator is used.
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Figure 3 Profiles of velocity versus time for the case of Atangana–Baleanu derivative operator with
ρp
ρt

= 0.5, 5, 20, 50

Figure 4 Comparison of profiles of velocity versus time for three definitions of fractional derivative operators
with α = 0.25, 0.5, 0.75



Zafar et al. Advances in Difference Equations         (2021) 2021:87 Page 14 of 16

6 Conclusions
In this article, we have solved the composite fractional relaxation equation by using dif-
ferent definitions of NIOD operators. More specifically, we have employed the definitions
NIOD operators proposed by Caputo, Caputo–Fabrizio and Atangana–Baleanu. The so-
lution of the non-integer order differential equation is obtained by applying the Laplace
transform method. Moreover, the solutions of the problem are expressed in terms of
Lorenzo and Hartley’s generalised G-function that is the generalisation of many special
functions that arise in the solution of non-integer order differential equations. Further-
more, the effects of the parameters involved in the model of generalised and classical Bas-
set problem are shown, and the comparison of these model in terms of different definitions
of NIOD operators is done by graphical analysis. The useful conclusions are as follows:

1. When Caputo, Caputo–Fabrizio as well as Atangana–Baleanu fractional order
derivative operators are used, velocities increase for increasing values of α, and after
some time they attain a constant value for large times. Moreover, time to achieve that
constant value is getting small for increasing values of the ratio ρp

ρf
.

2. For the case when the Caputo–Fabrizio derivative is used in the fractional relaxation
equation, the same trend is observed as in the case when the Caputo derivative
operator is employed. Additionally, it is reported that, for the case when the
Caputo–Fabrizio derivative is used, all velocities converge to the same constant value
showing that the influence of the fractional order parameter diminishes with time.

3. The velocity attains a constant value after its initiation, and time to reach this
constant value is smaller for a large value of ρp

ρf
.

4. The velocity attains higher values when the Atangana–Baleanu derivative operator is
used in comparison to the case when Caputo and Caputo–Fabrizio derivative
operators are employed.

5. As the Atangana–Baleanu derivative operator has a non-singular and smooth kernel
and has shown better velocity response, it is preferable to be employed in the
composite fractional relaxation equation model.
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