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Abstract
We attempt to motivate utilization of some local derivatives of arbitrary orders in
clinical medicine. For this purpose, we provide two efficient solution methods for
various problems that occur in nature by employing the local proportional derivative
defined by the proportional derivative (PD) controller. Under some necessary
assumptions, a detailed exposition of the instantaneous volume in a lung is furnished
by conformable derivative and such modified conformable derivatives as truncated
M-derivative and proportional derivative. Moreover, we wish to investigate the
performance of the above-mentioned operators in applications by plotting several
graphs of the governing equations.
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1 Introduction
In medicine, mechanical ventilation (assisted ventilation) is a supportive treatment pro-
vided by a medical machine named a ventilator. This breathing machine is utilized for
severe illnesses in an intensive care unit (ICU) in case of breathing failure, coma, neu-
romuscular disorders, acute severe asthma, and so on. It is also used to get rid of carbon
dioxide to supply oxygen into the lungs, to facilitate breathing, or to breathe for critically ill
patients. Differently from the many specific types of mechanical ventilation, there are two
main mechanical ventilations involving positive pressure ventilation and negative pres-
sure ventilation. The former pushes air or gas into the lungs, and the latter sucks air into
the lungs by stimulating chest movement. The ventilator is connected to the patient by a
tube in windpipe through the nose or mouth and blows air plus oxygen needed into the
patient’s lung. Also, positive end-expiratory pressure (PEEP) can be provided by a ventila-
tor, which helps to hold the lungs open to prevent the air sacs from collapsing. Patients on
a ventilator providing more oxygen than other devices like masks are monitored to control
the respiratory rate, heart rate, oxygen saturation, and blood pressure. Besides the bene-
fits of using a ventilator, there are also some risks. The ventilator itself is not a method of
treatment, it only ensures support until the patient feels better or heals. Moreover, people
on ventilators cannot talk or eat, and some are uncomfortable with a tube (endotracheal or
ET tube) in their nose or mouth. It can cause an infection like pneumonia because the tube
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allows bacteria to easily get into the person’s lung. Occasionally, the lung may collapse ow-
ing to getting full of air, and in addition to this, lung damage, side effects of medications,
inability to discontinue ventilator support, and alveolar damage can be regarded among
the risks of the ventilator. Hence the health care team all the time tries to help a patient
get rid of the ventilator as soon as possible.

This study is intended to observe the model of the mechanical process of a ventilator as
appeared in [1]. Some assumptions must be made for this process of filling the lungs with
air and letting them deflate to some volume. The lung is modeled by a single compartment.
The ventilator applies a constant pressure Pd to the airway, and it is zero during expiration.
Each breath length is fixed by tb determined by the clinician, and tj denotes the inspiratory
time. The pressure of the ventilator is denoted by Pd . Additionally, the pressure balance at
the airway is presented by

Pl + Pk + Pm = Paw, (1)

where Pl stands for airway-resistance drop, Pk is the lung elastic pressure, Pm is the residual
pressure, and the pressure applied to airway is denoted by Paw. In addition, Pm can be
computed by the condition Ve(tb) = 0 as given in the following formula:

Pm =
(etj/RC – 1)Pd

etb/RC – 1
. (2)

Furthermore, the mean alveolar pressure, which is the average pressure in the lung during
inspiration, is calculated by the condition Vi(0) = 0 as follows:

Pma =
1

Ctj

∫ tj

0
Vi(t) dt + Pm. (3)

Under the assumptions above and by utilizing the pressure equation (1), a model for the
instantaneous volume in a lung is presented by

R
(

dVi(t)
dt

)
+

(
1
C

)
Vi(t) + Pm = Pd, 0 ≤ t ≤ tj, (4)

R
(

dVe(t)
dt

)
+

(
1
C

)
Ve(t) + Pm = 0, tj ≤ t ≤ tb, (5)

Vi(0) = Ve(tb) = 0, (6)

Vi(tj) = Ve(tj) = VT , (7)

where Vi(t) is the volume during inspiration, Ve(t) denotes the volume during expiration,
and VT stands for the tidal volume of the breath. It is assumed that Pl is proportional to the
flows into and out of the lung and Pk is proportional to the instantaneous volume of the
lung; that is, Pl = R( dV(t)

dt ) and Pk = ( 1
C )V(t), where C is a constant called the compliance of

the lung.
In today’s world, fractional calculus has made a big impression in various scientific study

fields like mathematics, physics, engineering, psychology, biology, and so on. With many
advantageous results, as predicted by Leibniz, noninteger orders of derivative and integral
are utilized to model real-world problems in the above-mentioned venerable fields. Using
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fractional operators is a novel modeling perspective especially on mathematics, which en-
ables us to observe key points of the model and to find various solutions thanks to different
types of fractional derivatives. One of these definitions, probably the most important and
general one, is that of Riemann–Liouville created through a complex analysis approach.
This leading fractional integral and derivative definition with the power-function kernel
is defined by

RL
a Iαψ(t) =

1
�(α)

∫ t

a
(t – τ )α–1ψ(τ ) dτ , (8)

RL
a Dαψ(t) =

dn

dtn
RL
a In–αψ(t), (9)

where Re(α) > 0 in (8), Re(α) ≥ 0 in (9), and n = �Re(α)�+1. Unfortunately, it is not enough
to describe problems only concerning power-law behavior because there are various appli-
cations in nature, which may not be described by a basic power function. For this reason,
many authors have alternatively furnished fractional operators having different types of
kernels. To see a good deal of definitions containing varied kernels, we refer the reader
to [2–4], and for some beneficial comments on creating different fractional operators, we
refer the reader to [5]. One of the main reasons for the desire to introduce novel fractional
operators or generalizations of already existing operators is expanding and diversifying
the underlying field. In doing so, however, questions arise as to which operator matches
the criteria of fractional derivative and integral definition. Although there are no clear and
precise criteria whether it does, following the definition of fractional derivatives, there are
two separate classes of operators, local and nonlocal, in the literature. Whereas nonlocal
operators have memory effect, seen as an advantage, local ones, limit-based definitions,
have no memory-effect. Nonlocal derivatives are more useful, but it is well known that lo-
cal derivatives are a vital tool for obtaining nonlocal derivatives. As a substantial example
of local derivative, we can give the conformable derivative introduced by Khalil et al. [6]
as follows:

CDαψ(t) = lim
ε→0

ψ(t + εt1–α) – ψ(t)
ε

, (10)

where ψ : [0,∞) →R and 0 < α < 1. After this popular local derivative definition, many au-
thors introduced several modified conformable derivatives for α-differentiable functions.
Replacing εt1–α in (10) by teεt–α , Katugampola [7] presented another limit-based deriva-
tive, and then by adding the Mittag-Leffler function instead of the exponential function in
Katugampola definition, Sousa et al. [8] put a more general local derivative forward. More-
over, inserting (t + 1

�(α) )1–α into the limit definition, Atangana [9] provided a different type
of conformable derivative to solve a partial differential equation. All these local derivatives
are useful mathematical tools, which are compatible with many theorems and proper-
ties in classical analysis and contain arbitrary order. For a deeper discussion and informa-
tion about conformable derivative and other counterparts, see [10, 12–14] and references
therein. In addition to the advantages of these limit-based local derivatives, they also have
some shortcomings; for example, the identity operator is not obtained as α → 1, that is,
CD0ψ(t) �= ψ(t), and the variable t in (10) must satisfy the condition t ≥ 0. To complement
these deficiencies, Anderson and Ulness [15] offered a novel local derivative definition
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for α ∈ [0, 1] and t ∈ R, where PD0ψ(t) = ψ(t). When describing this remarkable deriva-
tive, they used the proportional derivative (PD) controller and provided a useful deriva-
tive definition with its corresponding integral. To learn more about proportional-integral-
derivative (PID) control, which provides an efficient solution to real-world problems in-
cluding the integral and derivative terms, the best general reference is [16]. After all these
limit-based local derivatives are introduced, many authors performed their nonlocal cases
we mentioned as fractional by benefiting from the idea of creating Riemann–Liouville
definition (8). Accordingly, by iterating the corresponding integral of a local derivative, a
fractional operator having a memory effect can be obtained. See [17–35] for more detail
about such fractional operators.

This study is created as follows. In Sect. 2, we first set up notation and terminology to
present fundamental concepts of some different types of local derivatives such as propor-
tional derivative, truncated M-derivative, and conformable derivative. Section 3 is devoted
to giving two crucial methods to solve a great number of differential equations. We intro-
duce the proportional variation-of-parameters method and proportional Laplace trans-
form (LT-p). So we touch some aspects of the theory of proportional derivatives. Ad-
ditionally, in this section, we present the solution of the mass-spring system employing
proportional variation-of-parameter method as an application. Furthermore, in Sect. 4,
we give a model in clinical medicine showing the instantaneous volume in a lung as an
application of LT-p. This important model is also solved by truncated M-derivative and
conformable derivative to compare with each other. Lastly, discussion and conclusions on
obtained results are exhibited by plotting various graphs for both equations of the lung
volume during inspiration and during expiration.

2 Fundamental concepts of some local derivatives
In this section, we present some important definitions and theorems about proportional
derivative, truncated M-derivative, and conformable derivative necessary for the main re-
sults of this study.

Definition 2.1 ([15]) A proportional derivative controller for u(t) defined as the con-
troller output with two tuning parameters κp and κd is

u(t) = κpe(t) + κd
de(t)

dt
, (11)

where t is the time or instantaneous time, e(t) is the error, κp is the proportional gain, and
κd is the derivative gain.

Definition 2.2 ([15]) Let 0 ≤ α ≤ 1, and let κ0,κ1 : [0, 1] × R → [0,∞) be continuous
functions with the following properties:

lim
α→0+

κ1(α, t) = 1, lim
α→0+

κ0(α, t) = 0, (12)

lim
α→1–

κ1(α, t) = 1, lim
α→1–

κ0(α, t) = 1, (13)

and κ1(α, t) �= 0, 0 ≤ α < 1, κ0(α, t) �= 0, 0 < α ≤ 1, for all t ∈R.
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Then the proportional derivative of order α is defined as

PDαφ(t) = κ1(α, t)φ(t) + κ0(α, t)φ′(t). (14)

Especially, as done in [11], replacing κ1(α, t) by (1 – α) and κ0(α, t) by α, as an alternative
to (14), we can use the following definition:

PDαφ(t) = (1 – α)φ(t) + αφ′(t), (15)

and the corresponding proportional integral is defined by

PIαφ(t) =
∫ t

a
e

α–1
α (t–τ )φ(τ ) dατ , dατ =

1
α

dτ . (16)

Definition 2.3 ([15] Proportional exponential function) Let 0 < α ≤ 1, let r, t ∈R be such
that r ≤ t, and let 	 : [r, t] → R be a continuous function. Also, let κ0(α, t) and κ1(α, t)
satisfy (12)–(13). Then the proportional exponential function is given by

e	(t, r) = e–
∫ t

r
κ1(α,τ )–	(τ )

κ0(α,τ ) dτ , (17)

and for 	 = 0, we can use the proportional exponential function

e0(t, r) = e–
∫ t

r
κ1(α,t)
κ0(α,t) dτ . (18)

Definition 2.4 ([15]) Let 0 < α ≤ 1, let the functions κ1(α, t) and κ0(α, t) be as defined
in (2.2), and let e0(t, r) be the proportional exponential function. Then the proportional
integral is defined as

PIαφ(t) =
∫ t

a
e0(t, r)φ(r) dαr, dαr =

1
κ0(α, r)

dr. (19)

Lemma 2.5 ([15]) Let α ≤ 0 ≤ 1, let 	 : [r, t] →R be a continuous function, and let κ1(α, t)
and κ0(α, t) be defined as in (2.2). Then the proportional derivative PDα has some desired
properties:

(i) PDα[c1φ(t) + c2ϕ(t)] = c1PDα[φ(t)] + c2PDα[ϕ(t)] for all c1, c2 ∈ R.
(ii) PDαc = cκ1(α, ·) for all c ∈R.

(iii) PDα[φ(t)ϕ(t)] = φ(t)PDα[ϕ(t)] + ϕ(t)PDα[φ(t)] – φ(t)ϕ(t)κ1(α, ·).
(iv) PDα[ φ(t)

ϕ(t) ] = ϕ(t)PDα [φ(t)]–φ(t)PDα [ϕ(t)]
ϕ2(t) + φ(t)

ϕ(t) κ1(α, ·).
(v) For r ∈R and 0 < α ≤ 1,

PDα
[
e	(t, r)

]
= 	(t)e	(t, r), (20)

where e	(t, r) is the proportional exponential function.
(vi) Let 0 < α ≤ 1, and let e0(t, r) be the proportional exponential function. Then

PDα

[∫ t

a
e0(t, r)φ(r) dαr

]
= φ(t), dαr =

1
κ0(α, r)

dr. (21)
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Definition 2.6 ([15]) Let y1, y2 : [t0,∞) be α-differentiable functions on [t0,∞). Then the
proportional Wronskian (p-Wronskian) of y1(t) and y2(t) is presented by

Wp(y1, y2) =

∣∣∣∣∣
y1(t) y2(t)

PDαy1(t) PDαy1(t)

∣∣∣∣∣ . (22)

Definition 2.7 ([8]) The truncated M-derivative of f : [0,∞) → R for 0 < α < 1 is

MDα,β
M f (t) = lim

ε→0

f (tEβ(εt–α)) – f (t)
ε

, t > 0, (23)

where Eβ (·), β > 0, is the truncated Mittag-Leffler function.

Definition 2.8 ([6]) Assuming that f : [0,∞) → R, the conformable derivative is defined
by

CDαf (t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

(24)

for t > 0 and 0 < α < 1.

3 Some methods via proportional derivative
3.1 Proportional variation-of-parameters method
Here we show the proportional variation-of-parameters method for a constant- or
variable-coefficient linear differential equation of order nα. The main purpose is to find a
particular solution to the equation

Lα[y](t) = g(t), (25)

where

Lα[y] = PD(n)αy + r1PD(n–1)αy + · · · + rny, (26)

where 0 < α < 1, PD(n)α = PDα
PDα · · ·P Dα︸ ︷︷ ︸

n-times

, and r1, . . . , rn and g are continuous functions on

an interval (a, b). This method requires that the fundamental solution set {y1, . . . , yn} for
the corresponding homogeneous equation Lα[y](x) = 0 is already known as follows:

yh(t) = c1y1(t) + · · · + cnyn(t), (27)

where c1, . . . , cn are arbitrary constants, and the function y is nα times differentiable. To
find a particular solution, we replace c1, . . . , cn in Eq. (27) by functions γ1(t), . . . ,γn(t). So,
in proportional variation-of-parameters method, we suppose that there is a particular so-
lution to (25) of the form

yp(x) = γ1(t)y1(t) + · · · + γn(t)yn(t), (28)

and then the functions γ1, . . . ,γn are determined.
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Particularly, let us consider proportional nonhomogeneous linear differential equation
of order 2α

PDα
PDαy(t) + aPDαy(t) + by(t) = g(t), (29)

where a, b are constants or functions. Let y1(t) and y2(t) be two linearly independent so-
lutions for

PDα
PDαy(t) + aPDαy(t) + by(t) = 0. (30)

Hence we seek a solution of equation (29) of the form

yp(t) = γ1(t)y1(t) + γ2(t)y2(t). (31)

After that, by taking the proportional derivative of (31) we have

PDαyp(t) = PDα
[
γ1(t)y1(t) + γ2(t)y2(t)

]
(32)

= κ1(α, t)
[
γ1(t)y1(t) + γ2(t)y2(t)

]
+ κ0(α, t)

[
γ1(t)y1(t) + γ2(t)y2(t)

]′

= κ1(α, t)γ1(t)y1(t) + κ1(α, t)γ2(t)y2(t)

+ κ0(α, t)γ ′
1(t)y1(t) + κ0(α, t)γ1(t)y′

1(t)

+ κ0(α, t)γ ′
2(t)y2(t) + κ0(α, t)γ2(t)y′

2(t).

To get rid of the second-order derivatives of the functions γ1, γ2 in PDα
PDαyp(t), from

now on we make the following assumption:

κ0(α, t)γ ′
1(t)y1(t) + κ0(α, t)γ ′

2(t)y2(t) = 0. (33)

Calculating the proportional derivative of the function yp(t) once again, we get

PDα
PDαyp(t) = PDα

[
κ1(α, t)γ1(t)y1(t) + κ1(α, t)γ2(t)y2(t) (34)

+ κ0(α, t)γ1(t)y′
1(t) + κ0(α, t)γ2(t)y′

2(t)
]
,

PDα
PDαyp(t) = κ1(α, t)

[
κ1(α, t)γ1(t)y1(t) + κ1(α, t)γ2(t)y2(t) (35)

+ κ0(α, t)γ1(t)y′
1(t) + κ0(α, t)γ2(t)y′

2(t)
]

+ κ0(α, t)
[
κ1(α, t)γ1(t)y1(t) + κ1(α, t)γ2(t)y2(t)

+ κ0(α, t)γ1(t)y′
1(t) + κ0(α, t)γ2(t)y′

2(t)
]′,

PDα
PDαyp(t) = κ2

1 (α, t)γ1(t)y1(t) + κ2
1 (α, t)γ2(t)y2(t) + κ0(α, t)κ1(α, t)γ1(t)y′

1(t) (36)

+ κ0(α, t)κ1(α, t)γ2(t)y′
2(t) + κ0(α, t)κ ′

1(α, t)γ1(t)y1(t)

+ κ0(α, t)κ1(α, t)γ ′
1(t)y1(t) + κ0(α, t)κ1(α, t)γ1(t)y′

1(t)

+ κ0(α, t)κ ′
1(α, t)γ2(t)y2(t) + κ0(α, t)κ1(α, t)γ ′

2(t)y2(t)

+ κ0(α, t)κ1(α, t)γ2(t)y′
2(t) + κ0(α, t)κ ′

0(α, t)γ1(t)y′
1(t)
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+ κ2
0 (α, t)γ ′

1(t)y′
1(t) + κ2

0 (α, t)γ1(t)y′′
1(t)

+ κ0(α, t)κ ′
0(α, t)γ2(t)y′

2(t) + κ2
0 (α, t)γ ′

2(t)y′
2(t)

+ κ2
0 (α, t)γ2(t)y′′(t).

Substituting (32) and (36) into (29) yields

κ2
1 (α, t)γ1(t)y1(t) + κ2

1 (α, t)γ2(t)y2(t) + κ0(α, t)κ1(α, t)γ1(t)y′
1(t) (37)

+ κ0(α, t)κ1(α, t)γ2(t)y′
2(t) + κ0(α, t)κ ′

1(α, t)γ1(t)y1(t)

+ κ0(α, t)κ1(α, t)γ ′
1(t)y1(t) + κ0(α, t)κ1(α, t)γ1(t)y′

1(t)

+ κ0(α, t)κ ′
1(α, t)γ2(t)y2(t) + κ0(α, t)κ1(α, t)γ ′

2(t)y2(t)

+ κ0(α, t)κ1(α, t)γ2(t)y′
2(t) + κ0(α, t)κ ′

0(α, t)γ1(t)y′
1(t)

+ κ2
0 (α, t)γ ′

1(t)y′
1(t) + κ2

0 (α, t)γ1(t)y′′
1(t) + κ0(α, t)κ ′

0(α, t)γ2(t)y′
2(t)

+ κ2
0 (α, t)γ ′

2(t)y′
2(t) + κ2

0 (α, t)γ2(t)y′′
2(t) + aκ1(α, t)γ1(t)y1(t)

+ aκ1(α, t)γ2(t)y2(t) + aκ0(α, t)γ1(t)y′
1(t) + aκ0(α, t)γ2(t)y′

2(t)

+ bγ1(t)y1(t) + bγ2(t)y2(t) = g(t).

Then we can get

κ2
0 (α, t)γ ′

1(t)y′
1(t) + κ2

0 (α, t)γ ′
2(t)y′

2(t) = g(t). (38)

We next utilize assumption (33) and equation (38) to find the functions γ1(t) and γ2(t).
For this purpose, we write

(
y1(t) y2(t)
y′

1(t) y′
2(t)

)(
γ ′

1(t)
γ ′

2(t)

)
=

(
0

g(t)
κ2

0 (α,t)

)
(39)

and thus obtain

(
γ ′

1(t)
γ ′

2(t)

)
=

1
W (y1, y2)(t)

⎛
⎝–y2(t) g(t)

κ2
0 (α,t)

y1(t) g(t)
κ2

0 (α,t)

⎞
⎠ . (40)

So we can readily reach the formulas

γ ′
1(t) =

–y2(t)g(t)
κ2

0 (α, t)W (y1, y2)(t)
and γ ′

2(t) =
y1(t)g(t)

κ2
0 (α, t)W (y1, y2)(t)

. (41)

By choosing κ1(α, t) = 1 – α and κ0(α, t) = α, which we may in fact assume, the propor-
tional variation-of-parameters method can be presented with similar calculations, and so
we also have

γ ′
1(t) =

–y2(t)g(t)
α2W (y1, y2)(t)

and γ ′
2(t) =

y1(t)g(t)
α2W (y1, y2)(t)

. (42)

After integrating the functions γ ′
1(t) and γ ′

2(t), we get the stated result.
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Application 3.1 Let us consider a mass-spring system driven by a external force g(t) at
time t. The mass of spring system is m > 0, the damping constant is 2b > 0, the spring
constant is k > 0, and the displacement from the equilibrium of the mass-spring system at
time t is denoted by y(t). So the motion is governed by

mPDα
PDαy(t) + 2bPDαy(t) + ky(t) = g(t), t ∈ [t0,∞). (43)

To solve this equation, we use the proportional variation-of-parameters method. There-
fore to reach the general solution of (43), we first need the corresponding auxiliary equa-
tion

mλ2 + 2bλ + k = 0. (44)

We have three cases for finding the solution of the homogeneous part of equation (43):
(i) If mk < b2, then we have

yh(t) = c1e –b+
√

b2–mk
m

(t, 0) + c2e –b–
√

b2–mk
m

(t, 0). (45)

(ii) If mk = b2, then we have

yh(t) = c1e–b/a(t, 0) + c2e–b/a(t, 0)
∫ t

0
dαs. (46)

(iii) If mk > b2, then we have

yh(t) = c1e–b/m(t, 0) cos

(∫ t

0

√
mk – b2

m
dαs

)

+ c2e–b/m(t, 0) sin

(∫ t

0

√
mk – b2

m
dαs

)
. (47)

Let us begin with case (iii) and presume that

yp(t) = γ1(t)e–b/m(t, 0) cos

(∫ t

0

√
mk – b2

m
dαs

)

+ γ2(t)e–b/m(t, 0) cos

(∫ t

0

√
mk – b2

m
dαs

)
. (48)

The p-Wronskian can be computed by

Wp =

∣∣∣∣∣∣∣∣
e

–b–(1–α)m
mα t cos

(√
mk–b2
mα

t
)

e
–b–(1–α)m

mα t sin

(√
mk–b2
mα

t
)

PDα

[
e

–b–(1–α)m
mα t cos

(√
mk–b2
mα

t
)]

PDα

[
e

–b–(1–α)m
mα t sin

(√
mk–b2
mα

t
)]

∣∣∣∣∣∣∣∣
, (49)

where

PDα

[
e

–b–(1–α)m
mα t cos

(√
mk – b2

mα
t
)]

= e
–b–(1–α)m

mα t
[(

–
b
m

)
cos

(√
mk – b2

m

)
(50)
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–
(√

mk – b2

m

)
sin

(√
mk – b2

m

)]

and

PDα

[
e

–b–(1–α)m
mα t sin

(√
mk – b2

mα
t
)]

= e
–b–(1–α)m

mα t
[(

–
b
m

)
sin

(√
mk – b2

m

)
(51)

+
(√

mk – b2

m

)
cos

(√
mk – b2

m

)]
.

Hence we have

Wp =
(√

mk – b2

m

)
e

2(–b–m+αm)
mα t . (52)

Using formulas (42), we get

γ ′
1(t) =

–e
–b–(1–α)m

mα t sin(
√

mk–b2
mα

t)g(t)
α2Wp

(53)

and

γ ′
2(t) =

e
–b–(1–α)m

mα t cos(
√

mk–b2
mα

t)g(t)
α2Wp

. (54)

So, taking integrals of (53) and (54), we find the functions γ1(t) and γ2(t). Lastly, by insert-
ing the functions γ1(t) and γ2(t) into the (48) we get the desired result. Note that similar
calculations can be readily done for cases (i) and (ii).

3.2 Proportional Laplace transform
In this portion, we provide a detailed exposition of proportional derivative and the cor-
responding Laplace transform. We examine the proportional Laplace transform (LT-p)
method to be utilized in solving initial value problems. This method is a substantial trans-
formation used in mathematics, physics, engineering, and other applied sciences. Hence,
as an alternative to the usual Laplace transform, we present its generalized version to ob-
tain novel solutions containing arbitrary order α. As we mentioned in Sect. 2, a particular
case of proportional derivative of order α is given by

PDαφ(t) = (1 – α)φ(t) + αφ′(t), (55)

where φ′(t) is the traditional derivative of the function φ(t). If we apply the usual Laplace
transform to both sides of (55), then using the equality L{φ′(t)} = sL{φ(t)} – φ(0), we get

L
{

PDαφ(t)
}

= (αs + 1 – α)L
{
φ(t)

}
– αφ(0). (56)

Taking advantage of the above α-order derivative, we first compute PD(n)αφ(t) to derive
its Laplace transform. To this end, for n = 2, we have

PDα
[

PDαφ(t)
]

= PD(2)αφ(t) = α2φ′′(t) + 2α(1 – α)φ′(t) + (1 – α)2φ(t), (57)
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and taking the Laplace transform of (57), we get

L
{

PD(2)αφ(t)
}

= (αs + 1 – α)2L
{
φ(t)

}
– α

[
αs + 2(1 – α)

]
φ(0) – α2φ′(0). (58)

Also, for n = 3, we have

PD(3)αφ(t) = α3φ′′′(t) + 3α2(1 – α)φ′′(t) + 3α(1 – α)2φ′(t) + (1 – α)3φ(t), (59)

and by applying the Laplace transform to (59) we obtain

L
{

PD(3)αφ(t)
}

= (αs + 1 – α)3L
{
φ(t)

}
– α

[
α2s2 + 3αs(1 – α) + 3(1 – α)2]φ(0) (60)

– α2[αs + 3(1 – α)
]
φ′(0) – α3φ′′(0).

After carrying out same process n times, we readily find

PD(n)αφ(t) =

(
n
0

)
αnφ(n)(t) +

(
n
1

)
αn–1(1 – α)φ(n–1)(t) (61)

+

(
n
2

)
αn–2(1 – α)2φ(n–2)(t) + · · · +

(
n
r

)
αn–r(1 – α)rφ(n–r)(t)

+ · · · +

(
n
n

)
(1 – α)nφ(t),

where PD(n)α = PDα
PDα · · ·P Dα︸ ︷︷ ︸

n times

, and by taking the Laplace transform of (61) we have

L
{

PD(n)αφ(t)
}

= (αs + 1 – α)nL
{
φ(t)

}
– α

[(
n
0

)
(αs)n–1 +

(
n
1

)
(αs)n–2(1 – α) (62)

+

(
n
2

)
(αs)n–3(1 – α)2 + · · · +

(
n
r

)
(αs)n–r–1(1 – α)r + · · ·

+

(
n

n – 1

)
(1 – α)n–1

]
φ(0) – α2

[(
n
0

)
(αs)n–2 +

(
n
1

)
(αs)n–3(1 – α)

+

(
n
2

)
(αs)n–4(1 – α)2 + · · · +

(
n
r

)
(αs)n–r–2(1 – α)r + · · ·

+

(
n

n – 2

)
(1 – α)n–2

]
φ′(0) – α3

[(
n
0

)
(αs)n–3 +

(
n
1

)
(αs)n–4(1 – α)

+

(
n
2

)
(αs)n–5(1 – α)2 + · · · +

(
n
r

)
(αs)n–r–3(1 – α)r + · · ·

+

(
n

n – 3

)
(1 – α)n–3

]
φ′′(0) – · · · – αnφ(n–1)(0),
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where α ∈ (0, 1], φ ∈ Cn–1[0,∞) defined in [11] is a piecewise continuous function hav-
ing exponential order in the interval 0 ≤ t ≤ N , N > 0, and L{φ(t)} =

∫ ∞
0 e–stφ(t) dt is the

classical Laplace transform.
It is worth pointing out that for α = 1 in (62), we get the usual Laplace transform of

nth-order derivative of the function φ(t).

4 Differential equations in clinical medicine by means of local derivatives
In this section, we use different types of local derivatives for some crucial differential equa-
tions in clinical medicine. We observe the mechanical action performed by the ventilator
used for critically ill patients. To this end, from now on we make the following assump-
tions:

• The length of each breath is denoted by tb, which is determined by the clinician. Each
breath is assumed to consist of two stages, inspiration and expiration, and tj stands for
the inspiratory time. In addition, the lung is modeled by a single compartment.

• We denote by Pd the pressure of the ventilator to the air-way of patient during
expiration.

• We considered the pressure balance at the airway as follows:

Pl + Pk + Pm = Paw, (63)

where Pl is the airway-resistance drop, the lung elastic pressure is denoted by Pk , and
the residual pressure is denoted by Pm. Note that Paw = Pd during inspiration and
Paw = 0 during expiration.

4.1 Clinical medicine model via proportional derivative
Considering the pressure equation (63) and all the assumptions above, the instantaneous
volume in a lung by means of local proportional derivative is presented by

R
[

PDαVi(t)
]

+
(

1
C

)
Vi(t) + Pm = Pd , 0 ≤ t ≤ tj, (64)

R
[

PDαVe(t)
]

+
(

1
C

)
Ve(t) + Pm = 0, tj ≤ t ≤ tb, (65)

Vi(0) = Ve(tb) = 0, (66)

Vi(tj) = Ve(tj) = VT , (67)

where Vi(t) is the lung volume during inspiration, and Ve(t) is the lung volume during
expiration. Also, R is a proportionality constant, which is the same for both inspiration and
expiration, and C is a constant called the compliance of the lung. It should be mentioned
that Pm can be determined from the condition Ve(tb) = 0.

Let us first solve equation (64) by means of LT-p introduced in Sect. 3. If we take the
LT-p of equation (64), then by using the initial condition (66),we get

RL
{

PDαVi(t)
}

+
(

1
C

)
L

{
Vi(t)

}
+ = L{Pd – Pm}, (68)

(αs + 1 – α)L
{
Vi(t)

}
– αVi(0) +

(
1

CR

)
L

{
Vi(t)

}
= L

{
Pd – Pm

R

}
, (69)



Acay et al. Advances in Difference Equations         (2021) 2021:49 Page 13 of 21

L
{
Vi(t)

}
=

C(Pd – Pm)
s + C(R + αR(s – 1))s

. (70)

Applying the inverse LT to (70), we obtain

Vi(t) = C(Pd – Pm)
(

1
1 + CR – αCR

–
e– (1+CR–αCR)t

αCR

1 + CR – αCR

)
. (71)

In a similar way, solving equation (65) under condition (66) with the help of LT-p, we have
the solution

Ve(t) = –CPm

(
1

1 + CR – αCR
–

e– (1+CR–αCR)(t–tb)
αCR

1 + CR – αCR

)
. (72)

On the other hand, let us solve equation (64) under condition (67). After taking the LT-p
of (64), we follow the steps

RL
{

PDαVi(t)
}

+
1
C
L

{
Vi(t)

}
= L{Pd – Pm}, (73)

L
{
Vi(t)

}
=

C(Pd – Pm + αRsVT )
s + C(R + αR(s – 1))s

, (74)

and applying the inverse LT, we get

Vi(t) = C
(

Pd – Pm

–1 – CR + αCR

)
(75)

+
e–

(1+CR–αCR)(t–tj)
αCR (αCRPd – αCRPm – αRVT – αCR2VT + α2CR2VT )

αR(–1 – CR + αCR)
.

Similarly, solving equation (65) under condition (67) by means of LT-p, we readily obtain
the solution

Ve(t) =
e–

(1+CR–αCR)(t–tj)
αCR (–CPm + Ce

(1+CR–αCR)(t–tj)
αCR Pm – VT – CRVT + αCRVT )

–1 – CR + αCR
. (76)

4.2 Clinical medicine model via truncated M-derivative
Under the above-stated assumptions, the instantaneous volume in a lung by means of
truncated M-derivative can be expressed by

R
[

MDα,βVi(t)
]

+
(

1
C

)
Vi(t) + Pm = Pd, 0 ≤ t ≤ tj, (77)

R
[

MDα,βVe(t)
]

+
(

1
C

)
Ve(t) + Pm = 0, tj ≤ t ≤ tb, (78)

Vi(0) = Ve(tb) = 0, (79)

Vi(tj) = Ve(tj) = VT . (80)

Solving equation (77) with the condition Vi(0) = 0 in (79) by means of LT, we can write

RLα,β
{

MDα,βVi(t)
}

+
(

1
C

)
Lα,β

{
Vi(t)

}
= Lα,β{Pd – Pm}, (81)
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sLα,β
{
Vi(t)

}
– Vi(0) +

(
1

CR

)
Lα,β

{
Vi(t)

}
=

Pd – Pm

sR
, (82)

Lα,β
{
Vi(t)

}
=

C(Pd – Pm)
s + CRs2 , (83)

and taking the inverse Laplace transform of (83), we obtain the solution

Vi(t) = C(Pd – Pm)
(
1 – e

–�(β+1)
CR

tα
α

)
. (84)

Similarly, solving equation (78) with the condition Ve(tb) = 0 as in (79) via LT, we get

Ve(t) = CPm
(
–1 + e

–�(β+1)
CR

(t–tb)α
α

)
. (85)

Also, let us solve equation (77) under the condition Vi(tj) = VT in (80) by using the LT as
follows:

RLα,β
{

MDα,βVi(t)
}

+
1
C
Lα,β

{
Vi(t)

}
= Lα,β{Pd – Pm}, (86)

sLα,β
{
Vi(t)

}
– Vi(tj) +

1
CR

Lα,β
{
Vi(t)

}
=

Pd – Pm

Rs
, (87)

Lα,β
{
Vi(t)

}
=

C(Pd – Pm + RsVT )
s(1 + CRs)

, (88)

and by applying the inverse Laplace transform to equation (88) we readily obtain

Vi(t) = C(Pd – Pm) + e
–�(β+1)

CR
(t–tj)α

α
[
C(Pd – Pm) + VT

]
. (89)

In a similar manner, taking the LT of equation (78) with the condition Ve(tj) = VT in (80),
we get the solution

Ve(t) = –CPm + e
–�(β+1)

CR
(t–tj)α

α (CPm + VT ). (90)

4.3 Clinical medicine model via conformable derivative
Under the essential assumptions stated above, the instantaneous volume in a lung by
means of conformable derivative can be given by

R
[

CDαVi(t)
]

+
(

1
C

)
Vi(t) + Pm = Pd, 0 ≤ t ≤ tj, (91)

R
[

CDαVe(t)
]

+
(

1
C

)
Ve(t) + Pm = 0, tj ≤ t ≤ tb, (92)

Vi(0) = Ve(tb) = 0, (93)

Vi(tj) = Ve(tj) = VT . (94)

Solving equation (91) under condition (93) with the help of LT, we have

RLα

{
CDαVi(t)

}
+

(
1
C

)
Lα

{
Vi(t)

}
= Lα{Pd – Pm}, (95)
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sLα

{
Vi(t)

}
– Vi(0) +

(
1

CR

)
Lα

{
Vi(t)

}
=

Pd – Pm

sR
, (96)

Lα

{
Vi(t)

}
=

C(Pd – Pm)
s + CRs2 , (97)

and if we apply the inverse LT to both sides of equation (97), we get the solution

Vi(t) = C(Pd – Pm)
(
1 – e– tα

αCR
)
. (98)

Also, for equation (92) with condition (93), we can present the solution

Ve(t) = CPm
(
–1 + e– (t–tb)α

αCR
)
. (99)

On the other hand, let us give the solution by means of LT for equation (91) with condition
(94):

Vi(t) = C(Pd – Pm) + e–
(t–tj)α

αCR
[
C(Pd – Pm) + VT

]
. (100)

Similarly, the solution of equation (92) under condition (94) is

Ve(t) = –CPm + e–
(t–tj)α

αCR (CPm + VT ). (101)

5 Discussions and conclusions
We list some important conclusions and discussion on our results:

• This study has provided a natural and intrinsic characterization of a significant
application in medicine describing the instantaneous volume in a lung under by
means of the proportional derivative defined by using the PD controller, M-derivative,
including the truncated Mittag-Leffler function, and conformable derivative.

• Besides examining the model stated, we have offered alternative solution methods,
which can be used in other crucial problems in nature. These methods, proportional
variation of parameters and proportional Laplace transform, have been introduced
through the proportional derivative, which is a generalized version of the conformable
derivative.

• It is worth mentioning the main reason for utilizing proportional derivatives. Local
derivatives of noninteger order have more advantages than their counterparts as their
are defined for α ∈ [0, 1] and t ∈R, which makes possible to get the identity operator
for α = 1, whereas conformable and modified conformable derivatives do not satisfy
this important property.

• From the two useful methods we provided we have chosen an appropriate one to
obtain solutions for the clinical medicine model we examined. Moreover, in addition
to the proportional derivatives, we have also taken advantage of two other derivatives
for clearly observing the instantaneous volume of the lung.

• In addition to being an important supportive treatment, mechanical ventilation may
also create some risk factors on patients. Hence patients on a ventilator are carefully
monitored by the health team. The possibility of lung collapse due to getting full of air
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Figure 1 Comparative analysis with truncated M-derivative for Vi(t), β = 0.8

Figure 2 Comparative analysis with truncated M-derivative for Vi(t), α = 0.8

makes it necessary to observe the instantaneous volume of the lung as in this study. To
perform this observation in detail, we separately show the solution curves of Vi(t) and
Ve(t).

• In Fig. 1, we have carried out a comparison in terms of truncated M-derivative for the
function Vi(t) standing for the lung volume during inspiration when α = 1, 0.9, 0.8, 0.7
and β = 0.8. This allows us to see the increase in the volume of the lung at different
times and when it is stable. Also, a similar approach was made for Fig. 2, that is, the
volume of lung Vi(t) was plotted for β = 1, 0.8, 1.2, 1.5 and α = 0.8 to observe the effect
of α and β on solution curves.

• In Fig. 3, a comparison is made for Vi(t) when α = 1, 0.95, 0.82, 0.68, and in Fig. 4, it is
made for α = 1, 0.95, 0.9, 0.85. Moreover, in Fig. 5 the solution curves of Vi(t) are
shown by means of proportional derivative for α = 1, 0.65, 0.45, 0.25 and in Fig. 6 for
α = 1, 0.9, 0.8, 0.7.

• In Figs. 7 and 8, we compare the proportional derivative, truncated M-derivative, and
conformable derivative with the traditional one for the function Vi(t) when α = 0.75,
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Figure 3 Comparative analysis with conformable derivative for Vi(t)

Figure 4 Comparative analysis with conformable derivative for Vi(t)

Figure 5 Comparative analysis with proportional derivative for Vi(t)

β = 0.5 and α = 0.9, β = 0.8, respectively. We can clearly seen that the proportional
derivative tends to be close to the classical derivative faster than the truncated
M-derivative and conformable derivative.
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Figure 6 Comparative analysis with proportional derivative for Vi(t)

Figure 7 Comparative analysis when α = 0.75 and β = 0.5 for Vi(t)

Figure 8 Comparative analysis when α = 0.9 and β = 0.8 for Vi(t)

• Lastly, in Figs. 9–12, similar comparisons for the function Ve(t) are presented, which
enables us to observe the decrease in volume of the lung during expiration at different
times t for different values of α and β .
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Figure 9 Comparative analysis with proportional derivative for Ve(t)

Figure 10 Comparative analysis with truncated M-derivative for Ve(t), α = 1

Figure 11 Comparative analysis with conformable derivative for Ve(t)

• It should be noted that all graphs are plotted for R = 10 cm (H2O)/L/sec,
C = 0.02 L/cm(H2O), Pd = 20 cm (H2O), tj = 1 sec, and tb = 3 sec. Additionally, note
that all solutions obtained by the proportional derivative, truncated M-derivative, and



Acay et al. Advances in Difference Equations         (2021) 2021:49 Page 20 of 21

Figure 12 Comparative analysis when α = 0.98 and β = 0.96 for Ve(t)

conformable derivative correspond to the classical solution of the model analyzed
when α = 1.
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