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Recently, in [34], the authors studied a boundary value problem of coupled Caputo type

fractional di�erential inclusions of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαu(t) ∈ F(t,u(t),v(t)), t ∈ [0,T ], 1 <α ≤ 2,
cDβv(t) ∈ G(t,u(t),v(t)), t ∈ [0,T ], 1 <β ≤ 2,

u(0) = ν1v(T), u′(0) = ν2v′(T),

v(0) =μ1u(T), v′(0) =μ2u′(T),

where cDα , cDβ denote the Caputo fractional derivatives of ordersα and β respectively,

F,G : [0,T ] × R × R → P(R) are given multi-valued maps,P(R) is the family of all

nonempty subsets ofR, and νi,μi, i = 1,2, are real constants withνiμi �= 1, i = 1,2. By

applying standard “xed point theorems for multi-valued maps, some new existence re-

sults for the given problem are derived when the multi-valued maps involved in the given

problem have convex as well as non-convex values.

In this work, motivated by [34], we consider the following systems of Caputo and

Riemann…Liouville type mixed order coupled fractional di�erential equations and inclu-

sions:

⎧
⎨

⎩

cDαx(t) = f (t,x(t),y(t)), t ∈ [0,T ], 0 <α ≤ 1
RLDβy(t) = g(t,x(t),y(t)), t ∈ [0,T ], 1 <β ≤ 2,

(1.1)

and

⎧
⎨

⎩

cDαx(t) ∈ F(t,x(t),y(t)), t ∈ [0,T ], 0 <α ≤ 1
RLDβy(t) ∈ G(t,x(t),y(t)), t ∈ [0,T ], 1 <β ≤ 2,

(1.2)

subject to the following coupled fractional boundary conditions:

⎧
⎨

⎩

x(0) =λcDpy(η), 0 <p < 1,

y(0) = 0, y(T) = γ Iqx(ξ ),
(1.3)

wherecDα , cDp are the Caputo fractional derivatives of orderα andp respectively,RLDβ is

the Riemann…Liouville fractional derivative of orderβ, Iq is the Riemann…Liouville frac-

tional integral of orderq, f ,g : [0,T ] ×R×R →R, F,G : [0,T ] ×R×R →P(R) are given

continuous functions,P(R) is the family of all nonempty subsets ofR, η,ξ ∈ (0,T), and

λ,γ ∈R.

Here we emphasize that the proposed single and multi-valued problems include:

• fractional derivatives of different orders α ∈ (0, 1] and β ∈ (1, 2];
• the first and second equations in the given systems are respectively of Caputo and

Riemann–Liouville types;
• the boundary conditions are of nonlocal type and contain both fractional derivatives

and integrals.
The objective of the present work is to establish existence criteria for solutions of prob-

lems (1.1)…(1.3) and (1.2)…(1.3). For single-valued system (1.1)…(1.3), we rely on the Leray…

Schauder alternative and the Banach contraction mapping principle to obtain the exis-
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tence and uniqueness results, which are presented in Sect.3. Section4 contains the exis-

tence results for convex and non-convex valued multi-valued mapsF and G involved in

multi-valued system (1.2)…(1.3), which are respectively derived with the aid of the non-

linear alternative for Kakutani maps and Covitz and Nadler•s “xed point theorem. The

background material related to our work is outlined in Sect.2. Here we remark that the

tools of the “xed point theory employed in our analysis are standard, however their expo-

sition to the problems at hand is new.

2 Preliminaries
Let us begin this section with some basic de“nitions of multi-valued maps [35, 36].

Let (X ,‖ · ‖) be a normed space and thatPcl(X ) = {Y ∈ P(X ) :Y is closed}, Pcp,c(X ) =

{Y ∈P(X ) :Y is compact and convex}.
A multi-valued mapG :X →P(X ) is

(a) convex (closed) valued if G(x) is convex (closed) for all x ∈X ;
(b) upper semi-continuous (u.s.c.) on X if, for each x0 ∈X , the set G(x0) is a nonempty

closed subset of X and if, for each open set N of X containing G(x0), there exists an
open neighborhood N0 of x0 such that G(N0) ⊆ N ;

(c) lower semi-continuous (l.s.c.) if the set {y ∈ X :G(y) ∩ B �= ∅} is open for any open
set B in E;

(d) completely continuous if G(B) is relatively compact for every
B ∈Pb(X ) = {Y ∈P(X ) :Y is bounded}.

A multi-valued mapG : [a,b] → Pcl(R) is said to be measurable if, for everyy ∈ R, the

function t �−→ d(y,G(t)) = inf{|y …z| : z ∈ G(t)} is measurable.

A multi-valued mapG : [a,b]×R
2 →P(R) is said to be Carathéodory if (i)t �−→ G(t,x,y)

is measurable for eachx,y ∈ R and (ii) (x,y) �−→ G(t,x,y) is upper semicontinuous for al-

most all t ∈ [a,b].

Further a Carathéodory functionG is calledL1-Carathéodory if (i) for eachρ > 0, there

existsϕρ ∈ L1([a,b],R+) such that‖G(t,x,y)‖ = sup{|v| : v ∈ G(t,x,y)} ≤ ϕρ(t) for all x,y ∈R

with ‖x‖,‖y‖ ≤ ρ and for a.e.t ∈ [a,b].

Next, we outline some preliminary concepts of fractional calculus.

Definition 2.1 The fractional integral of orderσ with the lower limit zero for a function

ζ is de“ned as

Iσ ζ (t) =
1

Γ (σ )

∫ t

0

ζ (s)
(t …s)1…σ

ds, t > 0,σ > 0,

provided the right-hand side is point-wise de“ned on [0,∞), whereΓ (·) is the gamma

function, which is de“ned byΓ (σ ) =
∫ ∞

0 tσ…1e…t dt.

Definition 2.2 The Riemann…Liouville fractional derivative of orderσ > 0,n … 1 <σ < n,

n ∈N, is de“ned as follows:

Dσ
0+ζ (t) =

1
Γ (n …σ )

(
d
dt

)n ∫ t

0
(t …s)n…σ…1ζ (s) ds,

where the functionζ has absolutely continuous derivative up to order (n … 1).
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Definition 2.3 The Caputo derivative of orderσ for a function ζ : [0,∞) → R can be
written as

cDσ
0+ζ (t) = Dσ

0+

(

ζ (t) …
n…1∑

k=0

tk

k!
ζ (k)(0)

)

, t > 0,n … 1 <σ < n.

In the rest of the paper, we usecDσ instead ofcDσ
0+ for the sake of convenience.

Remark 2.4 If ζ ∈ Cn[0,∞), then

cDσ ζ (t) =
1

Γ (n …σ )

∫ t

0

ζ (n)(s)
(t …s)σ+1…n ds = In…σ ζ (n)(t), t > 0,n … 1 <σ < n.

The following auxiliary lemma, which concerns the linear variant of system (1.1), plays
a key role in the sequel.

Lemma 2.5 Let φ,h ∈ C([0,T ],R). Then the solution of the linear fractional differential
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαx(t) = φ(t), t ∈ [0,T ], 1 <α ≤ 2
RLDβy(t) = h(t), t ∈ [0,T ], 1 <β ≤ 2,

x(0) =λDpy(η),

y(0) = 0, y(T) = γ Iqx(ξ ),

(2.1)

is equivalent to the system of integral equations

x(t) = Iαφ(t) +
λ

Λ

[

…Tβ…1Iβ…ph(η) +
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αφ(ξ ) …Iβh(T)

)
]

(2.2)

and

y(t) = Iβh(t) +
tβ…1

Λ

[

Iβh(T) …γ Iq+αφ(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…ph(η)

]

, (2.3)

where it is assumed that

Λ := Tβ…1+ λγ
Γ (β)ξ qηβ…p…1

Γ (1 + q)Γ (β …p)
�= 0. (2.4)

Proof Applying the Riemann…Liouville operatorsIα and Iβ to the Caputo and Riemann…
Liouville fractional di�erential equations respectively in (2.1) and using the composition
laws of fractional order integral and di�erential operators [2], we obtain

x(t) = Iαφ(t) + c0 and y(t) = Iβh(t) + c1tβ…1+ c2tβ…2, (2.5)

wherec0, c1, c2 are arbitrary constants.
By the boundary conditions of (2.1) in (2.5), we getc2 = 0 and a system of algebraic

equations in the unknown constantsc0 and c1:

c0 …λ
Γ (β)

Γ (β …p)
ηβ…p…1c1 = λIβ…ph(η),
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γ
ξ q

Γ (1 + q)
c0 …Tβ…1c1 = Iβh(T) …γ Iq+αφ(ξ ).

Solving the above system, we get

c0 =
λ

Λ

[

…Tβ…1Iβ…ph(η) +
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αφ(ξ ) …Iβh(T)

)
]

and

c1 =
1
Λ

[

Iβh(T) …γ Iq+αφ(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…ph(η)

]

.

Substituting the values ofc0, c1, c2 in (2.5), we get solutions (2.2) and (2.3). We can prove
the converse of the lemma by direct computation. The proof is completed. �

3 Main results
3.1 Single-valued system (1.1)–(1.3)
Let X = {x(t)|x(t) ∈ C([0,T ],R)} be the Banach space endowed with the norm‖x‖ =
sup{|x(t)|,t ∈ [0,T ]}. Also let the product space (X × X,‖(x,y)‖) be the Banach space
equipped with norm‖(x,y)‖ = ‖x‖ + ‖y‖.

We de“ne an operatorH : X × X → X × X by

H(x,y)(t) =

(
H1(x,y)(t)
H2(x,y)(t)

)

, (3.1)

where

H1(x,y)(t) = I α̂f (t) +
λ

Λ

[

…Tβ…1Iβ…p̂g(η) +
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+α̂f (ξ ) …Iβ ĝ(T)

)
]

and

H2(x,y)(t) = Iβ ĝ(t) +
tβ…1

Λ

[

Iβ ĝ(T) …γ Iq+α̂f (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…p̂g(η)

]

,

and f̂ (t) = f (t,x(t),y(t)), ĝ(t) = g(t,x(t),y(t)). For convenience, we set the notations:

M1 =
Tα

Γ (1 +α)
+

1
|Λ| |λ||γ | Γ (β)

Γ (β …p)
ηβ…p…1ξ q+α

Γ (q + α + 1)
, (3.2)

M2 =
Tβ…1ηβ…p…1|λ|

|Λ|
[

TΓ (β)
Γ (β …p)Γ (β + 1)

+
η

Γ (1 +β)

]

, (3.3)

M3 =
Tβ…1|γ |ξ q+α

|Λ|Γ (q + α + 1)
, (3.4)

M4 =
Tβ

Γ (1 +β)

(

1 +
Tβ…1

|Λ|
)

+
Tβ…1

|Λ| |λ||γ | ξ qηβ…p

Γ (1 + q)Γ (β …p + 1)
. (3.5)

Our “rst existence result is based on the Leray…Schauder alternative [37, p. 4].

Theorem 3.1 Assume that:
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(A1) f ,g : [0,T ] ×R×R →R are continuous functions and that there exist real constants
ki,γi ≥ 0 (i = 0,1,2) with k0 > 0, γ0 > 0 such that, ∀xi ∈R (i = 1,2),

∣
∣f (t,x1,x2)

∣
∣ ≤ k0 + k1|x1| + k2|x2|,

∣
∣g(t,x1,x2)

∣
∣ ≤ γ0 + γ1|x1| + γ2|x2|.

If

(M1 + M3)k1 + (M2 + M4)γ1 < 1 and (M1 + M3)k2 + (M2 + M4)γ2 < 1, (3.6)

where Mi, i = 1,2,3,4,are given by (3.2)–(3.5), then system (1.1)–(1.3) has at least one
solution on [0,T ].

Proof Firstly we show that the operatorH : X × X → X × X de“ned by (3.1) is completely

continuous. Notice that continuity of the operatorH follows from that of the functionsf
and g.

Let Ω ⊂ X × X be bounded. Then there exist positive constantsL1 and L2 such that

|f (t,x(t),y(t))| ≤ L1, |g(t,x(t),y(t))| ≤ L2, ∀(x,y) ∈ Ω . Then, for any (x,y) ∈ Ω , we have

∣
∣H1(x,y)(t)

∣
∣ ≤ Tα

Γ (1 +α)
L1 +

|λ|
|Λ|

[

Tβ…1 ηβ…p

Γ (β …p + 1)
L2

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1
(

Tβ

Γ (1 +β)
L2 + |γ | ξ q+α

Γ (q + α + 1)
L1

)]

= M1L1 + M2L2,

which implies that

∥
∥H1(x,y)

∥
∥ ≤ M1L1 + M2L2.

In a similar way, we can “nd that

∥
∥H2(x,y)

∥
∥ ≤ M3L1 + M4L2.

From the above inequalities we conclude that the operatorH is uniformly bounded, since

‖H(x,y)‖ ≤ (M1 + M3)L1 + (M2 + M4)L2.

Next, we show thatH is equicontinuous. Lett1,t2 ∈ [0,T ] with t1 < t2. Then we have

∣
∣H1

(
x(t2),y(t2)

)
…H1

(
x(t1),y(t1)

)∣
∣

≤ L1

∣
∣
∣
∣

1
Γ (α)

∫ t2

0
(t2 …s)α…1ds …

1
Γ (α)

∫ t1

0
(t1 …s)α…1ds

∣
∣
∣
∣

≤ L1

Γ (α)

{∫ t1

0

[
(t2 …s)α…1… (t1 …s)α…1]ds +

∫ t2

t1
(t2 …s)α…1ds

}

≤ L1

Γ (α + 1)

[
2(t2 …t1)α +

∣
∣tα

2 …tα
1

∣
∣
]
.
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Analogously, we can obtain

∣
∣H2

(
x(t2),y(t2)

)
…H2

(
x(t1),y(t1)

)∣
∣

≤ L2

[
Tβ

Γ (1 +β)
+ |λ||γ | ξ qηβ…p

Γ (1 + q)Γ (β …p + 1)

]
tβ…1
2 …tβ…1

1

|Λ|

+ L1
|γ |ξ q+α

Γ (q + α + 1)
tβ…1
2 …tβ…1

1

|Λ| +
L2

Γ (β + 1)

[
2(t2 …t1)β +

∣
∣tβ

2 …tβ
1

∣
∣
]
.

Thus the operatorH(x,y) is equicontinuous. In view of the foregoing arguments, we de-

duce that the operatorH(x,y) is completely continuous.

Finally, it will be veri“ed that the setZ = {(x,y) ∈ X × X|(x,y) = θH(x,y), 0≤ θ ≤ 1} is

bounded. Let (x,y) ∈Z with (x,y) = θH(x,y). For anyt ∈ [0,T ], we have

x(t) = θH1(x,y)(t), y(t) = θH2(x,y)(t).

Then

∣
∣x(t)

∣
∣ ≤ M1

(
k0 + k1|x| + k2|y|

)
+ M2

(
γ0 + γ1|x| + γ2|y|

)

= M1k0 + M2γ0 + (M1k1 + M2γ1)|x| + (M1k2 + M2γ2)|y|,

and

∣
∣y(t)

∣
∣ ≤ M3

(
k0 + k1|x| + k2|y|

)
+ M4

(
γ0 + γ1|x| + γ2|y|

)

= M3k0 + M4γ0 + (M3k1 + M4γ1)|x| + (M3k2 + M4γ2)|y|.

In consequence, we have

‖x‖ ≤ M1k0 + M2γ0 + (M1k1 + M2γ1)‖x‖ + (M1k2 + M2γ2)‖y‖

and

‖y‖ ≤ M3k0 + M4γ0 + (M3k1 + M4γ1)‖x‖ + (M3k2 + M4γ2)‖y‖,

which imply that

‖x‖ + ‖y‖ ≤ (M1 + M3)k0 + (M2 + M4)γ0 +
[
(M1 + M3)k1 + (M2 + M4)γ1

]‖x‖
+

[
(M1 + M3)k2 + (M2 + M4)γ2

]‖y‖.

Thus we have

∥
∥(x,y)

∥
∥ ≤ (M1 + M3)k0 + (M2 + M4)γ0

M0
,

whereM0 = min{1 … [(M1 + M3)k1 + (M2 + M4)γ1], 1 … [(M1 + M3)k2 + (M2 + M4)γ2]}, which

establishes that the setZ is bounded. Thus, by the Leray…Schauder alternative [37], the
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operatorH has at least one “xed point. Hence system (1.1)…(1.3) has at least one solution.
The proof is complete. �

The uniqueness of solutions for problem (1.1)…(1.3) is proved in the next theorem via
Banach•s contraction mapping principle.

Theorem 3.2 Assume that:
(A2) f ,g : [0,T ] ×R×R →R are continuous functions and that there exist positive con-

stants �1 and �2 such that, for all t ∈ [0,T ] and xi,yi ∈R, i = 1,2, we have

∣
∣f (t,x1,x2) …f (t,y1,y2)

∣
∣ ≤ �1

(|x1 …y1| + |x2 …y2|
)
,

∣
∣g(t,x1,x2) …g(t,y1,y2)

∣
∣ ≤ �2

(|x1 …y1| + |x2 …y2|
)
.

Then system (1.1)–(1.3) has a unique solution on [0,T ], provided that

(M1 + M3)�1 + (M2 + M4)�2 < 1,

where Mi, i = 1,2,3,4,are given by (3.2)–(3.5).

Proof Put supt∈[0,T ] f (t, 0, 0) =N1 < ∞, supt∈[0,T ] g(t, 0, 0) =N2 < ∞ and choose a positive
number r such that

r >
(M1 + M3)N1 + (M2 + M4)N2

1 … (M1 + M3)�1 … (M2 + M4)�2
.

Then we show thatHBr ⊂ Br, whereBr = {(x,y) ∈ X × X : ‖(x,y)‖ ≤ r} andH is de“ned by
(3.1).

By assumption (A2), for (u,v) ∈ Br, t ∈ [0,T ], we have

∣
∣f

(
t,x(t),y(t)

)∣
∣ ≤ ∣

∣f
(
t,x(t),y(t)

)
…f (t, 0, 0)

∣
∣ +

∣
∣f (t, 0, 0)

∣
∣

≤ �1
(∣
∣x(t)

∣
∣ +

∣
∣y(t)

∣
∣
)

+ N1

≤ �1
(‖x‖ + ‖y‖) + N1 ≤ �1r + N1

and

∣
∣g

(
t,x(t),y(t)

)∣
∣ ≤ �2

(‖x‖ + ‖y‖) + N2 ≤ �2r + N2.

In consequence, we obtain

∣
∣H1(x,y)(t)

∣
∣

≤ Tα

Γ (1 +α)
(�1r + N1) +

|λ|
|Λ|

[

Tβ…1 ηβ…p

Γ (β …p + 1)
(�2r + N2)

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1
(

Tβ

Γ (1 +β)
(�2r + N2) + |γ | ξ q+α

Γ (q + α + 1)
(�1r + N1)

)]

= (�1r + N1)M1 + (�2r + N2)M2

= (M1�1 + M2�2)r + M1N1 + M2N2,
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which implies that

∥
∥H1(x,y)

∥
∥ ≤ (M1�1 + M2�2)r + M1N1 + M2N2.

In the same way, we can “nd that

∥
∥H2(x,y)

∥
∥ ≤ (M3�1 + M4�2)r + M3N1 + M4N2.

From the above inequalities, it follows that

∥
∥H(x,y)

∥
∥ ≤ [

(M1 + M3)�1 + (M2 + M4)�2
]
r + (M1 + M3)N1 + (M2 + M4)N2 ≤ r.

Next, for (x2,y2), (x1,y1) ∈ X × X and for anyt ∈ [0,T ], we get

∣
∣H1(x2,y2)(t) …H1(x1,y1)(t)

∣
∣

≤ Tα

Γ (1 +α)
�1

(‖x2 …x1‖ + ‖y2 …y1‖
)

+
|λ|
|Λ|

[

Tβ…1 ηβ…p

Γ (β …p + 1)
�2

(‖x2 …x1‖ + ‖y2 …y1‖
)

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1
(

Tβ

Γ (1 +β)
�2

(‖x2 …x1‖ + ‖y2 …y1‖
)

+ |γ | ξ q+α

Γ (q + α + 1)
�1

(‖x2 …x1‖ + ‖y2 …y1‖
)
)]

≤ (M1�1 + M2�2)
(‖x2 …x1‖ + ‖y2 …y1‖

)
,

which leads to

∥
∥H1(x2,y2) …H1(x1,y1)

∥
∥ ≤ (M1�1 + M2�2)

(‖x2 …x1‖ + ‖y2 …y1‖
)
. (3.7)

Similarly, one can obtain

∥
∥H2(x2,y2)(t) …H2(x1,y1)

∥
∥ ≤ (M3�1 + M4�2)

(‖x2 …x1‖ + ‖y2 …y1‖
)
. (3.8)

From (3.7) and (3.8), we deduce that

∥
∥H(x2,y2) …H(x1,y1)

∥
∥ ≤ [

(M1 + M3)�1 + (M2 + M4)�2
](‖x2 …x1‖ + ‖y2 …y1‖

)
.

Since (M1 + M3)�1 + (M2 + M4)�2 < 1, therefore,H is a contraction. So, by Banach•s con-
traction mapping principle, the operatorH has a unique “xed point, which corresponds
to a unique solution of problem (1.1)…(1.3). This completes the proof. �

Example 3.3 Consider the following system of fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD1/2x(t) = 1
4(t+2)2

|x(t)|
1+|x(t)| + 1 + 1

t3+32
sin2 y(t), t ∈ [0, 1],

RLD3/2x(t) = 1
32π sin(2πx(t)) + |y(t)|

16(1+|y(t)|) + 1
2, t ∈ [0, 1],

u(0) =
√

3D1/2y( 1
3),

y(0) = 0, y(1) =
√

2I1/2x( 1
2).

(3.9)
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Here,α = 1/2, λ =
√

3, p = 1/2, η = 1/3, β = 3/2, γ =
√

2, q = 1/2, ξ = 1/2, and f (t,x,y) =
1

4(t+2)2
|x|

1+|x| + 1 + 1
t3+32

sin2 y andg(t,x,y) = 1
32π sin(2πx) + |y|

16(1+|y|) + 1
2. Note that |f (t,x1,y1) …

f (t,x2,y2)| ≤ 1
16|x1 …x2| + 1

16|y1 …y2|, |g(t,x1,y1) …g(t,x2,y2)| ≤ 1
16|x1 …x2| + 1

16|y1 …y2|.
Using the given data in (3.2)…(3.5), it is found that M1 ≈ 1.5256638,M2 ≈ 0.58161945,
M3 ≈ 0.258819045,M4 ≈ 1.26605098. Clearly�1 = 1/16, �2 = 1/16, and consequently
(M1 + M3)�1 + (M2 + M4)�2 ≈ 0.22700958 < 1.

Thus all the conditions of Theorem3.2are satis“ed; consequently, its conclusion applies
to problem (3.9).

3.2 Multi-valued system (1.2)–(1.3)
Definition 3.4 A function (x,y) ∈ C1([0,T ],R) × C2([0,T ],R) satisfying the coupled
boundary conditionsx(0) = λcDpy(η), y(0) = 0, y(T) = γ Iqx(ξ ) and for which there ex-
ist functions f ,g ∈ L1([0,T ],R) such that f (t) ∈ F(t,x(t),y(t)), g(t) ∈ G(t,x(t),y(t)) a.e. on
t ∈ [0,T ] and

x(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

, (3.10)

and

y(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

(3.11)

is called a solution of coupled system (1.2)…(1.3).

For each (x,y) ∈ X × X, the sets of selections ofF , G are de“ned by

SF,(x,y) =
{

f ∈ L1([0,T ],R
)

: f (t) ∈ F
(
t,x(t),y(t)

)
for a.e.t ∈ [0,T ]

}

and

SG,(x,y) =
{

g ∈ L1([0,T ],R
)

: g(t) ∈ G
(
t,x(t),y(t)

)
for a.e.t ∈ [0,T ]

}
.

In view of Lemma2.5, we de“ne the operatorsK1,K2 : X × X →P(X × X) as follows:

K1(x,y)(t) =
{

h1 ∈ X × X : there exist f ∈ SF,(x,y),g ∈ SG,(x,y) such that

h1(x,y)(t) = Q1(x,y)(t),∀t ∈ [0,T ]
}

(3.12)

and

K2(x,y)(t) =
{

h2 ∈ X × X : there existsf ∈ SF,(x,y),g ∈ SG,(x,y) such that

h2(x,y)(t) = Q2(x,y)(t),∀t ∈ [0,T ]
}
, (3.13)

where

Q1(x,y)(t)

= Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]
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and

Q2(x,y)(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

Then we de“ne an operatorK : X × X →P(X × X) by

K(x,y)(t) =

(
K1(x,y)(t)
K2(x,y)(t)

)

,

whereK1 andK2 are de“ned by (3.12) and (3.13).

3.2.1 The Carathéodory case
Our “rst result dealing with convex valuesF and G is proved via the Leray…Schauder

nonlinear alternative for multi-valued maps [37].

Theorem 3.5 Suppose that the following conditions are satisfied:

(B1) F,G : [0,T ] ×R
2 →P(R) are L1-Carathéodory and have convex values;

(B2) There exist continuous nondecreasing functions ψ1,ψ2,φ1,φ2 : [0,∞) → (0,∞) and
functions p1,p2 ∈ C([0,T ],R+) such that

∥
∥F(t,x,y)

∥
∥
P := sup

{|f | : f ∈ F(t,x,y)
} ≤ p1(t)

[
ψ1

(‖x‖) + φ1
(‖y‖)]

and

∥
∥G(t,x,y)

∥
∥
P := sup

{|g| : g ∈ G(t,x,y)
} ≤ p2(t)

[
ψ2

(‖x‖) + φ2
(‖y‖)]

for each (t,x,y) ∈ [0,T ] ×R
2;

(B3) There exists a number N > 0 such that

N
(M1 + M3)‖p1‖(ψ1(N) + φ1(N)) + (M2 + M4)‖p2‖(ψ2(N) + φ2(N))

> 1,

where Mi (i = 1,2,3,4) are given by (3.2)–(3.5).
Then coupled system (1.2)–(1.3) has at least one solution on [0,T ].

Proof Consider the operatorsK1,K2 : X × X → P(X × X) de“ned by (3.12) and (3.13).

From (B1), it follows that the setsSF,(x,y) and SG,(x,y) are nonempty for each (x,y) ∈ X × X.

Then, for f ∈ SF,(x,y), g ∈ SG,(x,y) for (x,y) ∈ X × X, we have

h1(x,y)(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

h2(x,y)(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

,

whereh1 ∈K1(x,y), h2 ∈K2(x,y), and so (h1,h2) ∈K(x,y).
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It will be established in several steps that the operatorK satis“es the hypotheses of
Leray…Schauder nonlinear alternative. First we show thatK(x,y) is convex valued. Let
(hi, h̄i) ∈ (K1,K2), i = 1,2. Then there existfi ∈ SF,(x,y), gi ∈ SG,(x,y), i = 1,2, such that, for
eacht ∈ [0,T ], we have

hi(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

h̄i(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

Let 0≤ ω ≤ 1. Then, for eacht ∈ [0,T ], we have

[
ωh1 + (1 …ω)h2

]
(t)

= Iα
[
ωf1(s) + (1 …ω)f2(s)

]
(t) +

1
Λ

[

…λTβ…1Iβ…p[ωg1(s) + (1 …ω)g2(s)
]
(η)

+ λ
Γ (β)

Γ (β …p)
ηβ…p…1(Iβ

[
ωg1(s) + (1 …ω)g2(s)

]
(T)

…γ Iq+α
[
ωf1(s) + (1 …ω)f2(s)

]
(ξ )

)
]

and

[
ωh̄1 + (1 …ω)h̄2

]
(t)

= Iβ
[
ωg1(s) + (1 …ω)g2(s)

]
(t) +

tβ…1

Λ

[

Iβ
[
ωg1(s) + (1 …ω)g2(s)

]
(T)

…γ Iq+α
[
ωf1(s) + (1 …ω)f2(s)

]
(ξ ) …λγ

ξ q

Γ (1 + q)
Iβ…p[ωg1(s) + (1 …ω)g2(s)

]
(η)

]

.

We deduce thatSF,(x,y), SG,(x,y) are convex valued, sinceF , G are convex valued. Obviously,
ωh1 + (1 …ω)h2 ∈K1, ωh̄1 + (1 …ω)h̄2 ∈K2, and henceω(h1, h̄1) + (1 …ω)(h2, h̄2) ∈K.

Now we show thatK maps bounded sets into bounded sets inX × X. For a positive
number r, let Br = {(x,y) ∈ X × X : ‖(x,y)‖ ≤ r} be a bounded set inX × X. Then there
exist f ∈ SF,(x,y), g ∈ SG,(x,y) such that

h1(x,y)(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

h2(x,y)(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

Then we have

∣
∣h1(x,y)(t)

∣
∣

≤ Iα
∣
∣f (t)

∣
∣ +

1
|Λ|

[

|λ|Tβ…1Iβ…p∣∣g(η)
∣
∣ + |λ| Γ (β)

Γ (β …p)
ηβ…p…1(Iβ

∣
∣g(T)

∣
∣ + |γ |Iq+α

∣
∣f (ξ )

∣
∣
)
]
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≤ Tα

Γ (1 +α)
‖p1‖

(
ψ1(r) + φ1(r)

)
+

1
|Λ|

[

|λ|Tβ…1 ηβ…p

Γ (β …p + 1)
‖p2‖

(
ψ2(r) + φ2(r)

)

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1
(

Tβ

Γ (1 +β)
‖p2‖

(
ψ2(r) + φ2(r)

)

+ |γ | ξ q+α

Γ (q + α + 1)
‖p1‖

(
ψ1(r) + φ1(r)

)
)]

= M1‖p1‖
(
ψ1(r) + φ1(r)

)
+ M2‖p2‖

(
ψ2(r) + φ2(r)

)

and

∣
∣h2(x,y)(t)

∣
∣ ≤ M3‖p1‖

(
ψ1(r) + φ1(r)

)
+ M4‖p2‖

(
ψ2(r) + φ2(r)

)
.

Thus,

∥
∥h1(x,y)

∥
∥ ≤ M1‖p1‖

(
ψ1(r) + φ1(r)

)
+ M2‖p2‖

(
ψ2(r) + φ2(r)

)

and

∥
∥h2(x,y)

∥
∥ ≤ M3‖p1‖

(
ψ1(r) + φ1(r)

)
+ M4‖p2‖

(
ψ2(r) + φ2(r)

)
.

Hence we obtain

∥
∥(h1,h2)

∥
∥ =

∥
∥h1(x,y)

∥
∥ +

∥
∥h2(x,y)

∥
∥

≤ (M1 + M3)‖p1‖
(
ψ1(r) + φ1(r)

)
+ (M2 + M4)‖p2‖

(
ψ2(r) + φ2(r)

)
.

Next, we show thatK is equicontinuous. Lett1,t2 ∈ [0,T ] with t1 < t2. Then there exist

f ∈ SF,(x,y), g ∈ SG,(x,y) such that

h1(x,y)(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

h2(x,y)(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

Then we have

∣
∣h1(x,y)(t2) …h1(x,y)(t1)

∣
∣

≤ ‖p1‖
(
ψ1(r) + φ1(r)

)
∣
∣
∣
∣

1
Γ (α)

∫ t2

0
(t2 …s)α…1ds …

1
Γ (α)

∫ t1

0
(t1 …s)α…1ds

∣
∣
∣
∣

≤ ‖p1‖(ψ1(r) + φ1(r))
Γ (α)

{∫ t1

0

[
(t2 …s)α…1… (t1 …s)α…1]ds +

∫ t2

t1
(t2 …s)α…1ds

}

≤ ‖p1‖(ψ1(r) + φ1(r))
Γ (α + 1)

[
2(t2 …t1)α +

∣
∣tα

2 …tα
1

∣
∣
]
.
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Analogously, we can obtain

∣
∣h2(x,y)(t2) …h2(x,y)(t1)

∣
∣

≤ ‖p2‖
(
ψ2(r) + φ2(r)

)
[

Tβ

Γ (1 +β)
+ |λ||γ | ξ qηβ…p

Γ (1 + q)Γ (β …p + 1)

]
tβ…1
2 …tβ…1

1

|Λ|

+ ‖p1‖
(
ψ1(r) + φ1(r)

) |γ |ξ q+α

Γ (q + α + 1)
tβ…1
2 …tβ…1

1

|Λ|
+

‖p2‖(ψ2(r) + φ2(r))
Γ (β + 1)

[
2(t2 …t1)β +

∣
∣tβ

2 …tβ
1

∣
∣
]
.

Therefore, the operatorK(x,y) is equicontinuous, and thus, by the Ascoli…Arzelá theorem,
the operatorK(x,y) is completely continuous. We know from [35, Proposition 1.2] that a
completely continuous operator is upper semicontinuous if it has a closed graph. Thus
we need to prove thatK has a closed graph. Let (xn,yn) → (x∗,y∗), (hn, h̄n) ∈ K(xn,yn)
and (hn, h̄n) → (h∗, h̄∗), then we need to show (h∗, h̄∗) ∈ K(x∗,y∗). Observe that (hn, h̄n) ∈
K(xn,yn) implies that there existfn ∈ SF,(xn,yn) and gn ∈ SG,(xn,yn) such that

hn(xn,yn)(t)

= Iαfn(t) +
1
Λ

[

…λTβ…1Iβ…pgn(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αfn(ξ ) …Iβgn(T)

)
]

and

h̄n(xn,yn)(t) = Iβgn(t) +
tβ…1

Λ

[

Iβgn(T) …γ Iq+αfn(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pgn(η)

]

.

Let us consider the continuous linear operatorsΦ1,Φ2 : L1([0,T ], X×X) → C([0,T ], X×
X) given by

Φ1(x,y)(t) = Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

Φ2(x,y)(t) = Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

From [38] we know that (Φ1,Φ2) ◦ (SF ,SG) is a closed graph operator. Further, we have
(hn, h̄n) ∈ (Φ1,Φ2) ◦ (SF,(xn,yn),SG,(xn,yn)) for all n. Since (xn,yn) → (x∗,y∗), (hn, h̄n) → (h∗, h̄∗)
it follows that f∗ ∈ SF,(x,y) and g∗ ∈ SG,(x,y) such that

h∗(x∗,y∗)(t)

= Iαf∗(t) +
1
Λ

[

…λTβ…1Iβ…pg∗(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf∗(ξ ) …Iβg∗(T)

)
]

and

h̄∗(x∗,y∗)(t) + Iβg∗(t) +
tβ…1

Λ

[

Iβg∗(T) …γ Iq+αf∗(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg∗(η)

]

,

that is, (hn, h̄n) ∈K(x∗,y∗).
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Finally, we establish the a priori bounds on solutions. Let (x,y) ∈ νK(x,y). Then there
exist f ∈ SF,(x,y) and g ∈ SG,(x,y) such that

x(t) = νIαf (t) + ν
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

and

y(t) = νIβg(t) + ν
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

For eacht ∈ [0,T ], we obtain

‖x‖ ≤ M1‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖)) + M2‖p2‖

(
ψ2

(‖x‖) + φ2
(‖y‖))

and

‖y‖ ≤ M3‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖)) + M4‖p2‖

(
ψ2

(‖x‖) + φ2
(‖y‖)),

following the same arguments as in the second step.
Thus

∥
∥(x,y)

∥
∥ = ‖x‖ + ‖y‖

≤ (M1 + M3)‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖))

+ (M2 + M4)‖p2‖
(
ψ2

(‖x‖) + φ2
(‖y‖)),

which implies that

‖(x,y)‖
(M1 + M3)‖p1‖(ψ1(‖x‖) + φ1(‖y‖)) + (M2 + M4)‖p2‖(ψ2(‖x‖) + φ2(‖y‖))

≤ 1.

In view of (B3), there existsN such that‖(x,y)‖ �= N . Let us set

U =
{
(x,y) ∈ X × X :

∥
∥(x,y)

∥
∥ < N

}
.

Note that the operatorK : U → Pcp,cv(X) ×Pcp,cv(X) is completely continuous and upper
semicontinuous. There is no (x,y) ∈ ∂U such that (x,y) ∈ νK(x,y) for someν ∈ (0, 1) by the
choice ofU. Hence, by the nonlinear alternative of Leray…Schauder type [37], we deduce
that K has a “xed point (x,y) ∈ U, which is a solution of coupled system (1.2)…(1.3). This
completes the proof. �

3.2.2 The Lipschitz case
This subsection is concerned with the case when the multi-valued maps in system (1.2)
have non-convex values.

Let (X,d) be a metric space induced from the normed space (X;‖ · ‖), and let Hd :
P(X) × P(X) → R ∪ {∞} be de“ned byHd(U,V ) = max{supu∈U d(u,V ),supv∈V d(U,v)},
where d(U,v) = infu∈U d(u,v) and d(u,V ) = infv∈V d(u,v). Then (Pb,cl(X),Hd) is a metric
space and (Pcl(X),Hd) is a generalized metric space (see [39]).
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Definition 3.6 A multi-valued operator G : X → Pcl(X) is called (i)γ -Lipschitz if and

only if there existsγ > 0 such thatHd(G(a),G(b)) ≤ γ d(a,b) for eacha,b ∈ X; and (ii) a

contraction if and only if it is γ -Lipschitz with γ < 1.

In the forthcoming result, we make use of the “xed point theorem for multi-valued maps

due to Covitz and Nadler [40].

Theorem 3.7 If
(B3) F,G : [0,T ] × R

2 → Pcp(R) are such that F(·,x,y) : [0,T ] → Pcp(R) and G(·,x,y) :

[0,T ] →Pcp(R) are measurable for each x,y ∈R;
(B4)

Hd(F(t,x,y),F(t, x̄, ȳ) ≤ m1(t)
(|x …x̄| + |y …ȳ|)

and

Hd(G(t,x,y),G(t, x̄, ȳ) ≤ m2(t)
(|x …x̄| + |y …ȳ|)

for almost all t ∈ [0,T ] and x,y, x̄, ȳ ∈ R with m1,m2 ∈ C([0,T ],R+) and d(0,F(t,
0, 0))≤ m1(t), d(0,G(t, 0, 0))≤ m2(t) for almost all t ∈ [0,T ]

hold, then coupled system (1.2)–(1.3) has at least one solution on [0,T ] provided that

(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖ < 1. (3.14)

Proof The setsSF,(x,y) andSG,(x,y) are nonempty for each (x,y) ∈ X × Y by assumption (B3),

soF andG have measurable selections (see Theorem III.6 in [41]). Now we show that the

operatorK satis“es the assumptions of Covitz and Nadler•s “xed point theorem [40].

First we show thatK(x,y) ∈Pcl(X)×Pcl(X) for each (x,y) ∈ X ×X. Let (hn, h̄n) ∈K(xn,yn)

such that (hn, h̄n) → (h, h̄) in X × X. Then (h, h̄) ∈ X × X and there existfn ∈ SF,(xn,yn) and

gn ∈ SG,(xn,yn) such that

hn(xn,yn)(t)

= Iαfn(t) +
1
Λ

[

…λTβ…1Iβ…pgn(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(Iβgn(T) …γ Iq+αfn(ξ )

)
]

and

h̄n(xn,yn)(t) = Iβgn(t) +
tβ…1

Λ

[

Iβgn(T) …γ Iq+αfn(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pgn(η)

]

.

SinceF and G have compact values, we pass onto subsequences (denoted as sequences)

to get that fn and gn converge tof and g in L1([0,T ],R) respectively. Thusf ∈ SF,(x,y) and

g ∈ SG,(x,y) for eacht ∈ [0,T ] and that

hn(xn,yn)(t) → h(x,y)(t)

= Iαf (t) +
1
Λ

[

…λTβ…1Iβ…pg(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(γ Iq+αf (ξ ) …Iβg(T)

)
]

,
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and

h̄n(xn,yn)(t) → h̄(x,y)(t)

= Iβg(t) +
tβ…1

Λ

[

Iβg(T) …γ Iq+αf (ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg(η)

]

.

Hence (h, h̄) ∈K, which implies thatK is closed.

Next we show that there existŝθ < 1 (de“ned by (3.14)) such that

Hd
(
K(x,y),K(x̄, ȳ)

) ≤ θ̂
(‖x …x̄‖ + ‖y …ȳ‖) for eachx, x̄,y, ȳ ∈ X.

Let (x, x̄), (y, ȳ) ∈ X × X and (h1, h̄1) ∈ K(x,y). Then there existf1 ∈ SF,(x,y) and g1 ∈ SG,(x,y)

such that, for eacht ∈ [0,T ], we have

h1(xn,yn)(t)

= Iαf1(t) +
1
Λ

[

…λTβ…1Iβ…pg1(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(Iβg1(T) …γ Iq+αf1(ξ )

)
]

and

h̄1(xn,yn)(t) = Iβg1(t) +
tβ…1

Λ

[

Iβg1(T) …γ Iq+αf1(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg1(η)

]

.

By (B4), we have

Hd
(
F(t,x,y),F(t, x̄, ȳ)

) ≤ m1(t)
(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)

and

Hd
(
G(t,x,y),G(t, x̄, ȳ)

) ≤ m2(t)
(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)
.

So, there existf ∈ F(t,x(t),y(t)) andg ∈ G(t,x(t),y(t)) such that

∣
∣f1(t) …w

∣
∣ ≤ m1(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)

and

∣
∣g1(t) …z

∣
∣ ≤ m2(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)
.

De“ne V1,V2 : [0,T ] →P(R) by

V1(t) =
{

f ∈ L1([0,T ],R
)

:
∣
∣f1(t) …w

∣
∣ ≤ m1(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)}

and

V2(t) =
{

g ∈ L1([0,T ],R
)

:
∣
∣g1(t) …z

∣
∣ ≤ m2(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)}

.
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Since the multi-valued operatorsV1(t) ∩ F(t,x(t),y(t)) andV2(t) ∩ G(t,x(t),y(t)) are mea-

surable (Proposition III.4 in [41]), there exist functionsf2(t), g2(t) which are a measur-

able selection forV1, V2 and f2(t) ∈ F(t,x(t),y(t)), g2(t) ∈ G(t,x(t),y(t)) such that, for a.e.

t ∈ [0,T ], we have

∣
∣f1(t) …f2(t)

∣
∣ ≤ m1(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)

and

∣
∣g1(t) …g2(t)

∣
∣ ≤ mg(t)

(∣
∣x(t) …x̄(t)

∣
∣ +

∣
∣y(t) …̄y(t)

∣
∣
)
.

Let

h2(xn,yn)(t)

= Iαf2(t) +
1
Λ

[

…λTβ…1Iβ…pg2(η) + λ
Γ (β)

Γ (β …p)
ηβ…p…1(Iβg2(T) …γ Iq+αf2(ξ )

)
]

and

h̄2(xn,yn)(t) = Iβg2(t) +
tβ…1

Λ

[

Iβg2(T) …γ Iq+αf2(ξ ) …λγ
ξ q

Γ (1 + q)
Iβ…pg2(η)

]

.

Thus,

∣
∣h1(x,y)(t) …h2(x,y)(t)

∣
∣

≤ Iα
∣
∣f1(s) …f2(s)

∣
∣(t) +

1
|Λ|

[

|λ|Tβ…1Iβ…p∣∣g1(s) …g2(s)
∣
∣(η)

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1(Iβ
∣
∣g1(s) …g2(s)

∣
∣(T) + |γ |Iq+α

∣
∣f1(s) …f2(s)

∣
∣(ξ )

)
]

≤ Iαm1(s)
(∣
∣x(s) …x̄(s)

∣
∣ +

∣
∣y(s) …̄y(s)

∣
∣
)
(t)

+
1

|Λ|
[

|λ|Tβ…1Iβ…pm2(s)
(∣
∣x(s) …x̄(s)

∣
∣ +

∣
∣y(s) …̄y(s)

∣
∣
)
(η)

+ |λ| Γ (β)
Γ (β …p)

ηβ…p…1(Iβm2(s)
(∣
∣x(s) …x̄(s)

∣
∣ +

∣
∣y(s) …̄y(s)

∣
∣
)
(T)

+ |γ |Iq+αm1(s)
(∣
∣x(s) …x̄(s)

∣
∣ +

∣
∣y(s) …̄y(s)

∣
∣
)
(ξ )

)
]

≤ M1‖m1‖
(‖x …x̄‖ + ‖y …ȳ‖) + M2‖m2‖

(‖x …x̄‖ + ‖y …ȳ‖).

Hence

∥
∥h1(x,y) …h2(x,y)

∥
∥ ≤ (

M1‖m1‖ + M2‖m2‖
)(‖x …x̄‖ + ‖y …ȳ‖).

In a similar manner, we can establish that

∥
∥h̄1(x,y) …h̄2(x,y)

∥
∥ ≤ (

M3‖m1‖ + M4‖m2‖
)(‖x …x̄‖ + ‖y …ȳ‖).
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Thus

∥
∥(h1, h̄1), (h2, h̄2)

∥
∥ ≤ [

(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖
](‖x …x̄‖ + ‖y …ȳ‖).

Analogously, interchanging the roles of (x,y) and (̄x, ȳ), we can obtain

Hd
(
T(x,y),T(x̄, ȳ)

) ≤ [
(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖

](‖x …x̄‖ + ‖y …ȳ‖).

ThereforeK is a contraction in view of assumption (3.14). Hence it follows by Covitz and

Nadler•s “xed point theorem [40] that K has a “xed point (x,y), which is a solution of

problem (1.2)…(1.3). This completes the proof. �

4 Conclusion
In the present research we studied the existence of solutions for coupled fractional dif-

ferential equations and inclusions involving fractional derivatives of di�erent orders and

supplemented with nonlocal boundary conditions containing fractional derivative and in-

tegral. In the single-valued case we establish existence and uniqueness of solutions by

applying the Leray…Schauder alternative and the Banach contraction mapping principle

respectively. In the multi-valued case we proved existence results for both convex and

non-convex multi-valued maps via the nonlinear alternative for Kakutani maps and Covitz

and Nadler•s “xed point theorem. Examples illustrating the obtained results are also con-

structed.
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