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Abstract
The goal of this paper is to study the uniqueness of solutions of several
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1 Introduction
The Hadamard-type fractional integral of order α > 0 for a function u is defined in [1, 2]
as

(
J α

a+,μu
)
(x) =

1
�(α)

∫ x

a

(
t
x

)μ(
log

x
t

)α–1

u(t)
dt
t

,

where log(·) = loge(·), 0 < a < x < b, and μ ∈ R. The corresponding derivative is given by

(
Dα

a+,μu
)
(x) = x–μδnxμ

(
J n–α

a+,μu
)
(x), δ = x

d
dx

,

where n = [α] + 1, [α] being the integral part of α. When μ = 0, they take the forms

(
J α

a+u
)
(x) =

1
�(α)

∫ x

a

(
log

x
t

)α–1

u(t)
dt
t

,

(
Dα

a+u
)
(x) = δn(J n–α

a+ u
)
(x),

respectively. In particular, for α = 1,

(Ja+,μu)(x) =
(
J 1

a+,μu
)
(x) =

1
�(α)xμ

∫ x

a
tμ–1u(t) dt,

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03205-8
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03205-8&domain=pdf
http://orcid.org/0000-0001-7098-8059
mailto:lic@brandonu.ca


Li Advances in Difference Equations         (2021) 2021:40 Page 2 of 15

which leads to definition of the space Xμ(a, b) of Lebesgue-measurable functions u on
[a, b] for which xμ–1u(x) is absolutely integrable [2]:

Xμ(a, b) =
{

u : [a, b] → C : ‖u‖Xμ =
∫ b

a
xμ–1∣∣u(x)

∣∣dx < ∞
}

.

Clearly, for a > 0,

min
x∈[a,b]

{
xμ–1}

∫ b

a

∣∣u(x)
∣∣dx ≤

∫ b

a
xμ–1∣∣u(x)

∣∣dx ≤ max
x∈[a,b]

{
xμ–1}

∫ b

a

∣∣u(x)
∣∣dx, and

0 < min
x∈[a,b]

{
xμ–1} ≤ max

x∈[a,b]

{
xμ–1}

for every μ ∈ R. Hence Xμ(a, b) is a Banach space, since L(a, b) with the norm

‖u‖L =
∫ b

a

∣∣u(x)
∣∣dx

is complete and the norms ‖u‖Xμ and ‖u‖L are equivalent.
We need the following lemmas shown by Kilbas [2].

Lemma 1.1 If α > 0, μ ∈ R, and 0 < a < b < ∞, then the operator J α
a+,μ is bounded in

Xμ(a, b), and for u ∈ Xμ(a, b),
∥∥J α

a+,μu
∥∥

Xμ
≤ K‖u‖Xμ ,

where

K =
1

�(α + 1)

[
log

(
b
a

)]α

.

Lemma 1.2 If α > 0, β > 0, μ ∈ R, and u ∈ Xμ(a, b), then the semigroup property holds:

J α
a+,μJ β

a+,μu = J α+β
a+,μu.

There are a lot of studies on fractional differential and integral equations involving
Riemann–Liouville or Caputo operators with boundary value problems or initial condi-
tions [3–11]. Li and Sarwar [12] considered the existence of solutions for the following
fractional-order initial value problems:

⎧
⎨

⎩
(CDα

0,tu)(t) = f (t, u(t)), t ∈ (0,∞),

u(0) = u0,

where 0 < α < 1, and CDα
0,t is the Caputo derivative.

Wu et al. [13] studied the existence and uniqueness of solutions by fixed point theory
for the following fractional differential equation with nonlinearity depending on fractional
derivatives of lower order on an infinite interval:

⎧
⎨

⎩
(Dα

0+u)(t) + f (t, u(t), (Dα–2
0+ u)(t), (Dα–1

0+ u)(t)) = 0, t ∈ (0,∞),

u(0) = u′(0) = 0, (Dα–1
0+ u)(∞) = ζ ,

where 2 < α ≤ 3, Dα
0+, Dα–1

0+ , and Dα–2
0+ are all Riemann–Liouville fractional derivatives.



Li Advances in Difference Equations         (2021) 2021:40 Page 3 of 15

Ahmad and Ntouyas [14] considered a coupled system of Hadamard-type fractional dif-
ferential equations and integral boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
1+u(t) = w1(t, u(t), v(t)), 1 < t < e, 1 < α ≤ 2,

Dβ
1+v(t) = w2(t, u(t), v(t)), 1 < t < e, 1 < β ≤ 2,

u(1) = 0, u(e) = J γ
1+u(σ1) = 1

�(γ )
∫ σ1

1 (log σ1
s )γ –1u(s) ds

s ,

v(1) = 0, v(e) = J γ
1+v(σ2) = 1

�(γ )
∫ σ2

1 (log σ2
s )γ –1v(s) ds

s ,

where γ > 0, 1 < σ1 < e, 1 < σ2 < e, and w1, w2 : [1, e] × R × R → R are continuous functions
satisfying certain conditions. They showed the existence of solutions by Leray–Schauder’s
alternative and the uniqueness by Banach’s fixed point theorem, based on the fact that for
1 < q ≤ 2 and z ∈ C([1, e], R), the problem

⎧
⎨

⎩
Dq

1+x(t) = z(t), 1 < t < e,

x(1) = 0, x(e) = J γ
1+x(θ ),

has a unique solution

x(t) = J q
1+z(t) +

(log t)q–1

Q
[
J γ +q

1+ z(θ ) – J q
1+z(e)

]
,

where

Q =
1

1 – 1
�(γ )

∫ θ

1 (log θ
s )γ –1(log s)q–1 ds

s

.

Let g : [a, b] × R → R be a continuous function. In this paper, we study the following
nonlinear Hadamard-type (μ is arbitrary in R) integral equation in the space Xμ(a, b):

an
(
J αn

a+,μu
)
(x) + · · · + a1

(
J α1

a+,μu
)
(x) + u(x) = g

(
x, u(x)

)
, (1)

where αn > αn–1 > · · · > α1 > 0, and ai, i = 1, 2, . . . , n, are complex numbers, not all zero.
To the best of the author’s knowledge, equation (1) is new in the framework of

Hadamard-type integral equations. First, by Babenko’s approach we will construct the
solution as a convergent infinite series in Xμ(a, b) for the integral equation

an
(
J αn

a+,μu
)
(x) + · · · + a1

(
J α1

a+,μu
)
(x) + u(x) = f (x), (2)

where f ∈ Xμ(a, b). Then we will show that there exists a unique solution for equation
(1) using Banach’s contraction principle. Furthermore, we present the solution for the
Hadamard-type integral equation

an
(
J αn

a+,μu
)
(x) + · · · + a1

(
J α1

a+,μu
)
(x) +

(
J α0

a+,μu
)
(x) = f (x) (3)
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by the Hadamard fractional derivative and show the uniqueness for the coupled system of
integral equations

⎧
⎨

⎩
an(J αn

a+,μu)(x) + · · · + a1(J α1
a+,μu)(x) + u(x) = g1(x, u(x), v(x)),

bn(J βn
a+,μv)(x) + · · · + b1(J β1

a+,μv)(x) + v(x) = g2(x, u(x), v(x)),
(4)

where αn > αn–1 > · · · > α1 > 0, βn > βn–1 > · · · > β1 > 0, and there exist at least one nonzero
ai and one nonzero bj for some 1 ≤ i, j ≤ n. We also present several examples for illustra-
tion of our results.

2 Main results
We begin by showing the solution for equation (2) as a convergent series in the space
Xμ(a, b) by Babenko’s approach [15], which is a powerful tool in solving differential and
integral equations. The method itself is close to the Laplace transform method in the ordi-
nary sense, but it can be used in more cases [16, 17], such as solving integral or fractional
differential equations with distributions whose Laplace transforms do not exist in the clas-
sical sense. Clearly, it is always necessary to show the convergence of the series obtained as
solutions. Podlubny [16] also provided interesting applications to solving certain partial
differential equations for heat and mass transfer by Babenko’s method. Recently, Li and
Plowman [18] and Li [19] studied the generalized Abel’s integral equations of the second
kind with variable coefficients by Babenko’s technique.

Theorem 2.1 Let f ∈ Xμ(a, b) with 0 < a < b < ∞. Then equation (2) has a unique solution
in the space Xμ(a, b),

u(x) =
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x), (5)

where αn > · · · > α1 > 0, and ai, i = 1, 2, . . . , n, are complex numbers, not all zero.

Proof Equation (2) can be written as

(
anJ αn

a+,μ + · · · + a1J α1
a+,μ + 1

)
u(x) = f (x).

By Babenko’s method we arrive at

u(x) =
(
anJ αn

a+,μ + · · · + a1J α1
a+,μ + 1

)–1f (x)

=
∞∑

k=0

(–1)k(anJ αn
a+,μ + · · · + a1J α1

a+,μ
)kf (x)

=
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
(
anJ αn

a+,μ
)kn · · · (a1J α1

a+,μ
)k1 f (x)

=
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n J knαn
a+,μ · · ·ak1

1 J k1α1
a+,μ f (x)
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=
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x)

using Lemma 1.2 and the multinomial theorem. Note that

J 0
a+,μf (x) = f (x).

It remains to show that series (5) converges in the space Xμ(a, b). By Lemma 1.1

∥∥J knαn+···+k1α1
a+,μ f (x)

∥∥
Xμ

≤ K‖f ‖Xμ ,

where

K =
1

�(knαn + · · · + k1α1 + 1)

(
log

b
a

)knαn+···+k1α1

.

Therefore

‖u‖Xμ

≤
∞∑

k=0

∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

) (|an|(log b
a )αn )kn · · · (|a1|(log b

a )α1 )k1

�(knαn + · · · + k1α1 + 1)
‖f ‖Xμ

= E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)
‖f ‖Xμ ,

where

E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)
< ∞

is the value of the multivariate Mittag-Leffler function E(α1,...,αn ,1)(z1, . . . , zn) given in [7] at

z1 = |a1|
(

log
b
a

)α1

, . . . , zn = |an|
(

log
b
a

)αn

.

Thus u ∈ Xμ(a, b), and the series on the right-hand of equation (5) is convergent.
To verify that the series is a solution, we substitute it into the left-hand side of equation

(2):

an

∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J (kn+1)αn+···+k1α1

a+,μ f
)
(x) + · · ·

+ a1

∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+(k1+1)α1

a+,μ f
)
(x) + · · ·

+
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x)

= an
(
J αn

a+,μf
)
(x) + an

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1
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· (J (kn+1)αn+···+k1α1
a+,μ f

)
(x) + · · · + a1

(
J α1

a+,μf
)
(x)

+ a1

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+(k1+1)α1

a+,μ f
)
(x)

+ f (x) – an
(
J αn

a+,μf
)
(x) – · · · – a1

(
J α1

a+,μf
)
(x)

+
∞∑

k=2

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x)

= an

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J (kn+1)αn+···+k1α1

a+,μ f
)
(x) + · · ·

+ a1

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+(k1+1)α1

a+,μ f
)
(x)

+ f (x) +
∞∑

k=2

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x) = f (x)

as

an

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J (kn+1)αn+···+k1α1

a+,μ f
)
(x) + · · ·

+ a1

∞∑

k=1

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+(k1+1)α1

a+,μ f
)
(x)

+
∞∑

k=2

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ f
)
(x) = 0

by cancelation. Note that all series are absolutely convergent and the term rearrangements
are feasible for cancelation.

Clearly, the uniqueness immediately follows from the fact that the integral equation

an
(
J αn

a+,μu
)
(x) + · · · + a1

(
J α1

a+,μu
)
(x) + u(x) = 0

only has zero solution by Babenko’s method. This completes the proof of Theorem 2.1. �

Let ν > 0 and x ≥ 0. The incomplete gamma function is defined by

γ (ν, x) =
∫ x

0
tν–1e–t dt.

From the recurrence relation [20]

γ (ν + 1, x) = νγ (ν, x) – xνe–x

we get

γ (ν, x) = xν�(ν)e–x
∞∑

j=0

xj

�(ν + j + 1)
. (6)
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Example 1 Let 0 < a < x < b. Then the Hadamard-type integral equation

(
J

1
2

a+,–1u
)
(x) + u(x) = x2

has the solution

u(x) = ax
∞∑

k=0

∞∑

j=0

(–1)k(log x
a )j+ 1

2 k

�( 1
2 k + j + 1)

.

Indeed, it follows from Lemma 2.4 in [2] that

(
J α

a+,μtw)
(x) =

γ (α, (μ + w) log(x/a))
�(α)

(μ + w)–αxw,

where μ + w > 0.
By Theorem 2.1

u(x) =
∞∑

k=0

(–1)k(J
1
2 k

a+,–1t2)(x) = x2
∞∑

k=0

(–1)k γ (k/2, log(x/a))
�(k/2)

.

Applying equation (6), we have

γ
(
k/2, log(x/a)

)
= (log x/a)k/2�(k/2)

a
x

∞∑

j=0

(log x/a)j

�( 1
2 k + j + 1)

.

Thus

u(x) = ax
∞∑

k=0

∞∑

j=0

(–1)k(log x
a )j+ 1

2 k

�( 1
2 k + j + 1)

is a solution in the space Xμ(a, b).

The following theorem shows the uniqueness of solution of equation (1).

Theorem 2.2 Let g : [a, b] × R → R be a continuous function and suppose that there exists
a constant C > 0 such that for all x ∈ [a, b],

∣
∣g(x, y1) – g(x, y2)

∣
∣ ≤ C|y1 – y2|, y1, y2 ∈ R.

Furthermore, suppose that

CE(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)
< 1.

Then equation (1) has a unique solution in the space Xμ(a, b) for every μ ∈ R.

Proof Let u ∈ Xμ(a, b). Then g(x, u(x)) ∈ Xμ(a, b) since

∣∣g
(
x, u(x)

)∣∣ ≤ ∣∣g
(
x, u(x)

)
– g(x, 0)

∣∣ +
∣∣g(x, 0)

∣∣ ≤ C
∣∣u(x)

∣∣ +
∣∣g(x, 0)

∣∣ ∈ Xμ(a, b)
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by noting that g(x, 0) is a continuous function on [a, b]. Define the mapping T on Xμ(a, b)
by

T(u)(x) =
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

(
J knαn+···+k1α1

a+,μ g
(
t, u(t)

))
(x).

In particular, for k = 0,

J knαn+···+k1α1
a+,μ g

(
t, u(t)

)
(x) = g

(
x, u(x)

)
.

From the proof of Theorem 2.1 we have

∥
∥T(u)

∥
∥

Xμ
≤ E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)∥
∥g

(
x, u(x)

)∥∥
Xμ

.

Clearly,

∥∥g
(
x, u(x)

)∥∥
Xμ

≤ C‖u‖Xμ + max
x∈[a,b]

{
xμ–1∣∣g(x, 0)

∣∣}(b – a) < ∞.

Hence T is a mapping from Xμ(a, b) to Xμ(a, b). It remains to prove that T is contractive.
We have

∥∥T(u) – T(v)
∥∥

Xμ
≤

∞∑

k=0

∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)

· |an|kn · · · |a1|k1
∥∥J knαn+···+k1α1

a+,μ
(
g
(
t, u(t)

)
– g

(
t, v(t)

))
(x)

∥∥
Xmu

≤
∞∑

k=0

∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

) (|an|(log b
a )αn )kn · · · (|a1|(log b

a )α1 )k1

�(knαn + · · · + k1α1 + 1)

· ∥∥g
(
t, u(t)

)
– g

(
t, v(t)

)∥∥
Xμ

.

Since

∥∥g
(
t, u(t)

)
– g

(
t, v(t)

)∥∥
Xμ

≤ C‖u – v‖Xμ ,

we derive

∥∥T(u) – T(v)
∥∥

Xμ
≤ CE(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)
‖u – v‖Xμ .

Therefore T is contractive. This completes the proof of Theorem 2.2. �

Example 2 Let a = 1, b = e, and μ ∈ R. Then for every μ ∈ R, there is a unique solution for
the following Hadamard-type integral equation:

(
J 1.5

1+,μu
)
(x) + (J1+,μu)(x) + u(x) =

x2

9(1 + x2)
sin u(x) + cos(sin x) + 1. (7)
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Clearly, the function

g(x, y) =
x2

9(1 + x2)
sin y + cos(sin x) + 1

is a continuous function from [1, e] × R to R and satisfies

∣∣g(x, y1) – g(x, y2)
∣∣ ≤ x2

9(1 + x2)
| sin y1 – sin y2| ≤ x2

9(1 + x2)
|y1 – y2| ≤ 1

9
|y1 – y2|.

Obviously, a2 = a1 = 1, and log b/a = 1. By Theorem 2.2 we need to calculate the value

∞∑

k=0

∑

k1+k2=k

(
k

k1, k2

)
1

�(1.5k2 + k1 + 1)
=

∞∑

k=0

k∑

j=0

(
k
j

)
1

�(k + 1 + 0.5j)

= 1 +
∞∑

k=1

k∑

j=0

(
k
j

)
1

�(k + 1 + 0.5j)
.

For k ≥ 1 and j ≥ 0, we have

1
�(k + 1 + 0.5j)

≤ 1
�(k + 1)

=
1
k!

and
k∑

j=0

(
k
j

)
= 2k .

Therefore

∞∑

k=0

k∑

j=0

(
k
j

)
1

�(1.5k2 + k1 + 1)

≤ 1 +
∞∑

k=1

2k

k!

= 1 + 2 +
2 · 2
1 · 2

+
2 · 2 · 2
1 · 2 · 3

+
2 · 2 · 2 · 2
1 · 2 · 3 · 4

+
2 · 2 · 2 · 2 · 2
1 · 2 · 3 · 4 · 5

+ · · ·

≤ 1 + 2 + 2 +
(

1
3

+
(

2
3

)0)
+

(
2
3

)1

+
(

2
3

)2

+ · · ·

=
16
3

+
1

1 – 2
3

=
25
3

.

Then

C
∞∑

k=0

∑

k1+k2=k

(
k

k1, k2

)
1

�(1.5k2 + k1 + 1)
<

25
3

· 1
9

< 1.

By Theorem 2.2 equation (7) has a unique solution.

Remark 1 There are algorithms for computation of the Mittag-Leffler function [21]

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, α > 0,β ∈ R, z ∈ C,
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and its derivative. In particular,

Eα,β (z) = –
sin(πα)

πα

∫ ∞

0

e–r1/α

r2 – 2rz cos(πα) + z2 dr –
1
z

,β = 1 + α,

where 0 < α ≤ 1, β ∈ R, | arg z| > πα, z 	= 0.

The Mittag-Leffler function is widely used in studying fractional differential equations
and fractional calculus. Li [22] studied three classes of fractional oscillators and obtained
the solutions of the first class in terms of the Mittag-Leffler function.

Define the product space Xμ(a, b) × Xμ(a, b) with the norm

∥
∥(u, v)

∥
∥ = ‖u‖Xμ + ‖v‖Xμ .

Clearly, Xμ(a, b) × Xμ(a, b) is a Banach space.
Now we can extend Theorem 2.2 to the coupled system of the Hadamard-type integral

equations given by (4).

Theorem 2.3 Let g1, g2 : [a, b]×R×R → R be continuous functions and suppose that there
exist nonnegative constants Ci, i = 1, 2, 3, 4, such that for all x ∈ [a, b] and ui, vi ∈ R, i = 1, 2,

∣
∣g1(x, u1, v1) – g1(x, u2, v2)

∣
∣ ≤ C1|u1 – u2| + C2|v1 – v2|,

∣
∣g2(x, u1, v1) – g2(x, u2, v2)

∣
∣ ≤ C3|u1 – u2| + C4|v1 – v2|.

Furthermore, suppose that

q = max{C1, C2}E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)

+ max{C3, C4}E(β1,...,βn ,1)

(
|b1|

(
log

b
a

)β1

, . . . , |bn|
(

log
b
a

)βn)
< 1.

Then system (4) has a unique solution in the product space Xμ(a, b) × Xμ(a, b) for every
μ ∈ R.

Proof Let u, v ∈ Xμ(a, b). Then g1(x, u(x), v(x)), g2(x, u(x), v(x)) ∈ Xμ(a, b) since

∣∣g1
(
x, u(x), v(x)

)∣∣ ≤ ∣∣g1
(
x, u(x), v(x)

)
– g1(x, 0, 0)

∣∣ +
∣∣g1(x, 0, 0)

∣∣

≤ C1
∣∣u(x)

∣∣ + C2
∣∣v(x)

∣∣ +
∣∣g1(x, 0, 0)

∣∣ ∈ Xμ(a, b)

by noting that g1(x, 0, 0) is a continuous function on [a, b]. Furthermore,

∥∥g1
(
x, u(x), v(x)

)∥∥
Xμ

≤ C1‖u‖Xμ + C2‖v‖Xμ + max
x∈[a,b]

{
xμ–1∣∣g1(x, 0, 0)

∣∣}(b – a) < ∞

for every μ ∈ R.
Define the mapping T on Xμ(a, b) × Xμ(a, b) by

T(u, v) =
(
T1(u, v), T2(u, v)

)
,
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where

T1(u, v)(x) =
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

·J knαn+···+k1α1
a+,μ g1

(
t, u(t), v(t)

)
(x),

and

T2(u, v)(x) =
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
bkn

n · · ·bk1
1

·J knβn+···+k1β1
a+,μ g2

(
t, u(t), v(t)

)
(x).

Clearly, from the proof of Theorem 2.2 we have

∥
∥T1(u, v)

∥
∥

Xμ
≤ E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)

·
(

C1‖u‖Xμ + C2‖v‖Xμ + max
x∈[a,b]

{
xμ–1∣∣g1(x, 0, 0)

∣∣}(b – a)
)

< ∞

and

∥∥T2(u, v)
∥∥

Xμ
≤ E(β1,...,βn ,1)

(
|b1|

(
log

b
a

)β1

, . . . , |bn|
(

log
b
a

)βn)

·
(

C3‖u‖Xμ + C4‖v‖Xμ + max
x∈[a,b]

{
xμ–1∣∣g2(x, 0, 0)

∣
∣}(b – a)

)
< ∞.

Hence

∥
∥T(u, v)

∥
∥ =

∥
∥T1(u, v)

∥
∥

Xμ
+

∥
∥T2(u, v)

∥
∥

Xμ
< ∞,

which implies that T maps the Banach space Xμ(a, b) × Xμ(a, b) into itself. It remains to
show that T is contractive. Indeed,

∥∥T1(u1, v1) – T1(u2, v2)
∥∥

Xμ
≤ E(α1,...,αn ,1)

(
|a1|

(
log

b
a

)α1

, . . . , |an|
(

log
b
a

)αn)

· max{C1, C2}
(‖u1 – u2‖Xμ + ‖v1 – v2‖Xμ

)
,

and

∥∥T2(u1, v1) – T2(u2, v2)
∥∥

Xμ
≤ E(β1,...,βn ,1)

(
|b1|

(
log

b
a

)β1

, . . . , |bn|
(

log
b
a

)βn)

· max{C3, C4}
(‖u1 – u2‖Xμ + ‖v1 – v2‖Xμ

)
.

Thus

∥∥T(u1, v1) – T(u2, v2)
∥∥ =

∥∥T1(u1, v1) – T1(u2, v2)
∥∥

Xμ
+

∥∥T2(u1, v1) – T2(u2, v2)
∥∥

Xμ

≤ q
(‖u1 – u2‖Xμ + ‖v1 – v2‖Xμ

)
,
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where q < 1 by assumption. By Banach’s contractive principle system (4) has a unique so-
lution in the space Xμ(a, b) × Xμ(a, b). This completes the proof of Theorem 2.3. �

Let AC[a, b] be the set of absolutely continuous functions on [a, b], which coincides with
the space of primitives of Lebesgue-measurable functions [3]:

h ∈ AC[a, b] if and only if h(x) = h(a) +
∫ x

a
ψ(t) dt, ψ ∈ L[a, b].

Clearly, if f ∈ AC[a, b] with 0 < a < b < ∞, then xμf (x) ∈ AC[a, b] since xμ ∈ AC[a, b].
The following results are from Lemma 2.3 and Theorem 5.5(a) in [2].
(i) If α > β > 0 and μ ∈ R, then for u ∈ Xμ(a, b),

Dβ
a+,μJ α

a+,μu = J α–β
a+,μu.

(ii) If α > 0 and u ∈ Xμ(a, b), then

Dα
a+,μJ α

a+,μu = u.

Theorem 2.4 Let αn > · · · > α1 > α0 with 0 < α0 < 1, and let f ∈ AC[a, b]. In addition, let
ai, i = 1, 2, . . . , n, be complex numbers, not all zero. Then equation (3) has a unique solution
in the space Xμ(a, b),

u(x) = aμf (a)x–μ

(
log

x
a

)–α0 ∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

· (log x
a )kn(αn–α0)+···+k1(α1–α0)

�(kn(αn – α0) + · · · + k1(α1 – α0) + 1 – α0)

+ μ

∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

· (J kn(αn–α0)+···+k1(α1–α0)+1–α0
a+,μ f

)
(x)

+
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

· (J kn(αn–α0)+···+k1(α1–α0)+1–α0
a+,μ tf ′(t)

)
(x).

Proof It follows from Theorem 5.3 in [2] that

(
Dα0

a+,μf
)
(x) =

x–μ

�(1 – α0)

[
f0(a)

(
log

x
a

)–α0

+
∫ x

a

(
log

x
t

)–α0

f ′
0(t) dt

]
,

where f0(x) = xμf (x) ∈ AC[a, b]. We first claim that (Dα0
a+,μf )(x) ∈ Xμ(a, b). Indeed,

∫ b

a
xμ–1x–μ

(
log

x
a

)–α0

dx =
∫ b

a

(
log

x
a

)–α0

d
(

log
x
a

)
=

(log b
a )1–α0

1 – α0
< ∞.
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Similarly,

x–1

�(1 – α0)

∫ x

a

(
log

x
t

)–α0

f ′
0(t) dt ∈ Xμ(a, b)

by noting that f ′
0(t) ∈ L[a, b] and

1
�(1 – α0)

∫ b

a

1
x

∣∣
∣∣

∫ x

a

(
log

x
t

)–α0

f ′
0(t) dt

∣∣
∣∣dx

≤ 1
�(1 – α0)

∫ b

a

∣
∣f ′

0(t)
∣
∣dt

∫ b

t

(
log

x
t

)–α0

d
(

log
x
t

)
= K

∫ b

a

∣
∣f ′

0(t)
∣
∣dt,

where

K =
1

�(2 – α0)

(
log

b
a

)1–α0

.

For u ∈ Xμ(a, b), equation (3) turns out to be

an
(
J αn–α0

a+,μ u
)
(x) + · · · + a1

(
J α1–α0

a+,μ u
)
(x) + u(x) =

(
Dα0

a+,μf
)
(x)

by applying the fractional differential operator Dα0
a+,μ to both sides. Then by Theorem 2.1

we have

u(x) =
∞∑

k=0

(–1)k
∑

k1+···+kn=k

(
k

k1, k2, . . . , kn

)
akn

n · · ·ak1
1

· (J kn(αn–α0)+···+k1(α1–α0)
a+,μ Dα0

a+,μf
)
(x). (8)

To remove the differential operator Dα0
a+,μ, we compute the Hadamard-type fractional in-

tegral of order α > 0 for the first term in (Dα0
a+,μf )(x):

J α
a+,μ

f0(a)t–μ

�(1 – α0)

(
log

t
a

)–α0

=
f0(a)

�(1 – α0)�(α)

∫ x

a

(
t
x

)μ(
log

x
t

)α–1

t–μ

(
log

t
a

)–α0 dt
t

=
f0(a)x–μ

�(1 – α0)�(α)

∫ x

a

(
log

x
t

)α–1(
log

t
a

)–α0 dt
t

.

Making the change of variable

τ =
log(t/a)
log(x/a)

,

we get

∫ x

a

(
log

x
t

)α–1(
log

t
a

)–α0 dt
t

=
(

log
x
a

)α–α0 ∫ 1

0
(1 – τ )α–1τ–α0 dτ
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=
(

log
x
a

)α–α0

B(α, 1 – α0)

=
(

log
x
a

)α–α0 �(α)�(1 – α0)
�(α + 1 – α0)

,

where B denotes the beta function. Hence

J α
a+,μ

f0(a)t–μ

�(1 – α0)

(
log

t
a

)–α0

=
f0(a)x–μ

�(α + 1 – α0)

(
log

x
a

)α–α0

. (9)

The second term in (Dα0
a+,μf )(x) is

1
�(1 – α0)

∫ x

a
x–μ

(
log

x
t

)–α0

f ′
0(t) dt

=
1

�(1 – α0)

∫ x

a

(
t
x

)μ(
log

x
t

)1–α0–1[
t–μ+1f ′

0(t)
]dt

t

= J 1–α0
a+,μ

(
t–μ+1f ′

0(t)
)

= μ
(
J 1–α0

a+,μ f
)
(x) + J 1–α0

a+,μ
(
tf ′(t)

)
(x). (10)

Therefore the solution immediately follows by substituting equations (9) and (10) into
equation (8). This completes the proof of Theorem 2.4. �

Remark 2 It seems impossible to deal with the case α0 ≥ 1 along the same lines as Dα0
a+,μf /∈

Xμ(a, b) for f ∈ AC[a, b]. Furthermore, Dα0
a+,μ is not a bounded operator on AC[a, b]. The

single-term Hadamard-type integral equation

J α
a+,μu = f , α > 0,

was studied in [2] with the necessary and sufficient conditions given in Theorem 3.1.

3 Conclusions
Using Babenko’s approach and Banach’s contraction principle, we have derived the
uniqueness of solution for several Hadamard-type integral equations and related coupled
system. The results obtained are new in the present configuration of integral equations.
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