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equations and constructing a suitable Lyapunov function, sufficient conditions that
guarantee the permanence and global stability of the system are obtained. By
applying the oscillation theory and the comparison theorem of differential equations,
a set of sufficient conditions that guarantee the extinction of the predator of the
system is obtained.
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1 Introduction

The dynamic relationship between predator and prey has long been and will continue to be
one of the dominant themes in both ecology and mathematical ecology due to its universal
existence and importance [1]. Furthermore, the study of dynamic behaviors of predator—
prey system incorporating a prey refuge become one of the most important research topic;
see [2—31]. In [2], Amant proposed a Lotka—Volterra predator—prey model with a constant

prey refuge:

x(t) =rx — B(x —m)y,
(1.1)
¥(t) = elx — m)y — dy,

where x(¢) and y(¢) denote the densities of prey and predator populations at time ¢, re-
spectively, r is the growth rate of the prey, § is the per capita rate of predation, m is the
constant prey refuge, e is a conversion rate of eaten prey into new predator abundance,
and d is the per capita death rate of the predator.

Considering there is an upper limit on how much predators can eat, the response of
the predator to the bait should be a function of the saturation factor. In [3], Gonzlez-
Olivares and Ramos-]Jiliberto investigated the dynamic behaviors of predator—prey system
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incorporating Holling type II and a constant prey refuge:

o x\  Blx—my

x(t) = rx(l - E) g 02
oy cBlx—m)y '
y(t)__dy+(x—m)+a’

where K is the prey environmental carrying capacity, 4 is the amount of prey needed to
achieve one-half of 8. They show that the effect of prey refuges would have a stabilizing
influence on the dynamical consequences of system (1.2).

Some scholars argued that the nonautonomous case is more realistic, because many
biological or environmental parameters do subject to fluctuate with time, thus more com-
plex equations should be introduced. Many scholars studied the dynamic behaviors of
nonautonomous predator—prey system incorporating prey refuge. In [4], Zhu proposed
and studied the nonautonomous predator—prey system incorporating prey refuge:

x(2) = x(6)[a(t) - b(O)x(8)] — c(8) (x(2) — m(2))y(2),
3(t) = y@)[-r1 () = k(©)y(2) + d(2) (x(2) — m(2))],

(1.3)

where x(£) and y(¢) denote the density of prey and predator populations at time ¢, respec-
tively. a(), b(t), c(t), m(¢), r1(£), k(¢), d(t) are nonnegative continuous function that have
the upper and lower bounds. a(¢) is the intrinsic per capita growth rate of prey, b(¢) is the
per capita death rate of prey, c(¢) is the maximal per capita consumption rate of predators,
m(t) is the maximum capacity of refuge, r1 (¢) is the per capita death rate of predator, k(¢) is
the density constraints on predator populations, and d(£)/c(¢) is the conversion coefficient.
In [4], the sufficient conditions to guarantee the global asymptotic stability of the system
(1.3) are obtained. On the basis of system (1.3), Wu [5] further studied the extinction of
predator populations. In this paper, we study the nonautonomous predator—prey system
incorporating prey refuge and Holling type II schemes:

c(2)(x(t) — m())y(¢)

a1 (t) + x(8) —m(t)
d(t)(x(t) — m(2)) ]

ar(t) + x(8) —m(t) |’

x(t) = x(t)[a(t) - b(D)x(1)] -
(1.4)
y(&) = y(8) [—h(t) — k(£)y(t) +

where a;(t) is the amount of prey needed to achieve one-half of c(¢).
Based on the biological significance of systems, we consider system (1.4) together with
the following initial conditions:

x(0) >0, ¥(0) > 0. (1.5)
Furthermore, for a bounded continuous function g(¢) defined on R,

g =infg(t),  g“=supg(t).

teR teR

The following work is organized as follows. Sufficient conditions which guarantee the
positive and permanence of system (1.4) are given in Sect. 2. In Sect. 3, we obtained a set
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of sufficient conditions for global stability of the system (1.4). In Sect. 4, the extinction
of predator are studied and a set of sufficient conditions that guarantee the extinction of
predator are obtained. In Sect. 5, three examples together with their numerical simulations
show the feasibility of the main results. This paper ends by a brief conclusion.

2 Positive and permanence
Lemma 2.1 [fthe system (1.4) satisfies

all > m", (2.1)
then R? = {(x,y)|x > 0,y > 0} is a invariant set of the system (1.4).

Proof Let (x(£),y(t))” be any positive solution of the system (1.4) that satisfies the initial
condition (1.5). From the first equation of the system (1.4), it follows that

 dmey)

0 -’

t d(s)(x(s) — m(s))
2(8) = $(0) exp{ /0 [—ﬁ(s) —k(s)y(s) + m} d‘}'

Therefore, Lemma 2.1 is true when the conditon (2.1) is true and x(0) > 0, y(0) > 0. (|

Lemma 2.2 For every positive solution (x(t),y(t))! that satisfies the initial condition (1.5),
if the system satisfies (2.1) and

/ CuMz
a >— 5

. d'm -m")
; 1S A
ay — m" ai + M

Y ; my > m”. (2.2)

then, for every positive solution (x(t),y(t))T that satisfies the initial condition (1.5), system
(1.4) is permanent. That is,

limsupx(t) < M, limsup y(¢) < My, liminfx(¢) > m;, liminf y(¢) > m;.
t—00 t—00 =00 {—>00
Here,
M, = at _ duMl
1= blr Z_kl(all—m”),
cll(al1 —m*) = c*M, d'm —m*) —ri(a} + M)
mp = 7 my = u
b*(ay — m*) k#(a¥ + M)

Proof For every positive solution (x(¢), y(¢))” that satisfies the initial condition (1.5), from
the first equation of system (1.4), condition (2.1) and the third condition of (2.2), it follows
that

c()(x(2) — m(2))y(t)
ay(t) + x(t) — m(¢) (2.3)

x(t) = x(6)[a(t) - b(H)x(2)] -

<x(®)[a" - b'x(t)].
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Hence, according to Lemma 2.3 in [32], it is directly found that

u

lim supx(f) < a—::Ml. (2.4)

t—00 bl

For any small positive constant ¢ > 0, there exists 77 > 0 such that, for all £ > T,
x(t) < M +¢. (2.5)

It follows from (2.5) and the second equation of the system (1.4) that

510 -0 -n (0~ kopto) + SOC0 ]

ai(t) +x(t) — m(t)

d(t)x(¢) ]

an(0) —m(D) 26)

<3(6) [—k(t)y(t) .

<3() [—klyu) : w]

a, —m"
According to Lemma 2.3 in [32], it follows that

. a*(M +¢)
1 )< —F—. 2.7
im sup( )< P — (2.7)

Because of the arbitrariness of ¢, let ¢ — 0, it follows from (2.7) that

d“M,
limsup y(t) < ——————:=M,. 2.8
HOopy( ) < Ay M2 (2.8)

Conditions (2.8) implies that, for any small ¢ > 0, there exists a T, > T1, such that, for all
t> T2,

y(£) < Mj +e. (2.9)

Then, for ¢ > T5, from the first equation of system (1.4), it follows that

c(t) (x(£) — m(2))y(2)

x(t) = x(t)[a(t) - b(D)x(1)] - 10 + 70 =m0

c(t)y(t)
> x(t) [a(t) -b@)x(t) - ————— 2.10
a0 - m(® (210
“(M.
> #(t) [al ~ bx(t) - M}
a; —m"
According to Lemma 2.3 in [32], it follows that
ol - S
litm infx(t) > bul (2.11)
Let ¢ — 0, then
U1 u u
—m") - c*M
liminfx(p) > LA M) =M (2.12)

t—>00 b“(al1 — mt)
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LetO<e< %ml be any positive constant small enough. Then it follows from (2.12) that
there exists a T3 > T, such that, for all £ > T3,

x(t) > my —&. (2.13)

From the second equation of the system (1.4) together with (2.5) and (2.13), it follows

d(t)(x(t) — m(t)) ]
a(t) +x(t) — m(t)

d(t)(x(t) - M(t))]
aq (t) + x(t)

y(t) = y(t) [—ﬁ () — k()y(0) +

> y(2) [—rl(t) = k(£)y(t) + (2.14)

d'my — e - m”)i|

> y(t) [—ri‘ — k"y(¢) + A Moo
1

According to Lemma 2.3 in [32], it follows that

dl(V;lr@—Wt“) e
liminfy(z) > — (2.15)

t—>00 kt#

Let ¢ — 0, then

dl(rfrm”) i
a+My
! P =my. (216)

liminfy(t) >
t—00
This completes the proof of Lemma 2.2. d

3 Global stability
We introduce some notations before we state the main result of this section. Set

81(2) = a1 (t) + x(t) — m(2),
82(t) = a1(t) + x1(t) — m(2),

A(my) = al + (my — &) —m", -
My + d"al .

= l_
A=V = R emp

’

Theorem 3.1 Let (x(t), y(t))7, (x1(),y1(t))T be the positive solutions of system (1.4), assume
system (1.4) satisfies all the conditions of Lemma 2.2, assume further that

A<O, B<0, (3.2)
then
Jim [|x(6) -3 (0)] + |y(6) - @)]] =0. (3:3)

That is, the system (1.4) shows global stability.
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Proof From (3.1), it follows that

A(mi) = all + (my — &) —m™. (3.4)

Let

Vi(t) = |1nx(t) —Inux (

Va(8) = |Iny(8) — Iny, (0).

Then, for ¢ > T, we have

N _ c®y () )y
D™ Vi(t) = sgn(x(t) —xl(t)) <—b(t)(x(t) —xl(t)) + 5(0) - 0

c(O)m)yt) C(t)M(t)yl(t)>
81 (2)x(2) 85(£)x:1 (2)

= sgn(x(t) = 21 (1)) (=b(&) (x(6) - 21 (1)) = (&) - 1(®)) %

c@)y)  c(t)ym(t)
5050 3,00 VO N )

_M( _ LOmOn® (o )
o O 10 5 @ (O 1)

+ (x(2) —21(2))

[ c@y®)  c()ym)y(e) c(t)m(t)yl(t)>
( O+ S 050 nOm0n®  5Oneme ) 1O

+<C(t)m() C(t)>}(

S1()x(t) b1t
c()y(2)

(bm 8 (mz(t))| O -50)] + S50 0]

1

mll
m |y(2) = y1.(2)|

IA

and

DV, (¢)

) A0 - (1) _ ), ) - i)
-sgny0) - n®) (KO0 - () + LD OO

d - d -
=Sgn(y(t)—yl(t))<—k(t)(y(t)—yl(t))+ (t)(xg)(t) L (t)(ngzt> m(f))>

d(t)a(2)

= —k(®)|y(®) - 1 (t)| + % (t)s t)| x(t) — x1(8)]

< -Ky(t)-y(0)] + 8)]2 |x(2) = 1(2)).

Set

V(e) = Vi(e) + Va(2). (3.6)

Page 6 of 15
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Then

My +€) + d*al

+ l
D'V(t) < (—b + AL

)Ix(t) - x1(8)]

+(w+——ﬁli—5)wﬂ—mML

A(mi)(m; -
Let ¢ — 0, then

CM

—J?—)ﬂwwﬂn
i (3.8)

My + d"ay

+ !
DV@E(%+ (AP

)|x(t) —xl(t)| + (—kl + Ao,

= —A|x(t) - 2,()] - By(®) — 31 (8)].

Here A and B are defined in Eq. (3.1). Setting « = min{A, B} > 0. Then (x(¢), y(¢)) is stable
under the meaning of Lyapunov. Integrating Eq. (3.8) from T to ¢, then, for ¢t > T, we get

V() - V(T) < —Ot/T [x(s) = x1(5)] + [5(s) = y1.(5)|] ds, (3.9)
hence,
V() + oz/; [|x(s) —x1(5)| + |y(s) —yl(s)|] ds < V(T) < +o0. (3.10)

Therefore, V(¢) is bounded on the interval [T, oo] and

ft|x(s) —xl(s)’ ds < +oo,ft|y(s) —yl(s)} ds < +o0. (3.11)
T T

So |x(¢) —x1(¢)| and |y(£) —y1 (¢)| are integrable on the interval [T, +00]. On the other hand, it
is easy to see that x(2), y(£), %1 (£), y1(¢) are bounded. Therefore, |x(£) —x1 (£)| and |y(£) — y1(2)|
are uniformly continuous on interval [T, +00]. By the Barbalat lemma, it gives

[|x(8) - %:1®)] + [y@®) =71 (8)|] = 0. (3.12)

lim
t—>+00
Then system (1.4) shows global stability. This completes the proof of Theorem 3.1. O

4 The extinction of predator
Consider the following equation:

(2) = x(t)[a() - b(£)x(2)], (4.1)
where a(t) and b(¢) are continuous functions defined in the real domain R and are bounded

above and below by positive constants. From Lemma 4.1 of [33], Eq. (4.1) has a solution

x4(¢£) bounded above and below by positive constants and

t -1
x. () = [ / d(s)e™ Js a@dr ds:| . (4.2)
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Theorem 4.1 Ifthe system (1.4) satisfies condition (2.1) and

b”(max{‘ll]—b;,m“} —mb)
—-r + ; <0, (4.3)
a, —m"

then the predator population will go extinct, that is the solution of the system (1.4) satisfies

lim y(¢) = 0.

t—00

Proof Let (x(2), y(¢)) satisfying condition (1.5) be any positive solution of system (1.4). It is
discussed in three cases.

(1) Assume that x(f) > m(t) is true for all £ > 0. Let x(¢) be the solution of (4.1) with initial
x(0) = x(0). It follows from Lemma 4.1 in [33] that

lim (%(t) - x.(t)) = 0. (4.4)

t—0o0

Then, for any arbitrary ¢ > 0, there exists a T7(> T), such that
|%(6) —x.(8)| <&, £=> T (4.5)

From the first equation of system (1.4), it follows that

c()(x(2) - m(t))t) < x(8)[r(®) - d(£)x(2)].

#8) = 2(0)[al0) = blepe(t)] - s

By the applying comparison theorem of differential equations, we get
x(t) <x(t), t>0.

Thus, combined with (4.5), we have
x(t) < %(t) = w, () + (56(15) - x*(t)) <x.(t)+e, t>Ti.

Therefore, from the second equation of system (1.4), it follows that, for ¢ > Tj,

510 -0 -n (0~ kopto) + SO0

ai(t) +x(t) — m(t)

A(t)(x.(2) + & — M(t))}
ay(t) — m(t) '

§ﬂﬂin+

Integrating Eq. (4.6) from T to £, we get

't d(s) (xs () +e—m(s))
y(t) < y(Ty)e/n 1O Tamm e

. AL ve-m(s)
< y(Tl)ele O — G )4 (4.7)
du(%l;—+s—ml)

[

t )
(
ay-mh

<y(Ty)e e
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Let ¢ — 0, we have

)

4 ( rl+7lbl )ds

Jr, 11 m
y(t) <y(Tr)e am
Therefore, from the condition (4.3), it follows that
lim y(¢) = 0.
t—00
(2) Assume that x(£) < m(¢) is true for all £ > 0. Then, from the second equation of system

(1.4) and Lemma 2.1, it follows that

| d(t)(x(t) — m(t))
30500 0Ky + T

(4.8)
< —k()y(2).

Integrating Eq. (4.8) from 0 to ¢, we get
¥() = 9l HDE < y0)e
Therefore,
lim y(¢) = 0.
t—>00

(3) Assume that x(t) oscillates with respect to m(t). In this case, suppose x(¢) and m(t)
intersect each other at the point ¢;,i=0,1,2,..., and

x(t) > m(2), t € (fake1s toke2); x(t) < m(2), t € (foks2s tokss)-

Now assume that x(¢) maximizes at the point tx € (tak41, toks2), K =0,1,2,..., then x(z) >
m(tx) and x(t)|s=r, = 0.
From the first equation of system (1.4), it follows that

_ cm)(m) — m(m))y(m)
ar (i) + x(7) — m(t)

(8) =g, = (i) [@(Tx) — b(T)x(Te) |
Then
x(te) [a() — b(m)x(i)] > . (4.9)

By Lemma 2.1, note that x(tz) > 0, and combining with Eq. (4.9), a(tx) — b(tr)x(tx) > 0, that

is,

a(ti)
b(‘L’k

u
e

b

a
x(ty) < < —

~

al»{

Since x(¢) is maximized at the point 7, the above analysis shows that x(f) < %4, ¢ €
(faks1, b2kan), k = 0,1,2,.. At the same time, x(¢) < m(¢) < m¥, t € (taps2, taxs3). Then, for
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allt > ¢,

x(t) < max{ 6;—7, m”}. (4.10)

Substituting Eq. (4.10) into the second formula of the system (1.4), we get, for all t > ¢;,

_ d@)(x(t) — m(?))
y(8) = y(2) [—ﬁ(f) —k(£)y(®) + m]

(4.11)

d(t)(max{ %, m"} - m(t))}

5””P“M+ ar(®) = m(D)

Integrating Eq. (4.11) from ¢ to ¢, it follows that

d()(max( “;”[,m“)—m(s»
aq(s)-m(s)

Jh i)+ ]ds

y(8) < y(tr)e

d% (max{ d,m”}—ml)
t ]
Joy erir——— e ——1ds

<y(t)e a-m
Let t — oo, then

lim y(¢) = 0.

t—00
This completes the proof of Theorem 4.1. g

5 Numeric simulations
Now let us consider the following three examples.

Example 5.1

5(x(t) - 0.5)y(8)
x(t) +2
(4 + 0.5sint)(x(¢) — 0.5)
x(t) +2 ]

x(t) = x(t)[ll +CoSt — Sx(t)] -

’

(5.1)

y(£) = y(2) [—0.2 —4y(t) +

In system (5.1), corresponding to system (1.4), we assume that a(t) = 11 + cost, b(t) = 3,
c(t) =5, m(t) = 0.5, a;(t) = 2.5, r1(¢) = 0.2, k() = 4 and d(¢) = 4 + 0.5sin ¢, then

at duMl

My = — =4, My=—-+—"— =225,
LT > k(a) — m»)
) u u
a'(a; —m") - c*M
m = 2 l) 2 ~ 146,
b*(ay — m*)
and
c* 2

al —m" =250,

- ~5.625 < a =10,

d'(my — m*)

Y, ~0.21>r=0.2, my =146 >m" =0.5,
a; + 1

Page 10 of 15
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f/\\\ /f \\

x(t)
w

time t

Figure 1 Dynamic behaviors of the prey population of the system (5.1), with the initial condition condition
(x(0),¥(0)) = (6,2),(2,0.5),(0.5,1) and (4, 3), respectively

3,
257
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21
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I
|
4 1.5Tl
|
|
|
1Y
5
\
RN
\ \‘\;~
05—~ m
0 L L L L J
0 2 4 6 8 10

time t

Figure 2 Dynamic behaviors of the predator population of the system (5.1), with the initial condition
condition (x(0),y(0)) = (6,2),(2,0.5),(0.5,1) and (4, 3), respectively

then condition (2.1) and (2.2) are satisfied. According to Lemma 2.2, the system (1.4) is

permanent. Numerical simulation (see Fig. 1 and Fig. 2) also supports this conclusion.

Example 5.2

5(x(t) - 2.3)y(6)
x(t) +0.2

(4 + 0.5sin ) (x(¢) — 2.3)
x(t) +0.2 ]

x(2) = x(£)[5 + cos t - 3x(t) ] -
(5.2)

50 =50 [—0.2—4y(t> .
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0.8F
0.6
041

02f

=) . .
2 4 6 8 10
time t

Figure 3 The extinction of the predator population of the system (5.2), with the initial condition condition
(x(0),¥(0)) = (6,2),(2,0.5),(0.5,0.1) and (4,0.3), respectively

In system (5.2), corresponding to system (1.4), we assume that a(f) = 5 + cost, b(t) = 3,
c(t) =5, m(t) =2.3,a:(t) = 2.5, r1(¢) = 0.2, k() =4 and d(¢) = 4 + 0.5sin ¢, then

and

, , b”(max{‘Z—?,m”} -m)
a;—-m"=0.2>0, -r + ; =-02<0
a; —m*

then condition (2.1) and (4.3) are satisfied. According to Theorem 4.1, the predator pop-
ulation of system (1.4) will go extinct. Here, m* = 2.3 > M, = 2. It follows that, when the
maximum capacity of the refuge is larger than the maximum of the prey population, the

predator population will go extinct. Numerical simulation (see Fig. 3) also supports this
conclusion.

Example 5.3

5(x(t) - 1.5)y(6)
x(t) +1
. (5.3)
(4 +0.5sin¢)(x(t) — 1.5)
x(t) +1 ]

x(t) = x(t)[5 + cost — 3x(t) | -

’

76 = 3(0) [—1.7 a0+

In system (5.3), corresponding to system (1.4), we assume that a(f) = 5 + cost, b(t) = 3,
c(t) =5, m(t) =1.5,a:(t) = 2.5, r1(¢t) = 1.7, k(¢t) = 4 and d(¢) = 4 + 0.5sin ¢, then
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0.9}

081

0.7

0.6

05F

y(t)

04r
0.3
02r

01\

time t

Figure 4 The extinction of the predator population of the system (5.3), with the initial condition condition
(x(0),y(0)) = (6,1),(4,06),(0.5,0.2) and (1,0.05) respectively

and

U

L , b(max{4, m"} —m)

a;—m'=1>0, -+ 7 =-0.2<0,
a, —m*

then condition (2.1) and (4.3) are satisfied. According to Theorem 4.1, the predator pop-
ulation of system (1.4) will go extinct. Here, m* = 1.5 < M; = 2. It follows that, when the
maximum capacity of refuge is lower than the maximum of the prey population, the preda-
tor population will go extinct if the per capita death rate of predator is high enough. Nu-
merical simulation (see Fig. 4) also supports this conclusion.

6 Conclusion
In this paper, we consider a nonautonomous predator—prey model with Holling type II
schemes and a prey refuge. Firstly, by applying the comparison theorem of differential
equations, a set of conditions that ensure the permanence of the system is obtained. Sec-
ondly, by constructing a suitable Lyapunov function, sufficient conditions that guarantee
the permanence and global stability of the system are investigated. Lastly, by applying the
oscillation theory and the comparison theorem of differential equations, a set of sufficient
conditions that guarantee the extinction of the predator of the system is obtained.

Condition (4.3) implies two situations:

(1) When the maximum capacity of refuge is larger than the maximum of the prey pop-
ulation, the predator population will go extinct.

(2) When the maximum capacity of refuge is lower than the maximum of the prey pop-
ulation, as long as per capita death rate of predator is large enough, then the predator
population will go extinct.
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