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Abstract
This paper is concerned with description of the existence and the forms of entire
solutions of several second-order partial differential-difference equations with more
general forms of Fermat type. By utilizing the Nevanlinna theory of meromorphic
functions in several complex variables we obtain some results on the forms of entire
solutions for these equations, which are some extensions and generalizations of the
previous theorems given by Xu and Cao (Mediterr. J. Math. 15:1–14, 2018; Mediterr. J.
Math. 17:1–4, 2020) and Liu et al. (J. Math. Anal. Appl. 359:384–393, 2009; Electron. J.
Differ. Equ. 2013:59–110, 2013; Arch. Math. 99:147–155, 2012). Moreover, by some
examples we show the existence of transcendental entire solutions with finite order
of such equations.
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1 Introduction
The main purpose of this paper is investigation of the existence and the forms of transcen-
dental entire solutions with finite order of second-order differential difference equations

(
∂2f (z1, z2)

∂z2
1

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2)

and

(
∂2f (z1, z2)

∂z2
1

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2),

where g(z1, z2) is a polynomial in C2. In general, for the Fermat-type functional equation

f m + gn = 1, (1.1)
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Gross [6] discussed the existence of solutions of equation (1.1) and showed that the entire
solutions are f = cos a(z), g = sin a(z) for m = n = 2, where a(z) is an entire function. Montel
[7] proved that there are no nonconstant entire solutions for equation (1.1) for m = n > 2.

Recently, Han and Lü [8] gave a description of meromorphic solutions for the functional
equation (1.1) when g(z) = f ′(z), m = n, and 1 is replaced by eαz+β , where α,β ∈ C, and
obtained the following results.

Thereom A (See [8, Theorem 1.1]) The meromorphic solutions f of the differential equa-
tion

f n(z) +
(
f ′)n(z) = eαz+β (1.2)

must be entire functions, and the following statements hold:
(A) For n = 1, the general solutions of (1.2) are f (z) = eαz+β

α+1 + ae–z for α �= –1 and
f (z) = ze–z+β + ae–z .

(B) For n = 2, either α = 0 and the general solutions of (1.2) are f (z) = e
β
2 sin(z + b), or

f (z) = de
αz+β

2 .
(C) For n ≥ 3, the general solutions of (1.2) are f (z) = de

αz+β
n .

Here α,β , a, b, d ∈C with dn(1 + ( α
n )n) = 1 for n ≥ 1.

They also proved that all the trivial meromorphic solutions of f n(z) + f n(z + c) = eαz+β

are the functions f (z) = de
αz+β

n with dn(1 + eαc) = 1 for n ≥ 1 (see [8, p. 99]).
An equation is called differential-difference equation (DDE) if the equation includes

derivatives and shifts or differences of f (see [9]). In many previous papers [10–15], Naf-
talevich [11, 12] in 1995 discussed the meromorphic solutions of complex differential-
difference equations with one complex variable by using the operator theory and iteration
method, but recently, many researchers have begun to discuss this kind of equations by
using the difference analogues of Nevanlinna theory (see [16–19]). In particular, Liu et al.
[3–5] investigated the existence of entire solutions with finite order of the Fermat-type
differential-difference equations

f ′(z)2 + f (z + c)2 = 1, (1.3)

f ′(z)2 +
[
f (z + c) – f (z)

]2 = 1. (1.4)

They proved that the transcendental entire solutions with finite order of equation (1.3)
must satisfy f (z) = sin(z ± Bi), where B is a constant, c = 2kπ or c = (2k + 1)π with integer
k, and the transcendental entire solutions with finite order of equation (1.4) must satisfy
f (z) = 12 sin(2z + Bi), where c = (2k + 1)π with integer k, and B is a constant. In 2019, Liu
and Gao [20] further studied the entire solutions of second-order differential and differ-
ence equation with single complex variable and obtained the following:

Thereom B (See [20, Theorem 2.1]) Let f be a transcendental entire solution with finite
order of the complex differential-difference equation

f ′′(z)2 + f (z + c)2 = Q(z).
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Then Q(z) = c1c2 is a constant, and f (z) satisfies

f (z) =
c1eaz+b + c2e–az–b

2a2 ,

with a, b ∈ C such that a4 = 1 and c = log(–ia2)+2kπ i
a , k ∈ Z.

Now let us recall some previous results on Fermat-type partial differential equations
with several complex variables (including [21–25]). Khavinson [22] in 1995 pointed out
that any entire solution of the partial differential equation ( ∂f

∂z1
)2 + ( ∂f

∂z2
)2 = 1 in C

2 is nec-
essarily linear. This partial differential equation in real variable case occurs in the study of
characteristic surfaces and wave propagation theory, and it is the two-dimensional eiconal
equation, one of the main equations of geometric optics (see [26, 27]). In 2005, Li [28] dis-
cussed the partial differential equation of Fermat-type

(
∂u
∂z1

)2

+
(

∂u
∂z2

)2

= eg , (1.5)

where g is a polynomial or an entire function in C
2, and obtained some results on the

forms of entire solution of equation (1.5).

Thereom C ([28, Theorem 2.1]) Let g be a polynomial in C
2. Then u is an entire solution

of the partial differential equation (1.5) if and only if
(i) u = f (c1z1 + c2z2); or

(ii) u = φ1(z1 + iz2) + φ2(z1 – iz2),
where f is an entire function in C satisfying f ′(c1z1 + c2z2) = ±e 1

2 g(z), c1 and c2 are two
constants satisfying c2

1 + c2
2 = 1, and φ1 and φ2 are entire functions in C satisfying φ′

1(z1 +
iz2)φ′

2(z1 – iz2) = 1
4 eg(z).

Very recently, Xu and Cao [1, 2, 29] investigated the existence of solutions for some
Fermat-type partial differential-difference equations with several variables by using the
difference logarithmic derivative lemma of several complex variables and obtained the
following theorem (see [29–31]).

Thereom D (See [1, Theorem 1.2]) Let c = (c1, c2) be a constant in C
2. Then any transcen-

dental entire solution with finite order of the partial differential-difference equation

(
∂f (z1, z2)

∂z1

)2

+ f (z1 + c1, z2 + c2)2 = 1

has the form of f (z1, z2) = sin(Az1 + B), where A ∈ C is a constant satisfying AeiAc1 = 1, and
B ∈C is a constant; in the particular case c1 = 0, we have f (z1, z2) = sin(z1 + B).

Theorems B, C, and D suggest the following questions as open problems.

Question 1.1 What will happen when the right side of those equations, 1, is replaced by
a function eg in Theorem D, where g is a polynomial in C

2?

Question 1.2 What will happen when ∂f (z1,z2)
∂z1

is replaced by ∂2f (z1,z2)
∂z2

1
or ∂2f (z1,z2)

∂z1∂z2
in Theo-

rem D?
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2 Results and some examples
In view of the above questions, this paper is concerned with description of entire solutions
for several second-order partial differential-difference equations of Fermat type of more
general form. The main tools used in this paper are the Nevanlinna theory and difference
Nevanlinna theory with several complex variables. Our principal results generalize the
previous theorems given by Xu and Cao [1] and Liu, Cao, and Cao [5]. Throughout this
paper, for convenience, we assume that z + w = (z1 + w1, z2 + w2) for any z = (z1, z2), w =
(w1, w2). We now state the main results of this paper.

Theorem 2.1 Let c = (c1, c2) ∈C
2 and c2 �= 0. If the partial differential-difference equation

(
∂2f (z1, z2)

∂z2
1

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (2.1)

admits a transcendental entire solution f (z1, z2) of finite order, then g(z1, z2) must be a linear
function of the form g(z1, z2) = A1z1 + A2z2 + B, where A1, A2, B ∈ C. Further, f (z1, z2) must
satisfy one of the following cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)

A2
1ξ

e
1
2 g(z1,z2),

with ξ (�= 0), A1, A2, B ∈C satisfying

ξ 2 – 1
4(ξ 2 + 1)i

A2
1 = e

1
2 (A1c1+A2c2);

(ii)

f (z1, z2) =
A2

21eL1(z)+B1 + A2
11eL2(z)+B2

2A2
11A2

21
,

where L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2, Aj1, Aj2, Bj ∈C (j = 1, 2)
satisfy

L1(z) �= L2(z), g(z) = L1(z) + L2(z) + B1 + B2,

and

–iA2
11e–L1(c) = iA2

21e–L2(c) = 1.

The following examples show that the forms of solutions are precise to some extent.

Example 2.1 Let A1 = 2, A2 = 1, B = 0, and

f (z1, z2) =
√

2
2

ez1+ 1
2 z2 .

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.1) with g(z) =
2z1 + z2, c1 = π i, and c2 = 2π i.



Xu et al. Advances in Difference Equations         (2021) 2021:52 Page 5 of 24

Example 2.2 Let L1(z) = iz1 + 1
2 z2, L2(z) = –iz1 – 5

2 z2, B1 = B2 = 0, and

f (z1, z2) = –
eiz1+ 1

2 z2 + e–iz1– 5
2 z2

2
.

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.1) with g(z) =
– 3

2 z2, c1 = π , and c2 = –π i.

From Theorem 2.1 we easily get the following:

Corollary 2.1 Let c = (c1, c2) ∈ C
2, c2 �= 0, and let g(z1, z2) be not a linear function of the

form L(z) = A1z1 + A2z2 + B, where A1, A2, B ∈ C. Then the partial differential-difference
equation

(
∂2f (z1, z2)

∂z2
1

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (2.2)

admits no transcendental entire solution of finite order.

The following example shows that the condition c2 �= 0 in Corollary 2.1 cannot be re-
moved.

Example 2.3 Let f (z1, z2) =
√

2
2 ez1+z2–2πz2

2 . Then f (z1, z2) is a transcendental entire solution
of finite order of equation (2.2) with c = (c1, c2) = (2π i, 0) and g(z1, z2) = 2z1 + 2z2 – 4πz2

2.

Remark 2.1 In addition, in view of Theorem 2.1, we can obtain the conclusions of Theo-
rem 1.2 in [1] if α = 1, β = 0, and g(z) = 2kπ i, k ∈ Z, in equation (2.1).

For the difference counterpart of Theorem 2.1, we have the following:

Theorem 2.2 Let c = (c1, c2) ∈C
2, c2 �= 0. If the partial differential-difference equation

(
∂2f (z1, z2)

∂z2
1

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (2.3)

admits a transcendental entire solution f (z1, z2) of finite order, then g(z1, z2) must be a linear
function of the form g(z1, z2) = A1z1 + A2z2 + B with A1, A2, B ∈ C. Further, f (z1, z2) must
satisfy one of the following cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)

A2
1ξ

e
1
2 g(z1,z2) + z1G1(z2) + G2(z2),

where G1(z2) is a finite-order entire period function in z2 with period c2, ξ (�= 0),
A1, A2, B ∈C satisfying

G2(z2 + c2) = G2(z2) – c1G1(z2),
ξ 2 – 1

2i(ξ 2 + 1)
A2

1 + 1 = e
1
2 (A1c1+A2c2) = e

1
2 g(c1,c2);
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(ii)

f (z1, z2) =
A2

21eL1(z)+B1 + A2
11eL2(z)+B2

2A2
11A2

21
+ z1G1(z2) + G2(z2),

where G1(z2) is a finite-order entire period function in z2 with period c2,
L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2, Aij, Bi ∈C satisfy

G2(z2 + c2) = G2(z2) – c1G1(z2), L1(z) �= L2(z),

g(z) = L1(z) + L2(z) + B1 + B2,

and

(
1 – iA2

11
)
e–(A11c1+A12c2) = 1,

(
1 + iA2

21
)
e–(A21c1+A22c2) = 1.

The following examples explain the existence of transcendental finite-order entire solu-
tions of (2.3).

Example 2.4 Let A1 = 2, A2 = –1, G1(z2) = ez2 , G2(z2) = e2z2 – z2ez2 , B = 0, and

f (z1, z2) =
√

5
5

ez1– 1
2 z2 + (z1 – z2)ez2 + e2z2 .

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.3) with g(z) =
2z1 – z2, c1 = 2π i, and c2 = 2π i.

Example 2.5 Let L1(z) = z1 + z2, L2(z) = z1 – z2, G1(z) = e
4π i

log(–i) z2 , G2(z2) = – log(–i)
log 2 e

4π iz2
log(–i) ,

B1 = B2 = 0, and

f (z1, z2) =
ez1+z2 + ez1–z2

2
+

(
z1 –

log(–i)
log 2

z2

)
e

4π i
log(–i) z2 .

Then f (z1, z2) is a transcendental finite-order entire solution of equation (2.3) with g(z) =
2z1, c1 = 1

2 log 2, and c2 = 1
2 log(–i).

In view of Theorem 2.2, we obtain the following:

Corollary 2.2 Let c = (c1, c2) ∈ C
2, c2 �= 0, and let g(z1, z2) be not a linear function of the

form L(z) = A1z1 +A2z2 +B with A1, A2, B ∈C. Then the partial differential-difference equa-
tion

(
∂2f (z1, z2)

∂z2
1

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (2.4)

has no transcendental entire solution of finite order.

The following example shows that the condition c2 �= 0 in Corollary 2.2 cannot be re-
moved.
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Example 2.6 Let f (z1, z2) = ez1+z2–4π iz3
2 . Then f (z1, z2) is a transcendental finite-order entire

solution of equation (2.4) with c = (c1, c2) = (2π i, 0) and g(z1, z2) = 2z1 + 2z2 – 8π iz3
2.

When ∂2f (z1,z2)
∂z2

1
is replaced by ∂2f (z1,z2)

∂z1∂z2
in Theorems 2.1 and 2.2, we have the following:

Theorem 2.3 Let c = (c1, c2) ∈C
2, c1 �= 0, c2 �= 0. If the partial differential-difference equa-

tion

(
∂2f (z1, z2)

∂z1∂z2

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (2.5)

admits a transcendental entire solution of finite order, then g(z1, z2) must be a linear func-
tion of the form g(z1, z2) = A1z1 + A2z2 + B with A1, A2, B ∈C. Further, f (z1, z2) must satisfy
one of the following cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)
A1A2ξ

e
1
2 g(z1,z2)

with ξ (�= 0), A1, A2, B ∈C satisfying

ξ 2 – 1
4(ξ 2 + 1)i

A1A2 = e
1
2 (A1c1+A2c2);

(ii)

f (z1, z2) =
A21A22eL1(z)+B1 + A11A12eL2(z)+B2

2A11A12A21A22
,

where L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2, Aj1, Aj2, Bj ∈C (j = 1, 2)
satisfy

L1(z) �= L2(z), g(z) = L1(z) + L2(z) + B1 + B2,

and

–iA11A12e–L1(c) = iA21A22e–L2(c) = 1.

Example 2.7 Let A1 = 2, A2 = 2, B = 0, and

f (z1, z2) =
√

2
2

ez1+z2 .

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.5) with g(z) =
2z1 + 2z2, c1 = π i, and c2 = π i.

Example 2.8 Let L1(z) = z1 + z2, L2(z) = z1 – z2, B1 = B2 = 0, and

f (z1, z2) =
ez1+z2 – ez1–z2

2
.
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Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.5) with g(z) =
2z1, c1 = π

2 i, and c2 = π i.

From Theorem 2.3 we get the following:

Corollary 2.3 Let c = (c1, c2) ∈C
2, c1 �= 0, c2 �= 0, and let g(z1, z2) be not a linear function of

the form L(z) = A1z1 + A2z2 + B with A1, A2, B ∈ C. Then the partial differential-difference
equation

(
∂2f (z1, z2)

∂z1∂z2

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (2.6)

admits no transcendental entire solution of finite order.

The following example shows that the condition c1 �= 0, c2 �= 0 in Corollary 2.3 cannot be
removed.

Example 2.9 Let f (z1, z2) = ez2+z3
2 . Then f (z1, z2) is a transcendental finite-order entire so-

lution of equation (2.6) with c = (c1, c2) = (2π i, 0) and g(z1, z2) = 2z2 + 2z3
2.

Theorem 2.4 Let c = (c1, c2) �= (0, 0) ∈ C
2. If the partial differential-difference equation

(
∂2f (z1, z2)

∂z1∂z2

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (2.7)

admits a transcendental entire solution of finite order, then g(z1, z2) must be a linear func-
tion of the form g(z1, z2) = A1z1 + A2z2 + B with A1, A2, B ∈C. Further, f (z1, z2) must satisfy
one of the following cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)
A1A2ξ

e
1
2 g(z1,z2) + G3(z1) + D1z1 + G4(z2) + D2z2,

where G3(z1) and G4(z2) are finite-order entire periodic functions in z1 and z2 with
periods c1 and c2, respectively, and ξ (�= 0), A1, A2, B, D1, D2 ∈C satisfy

ξ 2 – 1
4i(ξ 2 + 1)

A1A2 + 1 = e
1
2 (A1c1+A2c2) = e

1
2 g(c1,c2), D1c1 + D2c2 = 0;

(ii)

f (z1, z2) =
A21A22eL1(z)+B1 + A11A12eL2(z)+B2

2A11A12A21A22
+ G3(z1) + D1z1 + G4(z2) + D2z2,

where G3(z1) and G4(z2) are finite-order entire periodic functions in z1 and z2 with
periods c1 and c2, respectively, L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2,
Aj1, Aj2, Bj ∈C (j = 1, 2) satisfy

L1(z) �= L2(z), g(z) = L1(z) + L2(z) + B1 + B2, D1c1 + D2c2 = 0,
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and

(1 – iA11A12)e–(A11c1+A12c2) = 1, (1 + iA21A22)e–(A21c1+A22c2) = 1.

Example 2.10 Let A1 = 2, A2 = 2, B = 0, G3(z1) = e2z1 , G4(z2) = e4z2 , and

f (z1, z2) =
√

5
5

e2z1+2z2 + e2z1 + z1 + e4z2 + 2z2.

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.7) with g(z) =
2z1 + 2z2, c1 = π i, and c2 = – π

2 i.

Example 2.11 Let L1(z) = z1 + z2, L2(z) = z1 – 2z2, B1 = B2 = 0, G3(z) = e
6π i

log[–2(2+i)] z1 , G4(z) =
e

6π i
log(1–i)–log(1–2i)] z2 , and

f (z1, z2) =
ez1+z2

2
–

ez1–2z2

4
+ e

6π i
log[–2(2+i)] z1 –

log 1–i
1–2i

log(–2 – 2i)
z1 + e

6π i
log(1–i)–log(1–2i) z2 .

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (2.7) with g(z) =
2z1 – z2, c1 = log[–2(2+i)]

3 , and c2 = log(1–i)–log(1–2i)
3 .

In view of Theorem 2.4, we obtain the following:

Corollary 2.4 Let c = (c1, c2) �= (0, 0) ∈ C
2, and let g(z1, z2) be not a linear function of the

form L(z) = A1z1 +A2z2 +B with A1, A2, B ∈C. Then the partial differential-difference equa-
tion

(
∂2f (z1, z2)

∂z1∂z2

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (2.8)

admits no transcendental entire solution of finite order.

In view of Theorems 2.1 and 2.3, we also get the following:

Corollary 2.5 Let f be a finite-order transcendental entire solution of the partial differen-
tial equation

(
∂2f (z1, z2)

∂z2
1

)2

+ f (z1, z2)2 = 1,
(

∂2f (z1, z2)
∂z1∂z2

)2

+ f (z1, z2)2 = 1.

Then f (z1, z2) must be of the form

f (z1, z2) =
eL(z)+B – e–L(z)–B

2i
= sin

(
–i

(
L(z) + B

))
,

where L(z) = A1z1 + A2z2 with A1, A2, B ∈ C satisfying A4
1 = 1 and A2

1A2
2 = 1.
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3 Some lemmas
The following lemmas play the key role in proving our results.

Lemma 3.1 ([32, 33]) For an entire function F on C
n with F(0) �= 0, put ρ(nF ) = ρ < ∞.

Then there exist a canonical function fF and a function gF ∈C
n such that F(z) = fF (z)egF (z).

For the particular case n = 1, fF is the canonical Weierstrass product.

Remark 3.1 Here ρ(nF ) is the order of the counting function of zeros of F .

Lemma 3.2 ([34]) If g and h are entire functions on the complex plane C and g(h) is an
entire function of finite order, then there are only two possible cases:

(a) the internal function h is a polynomial, and the external function g is of finite order;
(b) the internal function h is not a polynomial but a function of finite order, and the

external function g is of zero order.

Lemma 3.3 ([35, Theorem 1.106]) Suppose that a0(z), a1(z), . . . , an(z) (n ≥ 1) are mero-
morphic functions on C

m and g0(z), g1(z), . . . , gn(z) are entire functions on C
m such that

gj(z) – gk(z) are not constants for 0 ≤ j < k ≤ n. If

n∑
j=0

aj(z)egj(z) ≡ 0

and

‖T(r, aj) = o
(
T(r)

)
, j = 0, 1, . . . , n,

where T(r) = min0≤j<k≤n T(r, egj–gk ), then aj(z) ≡ 0 (j = 0, 1, 2, . . . , n).

Lemma 3.4 ([35, Lemma 3.1]) Let fj(�≡ 0), j = 1, 2, 3, be meromorphic functions on C
m such

that f1 is not constant, f1 + f2 + f3 = 1, and

3∑
j=1

{
N2

(
r,

1
fj

)
+ 2N(r, fj)

}
< λT(r, f1) + O

(
log+ T(r, f1)

)

for all r outside possibly a set of finite logarithmic measure, where λ < 1 is a positive number.
Then either f2 = 1 or f3 = 1.

Remark 3.2 Here N2(r, 1
f ) is the counting function of zeros of f in |z| ≤ r, where the simple

zero is counted once, and the multiple zero is counted twice.

4 The proof of Theorem 2.1

Proof Let f (z1, z2) be a transcendental finite-order entire solution of equation (2.1). We
first rewrite (2.1) in the form

( ∂2f (z1,z2)
∂z2

1

e
g(z1,z2)

2

)2

+
(

f (z1 + c1, z2 + c2)

e
g(z1,z2)

2

)2

= 1
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or

( ∂2f (z1,z2)
∂z2

1

e
g(z1,z2)

2
+ i

f (z1 + c1, z2 + c2)

e
g(z1,z2)

2

)( ∂2f (z1,z2)
∂z2

1

e
g(z1,z2)

2
– i

f (z1 + c1, z2 + c2)

e
g(z1,z2)

2

)
= 1. (4.1)

Since f is a finite-order transcendental entire function and g is a polynomial, by Lem-
mas 3.1 and 3.2 there exists a polynomial p(z) such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2 f (z)
∂z2

1

e
g(z)

2
+ i f (z+c)

e
g(z)

2
= ep(z),

∂2 f (z)
∂z2

1

e
g(z)

2
– i f (z+c)

e
g(z)

2
= e–p(z).

(4.2)

Denote

γ1(z) =
g(z)

2
+ p(z), γ2(z) =

g(z)
2

– p(z). (4.3)

By combining with (4.2) it follows that

∂2f (z)
∂z2

1
=

eγ1(z) + eγ2(z)

2
, (4.4)

f (z + c) =
eγ1(z) – eγ2(z)

2i
. (4.5)

This leads to

–iQ1(z)eγ1(z)–γ1(z+c) + iQ2(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1, (4.6)

where

Q1(z) =
∂2γ1

∂z2
1

+
(

∂γ1

∂z1

)2

, Q2(z) =
∂2γ2

∂z2
1

+
(

∂γ2

∂z1

)2

.

We consider two cases.
Case 1. If eγ2(z+c)–γ1(z+c) is a constant, then γ2(z + c) – γ1(z + c) is a constant. Set γ2(z +

c) – γ1(z + c) = κ , κ ∈ C. In view of (4.3), p(z) is a constant. Let ξ = ep(z). Then equations
(4.4)–(4.5) can be represented as

∂2f (z)
∂z2

1
= K1e

g(z)
2 , f (z + c) = K2e

g(z)
2 , (4.7)

where K1 = ξ+ξ–1

2 , K2 = ξ–ξ–1

2i , and K2
1 + K2

2 = 1.
This leads to

K2

2K1

(
∂2g
∂z2

1
+

1
2

(
∂g
∂z1

)2)
= e

g(z+c)–g(z)
2 . (4.8)
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Since g(z) is a polynomial, (4.8) implies that g(z + c) – g(z) is a constant in C. Otherwise, we
obtain a contradiction from the fact that the left-hand side of this equation is not transcen-
dental but the right-hand side is transcendental. Thus it follows that g(z) = L(z) + H(s) + B,
where L(z) = A1z1 + A2z2, A1 �= 0, and H(s) is a polynomial in s in C, s = c2z1 – c1z2.

We will prove that H(s) ≡ 0. If degs H = n, then equation (4.8) implies

4A1c2
dH
ds

+ c2
2

d2H
ds2 + 2c2

2

(
dH
ds

)2

≡ ζ0,

that is,

4A1c2
dH
ds

+ c2
2

d2H
ds2 ≡ ζ0 – 2c2

2

(
dH
ds

)2

,

where ζ0 ∈ C. By comparing the degree of s in both sides of the above equation we have
2(n – 1) = n – 1, that is, n = 1. Thus the form of L(z) + H(s) + B is still the linear form
of A1z1 + A2z2 + B, which means that H(s) ≡ 0. Hence it follows that g(z) = L(z) + B =
A1z1 + A2z2 + B. By combining with (4.6)–(4.8) we conclude that

f (z1, z2) = K2e
g(z–c)

2 = K2e
1
2 [A1z1+A2z2+B–(A1c1+A2c2)],

ξ 2 – 1
4i(ξ 2 + 1)

A2
1 = e

1
2 (A1c1+A2c2),

which implies that

f (z1, z2) =
2K1

A2
1

e
1
2 [A1z1+A2z2+B] =

ξ 2 + 1
A2

1ξ
e

1
2 g(z1,z2). (4.9)

This completes the proof of Theorem 2.1(i).
Case 2. eγ2(z+c)–γ1(z+c) is not a constant. Obviously, Q1(z) ≡ 0 and Q2(z) ≡ 0 cannot hold

at the same time. Otherwise, it would follows from (4.6) that eγ2(z+c)–γ1(z+c) = –1, a contra-
diction. If Q1(z) ≡ 0 and Q2(z) �≡ 0, then from (4.6) this yields that

iQ2(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1. (4.10)

Thus we conclude that eγ2(z)–γ1(z+c) is a nonconstant because eγ2(z+c)–γ1(z+c) is not a constant.
Moreover, it follows that eγ2(z+c)–γ2(z) is not a constant. Otherwise, γ2(z + c) = γ2(z) + ζ ,
where ζ ∈ C. Then from (4.10) we have [iQ2(z)e–ζ – 1]eγ2(z+c)–γ1(z+c) ≡ 1, which is a contra-
diction with the nonconstant eγ2(z+c)–γ1(z+c). Thus (4.10) can be written in the form

iQ2(z)eγ2(z) – eγ2(z+c) – eγ1(z+c) ≡ 0. (4.11)

By applying Lemma 3.3 for (4.11) we easily get a contradiction. If Q2(z) ≡ 0 and Q1(z) �≡ 0,
by using the same argument as before, we can get a contradiction. Hence we have that
Q1(z) �≡ 0 and Q2(z) �≡ 0.

Since γ1(z), γ2(z) are polynomials and eγ2(z+c)–γ1(z+c) is not a constant, by applying
Lemma 3.4 to (4.6) it follows that

–iQ1(z)eγ1(z)–γ1(z+c) ≡ 1 or iQ2(z)eγ2(z)–γ1(z+c) ≡ 1. (4.12)
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Subcase 2.1. Suppose that –iQ1(z)eγ1(z)–γ1(z+c) ≡ 1. Then it follows from (4.6) that
iQ2(z)eγ2(z)–γ2(z+c) ≡ 1. This means that γ1(z) – γ1(z + c) = ζ1 and γ2(z) – γ2(z + c) = ζ2,
where ζ1, ζ2 ∈C. Hence we have that γ1(z) = L1(z)+H1(s)+B1 and γ2(z) = L2(z)+H2(s)+B2,
where Lj(z) = Aj1z1 + Aj2z2, Hj(s), j = 1, 2, are polynomials in s = c2z1 – c1z2, Aj1, Aj2, Bj ∈C,
j = 1, 2. In view of the definitions of Q1, Q2, similarly to the argument in Case 1, we
can conclude that H1(s) = H2(s) ≡ 0. In addition, it follows that L1(z) �= L2(z). Otherwise,
γ2(z + c) – γ1(z + c) is a constant, which implies that eγ2(z+c)–γ1(z+c) is a constant, a contra-
diction. Substituting these into (4.12), we have

iA2
11e–L1(c) = iA2

11e–(A11c1+A12c2) = –1, iA2
21e–L2(c) = iA2

21e–(A21c1+A22c2) = 1.

By combining with (4.5) we have

f (z) =
eL1(z)+B1–L1(c) – eL2(z)+B2–L2(c)

2i
=

A2
21eL1(z)+B1 + A2

11eL2(z)+B2

2A2
11A2

21
.

From the definitions of γ1(z) and γ2(z) we can see that

g(z) = γ1(z) + γ2(z) = L(z) + B,

where L(z) = L1(z) + L2(z), B = B1 + B2.
Subcase 2.2. Suppose that iQ2(z)eγ2(z)–γ1(z+c) ≡ 1. Then it follows from (4.6) that

–iQ1(z)eγ1(z)–γ2(z+c) ≡ 1. This means that γ2(z) – γ1(z + c) = ζ1 and γ1(z) – γ2(z + c) = ζ2,
where ζ1, ζ2 ∈ C. Thus it follows that γ1(z + 2c) – γ1(z) = –ζ1 – ζ2 and γ2(z + c) – γ2(z) =
–ζ1 – ζ2. We can obtain that γ1(z) = L(z) + H(s) + B1 and γ2(z) = L(z) + H(s) + B2, where
L(z) = a1z1 + a2z2, and H(s) is a polynomial in s = c2z1 – c1z2, a1, a2, B1, B2 ∈ C. This yields
that γ2(z + c) – γ1(z + c) = B2 – B1, which implies that eγ2(z+c)–γ1(z+c) is a constant, a contra-
diction.

This completes the proof of Theorem 2.1. �

5 The proof of Theorem 2.2

Proof Let f (z1, z2) be a finite-order transcendental entire solution of equation (2.3). We
first rewrite (2.3) in the form

( ∂2f (z1,z2)
∂z2

1

e
g(z1,z2)

2

)2

+
(

f (z1 + c1, z2 + c2) – f (z1, z2)

e
g(z1,z2)

2

)2

= 1

or

( ∂2f (z)
∂z2

1

e
g(z)

2
+ i

f (z + c) – f (z)

e
g(z)

2

)( ∂2f (z)
∂z2

1

e
g(z)

2
– i

f (z + c) – f (z)

e
g(z)

2

)
= 1. (5.1)
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Since f is a finite-order transcendental entire function and g is a polynomial, by Lem-
mas 3.1 and 3.2 there exists a polynomial p(z) in C

2 such that

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂2 f (z)
∂z2

1

e
g(z)

2
+ i f (z+c)–f (z)

e
g(z)

2
= ep(z),

∂2 f (z)
∂z2

1

e
g(z)

2
– i f (z+c)–f (z)

e
g(z)

2
= e–p(z).

(5.2)

Denote

γ1(z) =
g(z)

2
+ p(z), γ2(z) =

g(z)
2

– p(z). (5.3)

By combining with (5.2) it follows that

∂2f (z1, z2)
∂z2

1
=

eγ1(z) + eγ2(z)

2
, (5.4)

f (z + c) – f (z) =
eγ1(z) – eγ2(z)

2i
. (5.5)

This leads to

Q3(z)eγ1(z)–γ1(z+c) + Q4(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1, (5.6)

where

Q3(z) = 1 – i
(

∂2γ1

∂z2
1

+
(

∂γ1

∂z1

)2)
, Q4(z) = 1 + i

(
∂2γ2

∂z2
1

+
(

∂γ2

∂z1

)2)
.

We consider two cases.
Case 1. If eγ2(z+c)–γ1(z+c) is a constant, then γ2(z + c) – γ1(z + c) is a constant. Set γ2(z + c) –

γ1(z + c) = κ , κ ∈ C. In view of (5.3), this yields that p(z) is a constant. Let ξ = ep(z). Then
equations (5.4)–(5.5) can be represented as

∂2f (z)
∂z2

1
= K1e

g(z)
2 , f (z + c) – f (z) = K2e

g(z)
2 , (5.7)

where K1 = ξ+ξ–1

2 , K2 = ξ–ξ–1

2i , and K2
1 + K2

2 = 1.
This leads to

K2

2K1

(
∂2g
∂z2

1
+

1
2

(
∂g
∂z1

)2)
+ 1 = e

g(z+c)–g(z)
2 . (5.8)

Since g(z) is a polynomial, (5.8) implies g(z+c)–g(z), and thus e
g(z+c)–g(z)

2 must be a constant.
Denote g(z + c) – g(z) = ζ , where ζ is a constant in C. By using the same argument as in
Case 1 of Theorem 2.1, we obtain that g(z) = L(z) + B, where L(z) = A1z1 + A2z2, B ∈C.

By combining with (5.8) it follows that

K2

4K1
A2

1 + 1 = e
1
2 (A1c1+A2c2). (5.9)
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Solving the first equation in (5.7), we have

f (z1, z2) =
4K1

A2
1

e
1
2 g(z) + z1G1(z2) + G2(z2)

=
4(ξ 2 + 1)

A2
1ξ

e
1
2 (L(z)+B) + z1G1(z2) + G2(z2). (5.10)

Substituting (5.10) into the second equation in (5.7) and combining with (5.9), we get
that G1(z2 + c2) = G1(z2) and G2(z2 + c2) – G2(z2) = c1G1(z2), which means that G1(z2) is a
finite-order entire period functions in z2 with period c2.

Case 2. eγ2(z+c)–γ1(z+c) is not a constant. Obviously, Q3(z) ≡ 0 and Q4(z) ≡ 0 cannot hold
at the same time. Otherwise, it would follow from (5.6) that eγ2(z+c)–γ1(z+c) = –1, a contra-
diction. If Q3(z) ≡ 0 and Q4(z) �≡ 0, then from (5.6) it follows that

Q3(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1. (5.11)

Thus we conclude that eγ2(z)–γ1(z+c) is not a constant because eγ2(z+c)–γ1(z+c) is not a constant.
Moreover, it follows that eγ2(z+c)–γ2(z) is not a constant. Otherwise, γ2(z + c) = γ2(z) + ζ ,
where ζ ∈C. Then from (5.11) we have [Q4(z)e–ζ – 1]eγ2(z+c)–γ1(z+c) ≡ 1, which is a contra-
diction with the nonconstant eγ2(z+c)–γ1(z+c). Thus (5.11) can be written in the form

Q4(z)eγ2(z) – eγ2(z+c) – eγ1(z+c) ≡ 0. (5.12)

By applying Lemma 3.3 to (5.12) we easily get a contradiction. If Q4(z) ≡ 0 and Q3(z) �≡ 0,
by using the same argument as before we can get a contradiction. Hence we have that
Q3(z) �≡ 0 and Q4(z) �≡ 0.

Since γ1(z), γ2(z) are polynomials and eγ2(z+c)–γ1(z+c) is a nonconstant, by applying
Lemma 3.4 to (5.6) it follows that

Q3(z)eγ1(z)–γ1(z+c) ≡ 1 or Q4(z)eγ2(z)–γ1(z+c) ≡ 1. (5.13)

Subcase 2.1. Suppose that Q3(z)eγ1(z)–γ1(z+c) ≡ 1. Then it follows from (5.6) that
Q4(z)eγ2(z)–γ2(z+c) ≡ 1. This means that γ1(z) – γ1(z + c) = ζ1, γ2(z) – γ2(z + c) = ζ2, where
ζ1, ζ2 ∈C. Hence we have that γ1(z) = L1(z)+H1(s)+B1 and γ2(z) = L2(z)+H2(s)+B2, where
Lj(z) = Aj1z1 + Aj2z2, Hj(s1), j = 1, 2, are polynomials in s1 = c2z1 – c1z2, Aj1, Aj2, Bj ∈ C,
j = 1, 2. Similarly to the argument in Case 1 of Theorem 2.2, we have H1(s) = H2(s) ≡ 0.
Thus it follows that γ1(z) = L1(z) + B1 and γ2(z) = L2(z) + B2. Obviously, L1(z) �= L2(z). Oth-
erwise, γ2(z + c) – γ1(z + c) is a constant, which implies that eγ2(z+c)–γ1(z+c) is a constant, a
contradiction. Substituting these into (5.6), we have

(
1 – iA2

11
)
e–(A11c1+A12c2) = 1,

(
1 + iA2

21
)
e–(A21c1+A22c2) = 1. (5.14)

By solving the equation

∂2f (z)
∂z2

1
=

eL1(z)+B1 + eL2(z)+B2

2
(5.15)
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we have

f (z1, z2) =
A2

21eL1(z)+B1 + A2
11eL2(z)+B2

2A2
11A2

21
+ z1G1(z2) + G2(z2). (5.16)

Substituting (5.16) into (5.5) and combining with (5.14), we have G1(z2 + c2) = G1(z2) and
G2(z2 + c2) – G2(z2) = c1G1(z2), which means that G1(z2) is a finite-order entire periodic
function in z2 with period c2.

From the definitions of γ1(z) and γ2(z) we can see that

g(z) = γ1(z) + γ2(z) = L(z) + B,

where L(z) = L1(z) + L2(z), B = B1 + B2.
Subcase 2.2. Suppose that Q4(z)eγ2(z)–γ1(z+c) ≡ 1. Similarly to the argument in Subcase 2.2

in Theorem 2.1, we can get a contradiction.
Therefore this completes the proof of Theorem 2.2. �

6 Proofs of Theorems 2.3 and 2.4
6.1 Proof of Theorem 2.4
Suppose that f (z1, z2) is a finite-order transcendental entire solution of equation (2.7). We
first rewrite (2.7) in the form

( ∂2f (z)
∂z1∂z2

e
g(z)

2
+ i

f (z + c) – f (z)

e
g(z)

2

)( ∂2f (z)
∂z1∂z2

e
g(z)

2
– i

f (z + c) – f (z)

e
g(z)

2

)
= 1. (6.1)

Since f is a finite-order transcendental entire function and g is a polynomial, by Lem-
mas 3.1 and 3.2 there exists a polynomial p(z) such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2 f (z)
∂z1∂z2

e
g(z)

2
+ i f (z+c)–f (z)

e
g(z)

2
= ep(z),

∂2 f (z)
∂z1∂z2

e
g(z)

2
– i f (z+c)–f (z)

e
g(z)

2
= e–p(z).

(6.2)

Denote

γ1(z) =
g(z)

2
+ p(z), γ2(z) =

g(z)
2

– p(z). (6.3)

By combining with (6.2) it follows that

∂2f (z1, z2)
∂z1∂z2

=
eγ1(z) + eγ2(z)

2
, (6.4)

f (z + c) – f (z) =
eγ1(z) – eγ2(z)

2i
. (6.5)

This leads to

Q5(z)eγ1(z)–γ1(z+c) + Q6(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1, (6.6)
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where

Q5(z) = 1 – i
(

∂2γ1

∂z1∂z2
+

∂γ1

∂z1

∂γ1

∂z2

)
, Q4(z) = 1 + i

(
∂2γ2

∂z1∂z2
+

∂γ2

∂z1

∂γ2

∂z2

)
.

We consider two cases.
Case 1. If eγ2(z+c)–γ1(z+c) is a constant, then γ2(z + c) – γ1(z + c) is a constant. Set γ2(z + c) –

γ1(z + c) = κ , κ ∈ C. In view of (6.3), this yields that p(z) is a constant. Let ξ = ep(z). Then
equations (6.4)–(6.5) become

∂2f (z)
∂z1∂z2

= K1e
g(z)

2 , f (z + c) – f (z) = K2e
g(z)

2 , (6.7)

where K1 = ξ+ξ–1

2 , K2 = ξ–ξ–1

2i , and K2
1 + K2

2 = 1.
This leads to

K2

2K1

(
∂2g

∂z1∂z2
+

1
2

∂g
∂z1

∂g
∂z2

)
+ 1 = e

g(z+c)–g(z)
2 . (6.8)

Since g(z) is a polynomial, (6.8) implies g(z+c)–g(z), and thus e
g(z+c)–g(z)

2 must be a constant.
Denote g(z +c)–g(z) = ζ , where ζ is a constant inC. Thus it follows that g(z) = L(z)+H(s)+
B, where L(z) = A1z1 + A2z2, and H(s) is a polynomial in s in C, s = c2z1 – c1z2. Substituting
this into (6.8), we deduce that

K2

2K1

(
–

1
4

c1c2H ′′ –
1
2

c1c2
(
H ′)2 +

1
2

(A2c2 – A1c1)H ′ +
1
2

A1A2

)
+ 1 = e

g(z+c)–g(z)
2 . (6.9)

Since g(z) is a polynomial, then (6.9) implies that g(z + c) – g(z) is a constant in C. Oth-
erwise, we would obtain a contradiction from the fact that the left-hand side of the above
equation is not transcendental but the right-hand side is transcendental. Hence it follows
that

K2

2K1

(
–

1
4

c1c2H ′′ –
1
2

c1c2
(
H ′)2 +

1
2

(A2c2 – A1c1)H ′ +
1
2

A1A2

)
+ 1 = ζ0, (6.10)

where ζ0 ∈ C. If c1 = 0, c2 �= 0, that is, K2
2K1

( 1
2 A2c2H ′ + 1

2 A1A2) + 1 = ζ0. Thus, either A2 = 0,

or H ′ is a constant. If A2 = 0, then ζ0 = 1, that is, e
g(z+c)–g(z)

2 is a constant. By combining with
c1 = 0 this means that g(z) is a constant. Set e

g
2 = θ . In view of the first equation of (6.5),

we have

f (z1, z2) = K1θz1z2 + μ(z1), (6.11)

where μ(z1) is a finite-order transcendental entire function. Substituting this into the sec-
ond equation of (6.5), we have

K1θ (z1 + c1)(z2 + c2) + μ(z1 + c1) – K1θz1z2 – μ(z1) = K2θ .

Combining with c1 = 0, this yields that K1θc2z1 = K2θ , which is impossible. Hence H ′ is a
constant, that is, H(s) = c2z1.



Xu et al. Advances in Difference Equations         (2021) 2021:52 Page 18 of 24

If c2 = 0, c1 �= 0, similarly to the above argument, we can obtain that H(s) = –c1z2.
Let c1 �= 0 and c2 �= 0. If A2c2 – A1c1 = 0, noting that the left-hand side of (6.10) is a

constant, we have degs H ≤ 1, that is, H(s) = c2z1 – c1z2 + τ , where τ ∈C. If A2c2 – A1c1 �= 0,
we easily obtain that degs H ≤ 1, that is, H(s) = c2z1 –c1z2 ++τ , where τ ∈C. Thus the form
of L(z) + H(s) + B is still the linear form of A1z1 + A2z2 + B, which means that H(s) ≡ 0.
Hence we obtain that g(z) = L(z) + B, where L(z) = A1z1 + A2z2, B ∈C.

By combining with (6.8) it follows that

K2

4K1
A1A2 + 1 = e

1
2 (A1c1+A2c2). (6.12)

Solving the first equation in (6.7), we have

f (z1, z2) =
4K1

A1A2
e

1
2 g(z) + φ(z1) + ϕ(z2)

=
4(ξ 2 + 1)
A1A2ξ

e
1
2 (L(z)+B) + φ(z1) + ϕ(z2). (6.13)

Substituting (6.13) into the second equation in (6.7) and combining with (6.12), we get
that

φ(z1 + c1) – φ(z1) = –
[
ϕ(z2 + c2) – ϕ(z2)

]
,

which yields that φ(z1) = G3(z1) + D1z1 and ϕ(z2) = G4(z2) + D2z2, where D1c1 + D2c2 = 0
and G3(z1), G4(z2) are finite-order entire period functions in z1, z2 with periods c1, c2,
respectively.

Case 2. eγ2(z+c)–γ1(z+c) is not a constant. Obviously, Q5(z) ≡ 0 and Q6(z) ≡ 0 cannot hold
at the same time. Otherwise, it would follow from (6.6) that eγ2(z+c)–γ1(z+c) = –1, a contra-
diction. If Q5(z) ≡ 0 and Q6(z) �≡ 0, then from (6.6) we get that

Q5(z)eγ2(z)–γ1(z+c) – eγ2(z+c)–γ1(z+c) ≡ 1. (6.14)

Thus we conclude that eγ2(z)–γ1(z+c) is not a constant because eγ2(z+c)–γ1(z+c) is not a constant.
Moreover, it follows that eγ2(z+c)–γ2(z) is not a constant. Otherwise, γ2(z + c) = γ2(z) + ζ ,
where ζ ∈C. Then from (6.14) we have [Q6(z)e–ζ – 1]eγ2(z+c)–γ1(z+c) ≡ 1, which is a contra-
diction with the nonconstant eγ2(z+c)–γ1(z+c). Thus (6.14) can be written in the form

Q6(z)eγ2(z) – eγ2(z+c) – eγ1(z+c) ≡ 0. (6.15)

By applying Lemma 3.3 for (6.15) we easily get a contradiction. If Q6(z) ≡ 0 and Q5(z) �≡ 0,
by using the same argument as before we can get a contradiction. Hence we have that
Q5(z) �≡ 0 and Q6(z) �≡ 0.

Since γ1(z), γ2(z) are polynomials and eγ2(z+c)–γ1(z+c) is not a constant, by applying
Lemma 3.4 to (6.6) it follows that

Q5(z)eγ1(z)–γ1(z+c) ≡ 1 or Q6(z)eγ2(z)–γ1(z+c) ≡ 1. (6.16)
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Subcase 2.1. Suppose that Q5(z)eγ1(z)–γ1(z+c) ≡ 1. Then it follows from (6.6) that
Q6(z)eγ2(z)–γ2(z+c) ≡ 1. This means that γ1(z) – γ1(z + c) = ζ1, γ2(z) – γ2(z + c) = ζ2, where
ζ1, ζ2 ∈ C. Hence we have that γ1(z) = L1(z) + H1(s) + B1 and γ2(z) = L2(z) + H2(s) + B2,
where Lj(z) = Aj1z1 + Aj2z2, Hj(s), j = 1, 2, are polynomials in s = c2z1 – c1z2, Aj1, Aj2, Bj ∈C,
j = 1, 2. Similarly to the argument in Case 1, we have H1(s) = H2(s) ≡ 0. Thus it fol-
lows that γ1(z) = L1(z) + B1 and γ2(z) = L2(z) + B2. Obviously, L1(z) �= L2(z). Otherwise,
γ2(z + c) – γ1(z + c) would be a constant, which implies that eγ2(z+c)–γ1(z+c) is a constant, a
contradiction. Substituting these into (6.6), we have

(1 – iA11A12)e–(A11c1+A12c2) = 1, (1 + iA21A22)e–(A21c1+A22c2) = 1. (6.17)

By solving the equation

∂2f (z)
∂z1∂z2

=
eL1(z)+B1 + eL2(z)+B2

2
(6.18)

we have

f (z1, z2) =
eL1(z)+B1

2A11A12
+

eL2(z)+B2

2A21A22
+ φ(z1) + ϕ(z2). (6.19)

Substituting (6.19) into (6.5) and combining with (6.17), we get that

φ(z1 + c1) – φ(z1) = –
[
ϕ(z2 + c2) – ϕ(z2)

]
,

which yields that φ(z1) = G3(z1) + D1z1 and ϕ(z2) = G4(z2) + D2z2, where D1c1 + D2c2 = 0
and G3(z1), G4(z2) are finite-order entire periodic functions in z1, z2 with period c1, c2,
respectively.

From the definitions of γ1(z) and γ2(z) we can see that

g(z) = γ1(z) + γ2(z) = L(z) + B,

where L(z) = L1(z) + L2(z), B = B1 + B2.
Subcase 2.2. Suppose that Q6(z)eγ2(z)–γ1(z+c) ≡ 1. Similarly to the argument in Subcase 2.2

in Theorem 2.1, we can get a contradiction.
This completes the proof of Theorem 2.4.

6.2 Proof of Theorem 2.3
Similar to the argument in the proof of Theorem 2.1, we can easily prove the statements
of Theorem 2.3.

7 Remarks
In view of the arguments in the proofs of Theorems 2.1 and 2.3, we easily get the following
theorems.

Theorem 7.1 Let c = (c1, c2) ∈ C2 with c1 �= 0, c2 �= 0, and c1 + c2 �= 0. If the partial
differential-difference equation

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z1∂z2

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (7.1)
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admits a transcendental entire solution f (z1, z2) of finite order, then g(z) must be a poly-
nomial function of the form g(z) = L(z) + B, where L(z) is a linear function of the form
L(z) = A1z1 + A2z2 + B, A1, A2, B ∈ C. Further, f (z1, z2) must satisfy one of the following
cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)

A1(A1 + A2)ξ
e

1
2 g(z1,z2)

with ξ (�= 0), A1, A2, B ∈C satisfying

1
4

ξ 2 – 1
(ξ 2 + 1)i

A1(A1 + A2) = e
1
2 (A1c1+A2c2);

(ii)

f (z1, z2) =
eL1(z)+B1

2A11(A11 + A12)
+

eL2(z)+B2

2A21(A21 + A12)
,

where L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2, Aj1, Aj2, Bj ∈C (j = 1, 2)
satisfy

L1(z) �= L2(z), g(z) = L1(z) + L2(z) + B1 + B2,

and

–iA11(A11 + A12)e–L1(c) = iA21(A21 + A22)e–L2(c) = 1.

We give some examples showing the existence of finite-order transcendental entire so-
lutions of equation (7.1).

Example 7.1 Let A1 = 1, A2 = 1, B = 0, and

f (z1, z2) =
2
√

5
5

e
1
2 (z1+z2).

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (7.1) with g(z) =
z1 + z2, c1 = 2π i, and c2 = 2π i.

Example 7.2 Let L1(z) = iz1 + (1 – i)z2, L2(z) = z1 + (i – 1)z2, B1 = B2 = 0, and

f (z1, z2) =
eiz1+(1–i)z2

2i
+

ez1+(i–1)z2

2i
.

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (7.1) with g(z) =
(1 + i)z1, c1 = 3π

2 (1 + i), and c2 = π
2 (1 + 2i).

Theorem 7.2 Let c = (c1, c2) ∈ C
2 with c1 �= 0, c2 �= 0, and c1 + c2 �= 0. If the partial

differential-difference equation

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z2
2

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2) (7.2)
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admits a transcendental entire solution f (z1, z2) of finite order, then g(z) must be a poly-
nomial function of the form g(z) = L(z) + B, where L(z) is a linear function of the form
L(z) = A1z1 + A2z2 + B, A1, A2, B ∈ C. Further, f (z1, z2) must satisfy one of the following
cases:

(i)

f (z1, z2) =
4(ξ 2 + 1)

(A2
1 + A2

2)ξ
e

1
2 g(z1,z2)

with ξ (�= 0), A1, A2, B ∈C satisfying

1
4

ξ 2 – 1
(ξ 2 + 1)i

(
A2

1 + A2
2
)

= e
1
2 (A1c1+A2c2);

(ii)

f (z1, z2) =
eL1(z)+B1

2(A2
11 + A2

12)
+

eL2(z)+B2

2(A2
21 + A2

12)
,

where L1(z) = A11z1 + A12z2 + B1, L2(z) = A21z1 + A22z2 + B2, Aj1, Aj2, Bj ∈C (j = 1, 2)
satisfy

L1(z) �= L2(z), g(z) = L1(z) + L2(z) + B1 + B2,

and

–i
(
A2

11 + A2
12

)
e–L1(c) = i

(
A2

21 + A2
22

)
e–L2(c) = 1.

Some examples explain the existence of finiteorder – entire solutions of equation (7.2).

Example 7.3 Let A1 = 1, A2 = 1, B = 0, and

f (z1, z2) =
2
√

5
5

e
1
2 (z1+z2).

Then ρ(f ) = 1, and f (z1, z2) is a transcendental entire solution of equation (7.2) with g(z) =
z1 + z2, c1 = π i, and c2 = π i.

Example 7.4 Let L1(z) = iz1 +
√

2z2, L2(z) =
√

2iz1 + z2, B1 = B2 = 0, and

f (z1, z2) =
eiz1+

√
2z2

2
–

eiz1+
√

2z2

2
.

Then ρ(f ) = 1 and f (z1, z2) is a transcendental entire solution of equation (7.2) with g(z) =
(
√

2 + 1)iz1 + (
√

2 + 1)z2, c1 = (
√

2–3)π
2 , and c2 = (3

√
2–1)
2 π i.

In view of Theorems 7.1 and 7.2, we easily get the following.
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Corollary 7.1 Let c = (c1, c2) ∈C
2, c1 �= 0, c2 �= 0, α,β ,γ ∈C, and let g(z1, z2) be not a linear

function of the form L(z) = A1z1 + A2z2 + B, where A1, A2, B ∈ C. If αc2
1 – βc1c2 + γ c2

2 �= 0,
then the partial differential-difference equation

(
α

∂2f (z1, z2)
∂z2

1
+ β

∂2f (z1, z2)
∂z1∂z2

+ γ
∂2f (z1, z2)

∂z2
2

)2

+ f (z1 + c1, z2 + c2)2 = eg(z1,z2)

has no finite-order transcendental entire solution.

Corollary 7.2 The finite-order transcendental entire solution f (z1, z2) of the partial differ-
ential equations

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z1∂z2

)2

+ f (z1, z2)2 = 1,

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z2
2

)2

+ f (z1, z2)2 = 1

must be of the form

f (z1, z2) =
eL(z)+B – e–L(z)–B

2i
= sin

(
–i

(
L(z) + B

))
,

where L(z) = A1z1 + A2z2, A1, A2, B ∈ C satisfy A2
1(A1 + A2)2 = 1 and (A2

1 + A2
2)2 = 1.

Corresponding to Theorems 7.1 and 7.2, we can obtain some results on the existence of
solutions of the difference-type equations (7.1) and (7.2).

Theorem 7.3 Let c = (c1, c2) ∈C
2, c2 �= 0, c1 �= c2. If the partial differential-difference equa-

tion

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z1∂z2

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (7.3)

admits a transcendental entire solution of finite order, then g(z1, z2) must be a linear func-
tion of the form g(z1, z2) = A1z1 + A2z2 + B, where A1, A2, B ∈C.

Theorem 7.4 Let c = (c1, c2) be a constant in C
2 such that c1 �= ±ic2. If the partial

differential-difference equation

(
∂2f (z1, z2)

∂z2
1

+
∂2f (z1, z2)

∂z2
2

)2

+
[
f (z1 + c1, z2 + c2) – f (z1, z2)

]2 = eg(z1,z2) (7.4)

admits a transcendental entire solution of finite order, then g(z1, z2) must be a linear func-
tion of the form g(z1, z2) = A1z1 + A2z2 + B, where A1, A2, B ∈C.

Remark 7.1 Although we give the conditions for the existence of finite-order transcen-
dental entire solutions of equations (7.3) and (7.4) in Theorems 7.3 and 7.4, in view of
Theorems 2.2 and 2.4, there naturally arises an open question: How to describe the forms
of finite-order transcendental entire solutions of equations (7.3) and (7.4)?
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