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Abstract
This research work investigates some theoretical and semi-analytical results for the
mathematical model of tuberculosis disease via derivative due to Caputo and
Fabrizio. The concerned derivative involves exponential kernel and very recently it has
been adapted for various applied problems. The required results are established by
using some fixed point approach of Krasnoselskii and Banach. Further, by the use of
iterative tools of Adomian decomposition and Laplace, the semi-analytical results are
studied. Some graphical results are given with discussion.
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1 Introduction
One of the most important diseases faced by human beings ever is tuberculosis (TB). TB
is a spreadable, airborne bacterial infection which is caused by mycobacterium tuberculo-
sis. This bacterium normally affects the lungs (pulmonary tuberculosis). This bacterium
may also affect several other systems like kidneys, the brain, the lymphatic system, the
central nervous system, spinal cord, etc. The presence of TB disease has been found since
ancient times in various civilizations like Egypt, China, Roman, etc. (see [1]). One-third
of the world population at the present time is infected with TB, and the number of in-
fectious individuals increases at a rate of one per second [2]. The aforementioned disease
was among the top ten death causes around the globe in the year 2015, where about 10.4
million individuals were infected from it. In the same year, about 1.8 million infectious
individuals lost their lives from various diseases including 0.4 million with HIV and TB.
60% of the tuberculosis cases around the globe were concentrated in the six countries
(Pakistan, India, Nigeria, China, Indonesia, and South Africa) [3]. Dye [4] gave some in-
formation that the major cause of death worldwide, in particularly in Sub-Saharan Africa,
is due to TB and HIV. Further, HIV epidemic is a serious threat in many countries of the
world. It is a clear evidence that worldwide children are protected from the early infection
of the disease by vaccination like Bacillus Calmatte–Guerine(BCG) [5]. Therefore, detec-
tion and treatment of latent TB by modern therapy have been used recently to prevent the
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breakdown of rate of spread of the disease as only the members of the infectious class can
transmit the disease to others.

Worldwide various procedures and methods have been used to understand the cause
and control of these diseases in society. One of the powerful tools is the mathematical
modeling through which we understand the dynamics of various disease transmission and
suggest procedure how to control them in society. The mentioned area originated during
1927 for the first time. A variety of models have been developed and studied so far (refer
to [6–10]). In this regard a five-compartment model for TB has also been constructed in
[11] as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṁ (t) = θρ – (α + μ)M ,

Ṡ (t) = (1 – θ )ρ + αM – βS I – ρS ,

L̇ (t) = βS I – (σ + τ + μ)L ,

İ (t) = τL – (γ + μ + δ)I ,

Ṙ(t) = σL + γI – μR.

(1)

In the above model the whole populace is categorized into five classes: the immunized
class M , the susceptible class S , the infected latently class L , the infectious class I ,
and the recovered class R . Parameters of the model under consideration are explained
as follows: The constant of recruitment is represented by the symbol ρ , θ denotes the
immunized portion at birth, α represents the rate of weaning off the vaccine, the natural
death rate is denoted by the symbol μ, β represents the tuberculosis contraction rate,
the successful treatment of infectious latent is denoted by the letter σ , the symbol τ is
the rate of breakdown of latent TB into infectious TB, the successful cure of infectious
TB individuals and the death resulting from the disease are respectively denoted by the
symbols γ , δ.

Usually an integer order derivatives do not explore the dynamics of real world prob-
lems related to biology and physics well. In order to overcome this deficiency, fractional
calculus has been given attention for the last few decades. Also we know that fractional
calculus is increasingly used by mathematicians for mathematical modeling. Derivatives
and integrals of noninteger order may be defined by a number of ways. Some well-known
definitions are those given by Riemann and Liouville [12], Caputo, etc. (see [13]). The
mentioned derivatives involve kernel of singular type. Frequently these two definitions
have been increasingly used since fractional differential operator is in fact a definite inte-
gral operator for whom the definition of kernel is not unique or not regular. Further due to
high degree of freedom in derivative of arbitrary order, researchers have given much atten-
tion to studying applied problems under these concepts. In this sense very recently some
authors replaced the singular kernel by some nonlocal nonsingular and produced new def-
initions. Hence in 2015 Caputo and Fabrizio replaced the singular kernel by exponential
kernel in the usual Caputo derivative and called it Caputo–Fabrizio fractional derivative
(abbreviated as CFFD); for details, see [14–16]. Therefore various researchers investigated
different problems of applied nature under this concept. In various cases the mentioned
derivative has produced significant results as compared to other forms of derivatives (see
[17–19]). The Caputo–Fabrizio derivative omits singular kernel by exponential kernel and
hence makes the concerned differential operator nonlocal. Conventional fractional deriva-
tives contain singular kernel which sometimes causes difficulty in explanation of some
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characteristics of various materials. To overcome this, Caputo and Fabrizio introduced
a new definition of fractional integral and derivative which involves exponential kernel
instead of singular one. Various studies can be found in the literature that have focused
on the Caputo–Fabrizio fractional order derivatives, see, for instance, [20–24]. Further,
in various papers related to thermal sciences, the mentioned derivative has been proved
powerful as compared to other type, we refer to [25–30]. Keeping these points in mind and
the nonsingular nature of the proposed derivative, we investigate the considered model for
existence and analytical results.

Now the question is how to treat the problems involving derivative of fractional orders.
For this need researchers have successfully updated the usual tools and methods to han-
dle differential equations of fractional order (FODEs). Usual perturbation techniques and
decomposition methods were greatly utilized to deal with ordinary FODEs. Also, for the
mentioned problems, Adomian decomposition coupled with some integral transforms has
been used very well (see [31–34]). On the other hand, since the FODEs involving new type
derivatives are very rarely used, very frequently authors [35] established some algorithms
to handle such FODEs containing CFFD.

Hence we investigate the model given in (1) under CFFD as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0 Dη

t M (t) = θρ – (α + μ)M ,
CF
0 Dη

t S (t) = (1 – θ )ρ + αM – βS I – ρS ,
CF
0 Dη

t L (t) = βS I – (σ + τ + μ)L ,
CF
0 Dη

t I (t) = τL – (γ + μ + δ)I ,
CF
0 Dη

t R(t) = σL + γI – μR.

(2)

We study model (2) subject to the biologically feasible initial conditions

M (0) = N1 ≥ 0, S (0) = N2 ≥ 0,

L (0) = N3 ≥ 0,

I (0) = N4 ≥ 0, R(0) = N5 ≥ 0.

Initially we establish some conditions about the existence of solutions for model (2) by
using some fixed point results like Banach and Krasnoselskii. After that, by using the
considered tool of “Laplace Adomian decomposition method (LADM)” for η ∈ (0, 1],
we compute semi-analytical results. Finally, the approximate results are presented via
graphs.

2 Preliminaries
In this section of the manuscript, we present some fundamental definitions as follows.

Definition 1 ([15]) Let ϕ ∈H1(a, b), b > a, η ∈ (0, 1), then the CFFD is given as

CF
0 Dη

t ϕ(t) =
K(η)
1 – η

∫ t

α

ϕ′(θ ) exp

[

–
t – θ

1 – θ

]

dθ , (3)
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where K(η) in (3) is the normalization function with K(1) = K(0) = 1. If the function failed
to exist in H1(a, b), then the above derivative can be reformulated as

CF
0 Dη

t ϕ(t) =
K(η)
1 – η

∫ t

α

ϕ(t) – ϕ(θ ) exp

[

–
t – θ

1 – θ

]

dθ .

Definition 2 ([36]) Let η ∈ (0, 1], then the integral of fractional order η of the function ϕ

is

CF
0 Iη

t ϕ(t) =
(1 – η)
K(η)

ϕ(t) +
η

K(η)
ϕ(t)

∫ t

0
ϕ(θ ) dθ .

Definition 3 ([35, 37]) The Laplace transform of CFFD CF
0 Dη

t of M(t) is given as

L
[CF

0 Dη
t M(t)

]
=

sL [M(t)] – M(0)
s + η(1 – s)

, s ≥ 0,η ∈ (0, 1].

2.1 Equilibrium points and the basic reproduction number
Before proceeding further, we consider it advantageous to find the equilibrium points
and the basic reproduction number of the model under consideration. There are two
types of possible equilibrium points of the model. The first one is the point where
there is no disease in the community, i.e., the disease-free equilibrium point. This is
obtained by setting the right-hand side of each equation in the model to zero along
with L = I = R = 0. Solving the system then gives M 0 = θρ

α+μ
and S 0 = α+μ–μθ

α+μ
. Thus

the disease-free equilibrium point of the model under investigation is given by E 0 =
( θρ

α+μ
, α+μ–μθ

α+μ
, 0, 0, 0).

To find the basic reproduction number, we consider only the infectious classes of the
model. Let V = (L ,I )T, by the help of the given model one can write dV

dt = F – V =
[

βS I
0

]
–

[ (σ+τ+μ)L
–τL +(γ +μ+σ )I

]
. The Jacobian matrices of F and V are given by F =

[ 0 βS 0

0 0

]

and V =
[ σ+τ+μ 0

–τ γ +μ+δ

]
. The inverse matrix of V is given by V–1 =

[ 1
σ+τ+μ 0

τ 1
γ +μ+δ

]
. Hence the

next generation matrix FV–1 is calculated as

FV–1 =

[
βS 0τ

(γ +μ+δ)(σ+τ+δ)
βS 0

γ +μ+δ

0 0

]

. (4)

The spectral radius of the next generation matrix (4) gives the threshold quantity R0 [38].
Thus

R0 =
βτ (α + μ – μθ )τ

(α + μ)((γ + μ + δ)(σ + τ + δ)
.

Three-dimensional plots of the basic reproduction number R0 versus different parameters
in the model under consideration are depicted in Fig. 1. This quantity plays the key role
in stability analysis and in finding conditions for the said purpose.

3 Existence and uniqueness results for tuberculosis disease model of fractional
order

In the following we derive existence results related to our model (2) exploiting the so-
called fixed point theorem due to Banach. To proceed further, we first of all define the



Ahmad et al. Advances in Difference Equations         (2021) 2021:26 Page 5 of 18

Figure 1 Three-dimensional plot of the basic reproduction number versus different parameters involved in
the model under consideration. The parametric values are given in Table 1 at the end

functions given below:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(t, M, S, L, I, R) = θρ – (α + μ)M,

f2(t, M, S, L, I, R) = (1 – θ ) + αM – βSI – ρS,

f3(t, M, S, L, I, R) = βSI – (σ + τ + μ)L,

f4(t, M, S, L, I, R) = τL – (γ + μ + δ)I,

f5(t, M, S, L, I, R) = σL + γ I – μR,

(5)
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where

M(0) = N1, S(0) = N2, L(0) = N3, I(0) = N4, R(0) = N5.

So our problem becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF
0 Dη

t M(t) = f1(t, M, S, L, I, R) = θρ – (α + μ)M,
CF
0 Dη

t S(t) = f2(t, M, S, L, I, R) = (1 – θ ) + αM – βSI – ρS,
CF
0 Dη

t L(t) = f3(t, M, S, L, I, R) = βSI – (σ + τ + μ)L,
CF
0 Dη

t I(t) = f4(t, M, S, L, I, R) = τL – (γ + μ + δ)I,
CF
0 Dη

t R(t) = f5(t, M, S, L, I, R) = σL + γ I – μR,

(6)

where M(0) = N1, S(0) = S0, L(0) = L0, I(0) = I0, R(0) = R0. Application of CF
0 Iη on both sides

of (2) gives the following system of integral equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(t) = M(0) + G[f1(t, M, S, L, I, R) – f01]

+ G
∫ t

0 f1(ξ , M, S, L, I, R) dξ ,

S(t) = S(0) + G[f2(t, M, S, L, I, R) – f02]

+ G
∫ t

0 f2(ξ , M, S, L, I, R) dξ ,

L(t) = L(0) + G[f3(t, M, S, L, I, R) – f03]

+ G
∫ t

0 f3(ξ , M, S, L, I, R) dξ ,

I(t) = I(0) + G[f4(t, M, S, L, I, R) – f04]

+ G
∫ t

0 f4(ξ , M, S, L, I, R) dξ ,

R(t) = R(0) + G[f5(t, M, S, L, I, R) – f05]

+ G
∫ t

0 f5(ξ , M, S, L, I, R) dξ ,

(7)

where G = (1–η)
K(η) , G = η

K(η) . Further, we will use f0i = fi(0, M(0), S(0), L(0), I(0), R(0)), i =
1, 2, 3, 4, 5. Using the initial conditions, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(t) = N1 + G[f1(t, M, S, L, I, R) – f01]

+ G
∫ t

0 f1(ξ , M, S, L, I, R) dξ ,

S(t) = N2 + G[f2(t, M, S, L, I, R) – f02]

+ G
∫ t

0 f2(ξ , M, S, L, I, R) dξ ,

L(t) = N3 + G[f3(t, M, S, L, I, R) – f03]

+ G
∫ t

0 f3(ξ , M, S, L, I, R) dξ ,

I(t) = N4 + G[f4(t, M, S, L, I, R) – f04]

+ G
∫ t

0 f4(ξ , M, S, L, I, R) dξ ,

R(t) = N5 + G[f5(t, M, S, L, I, R) – f05]

+ G
∫ t

0 f5(ξ , M, S, L, I, R) dξ .

(8)
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Here, we denote Banach space by X = C([0, T] × R5,R) under the norm

‖W‖ = max
t∈[0,T]

{∣
∣W (t)

∣
∣ : W = (M, S, L, I, R)

}
,

where T > 0 such that 0 ≤ t ≤ T < ∞.

Theorem 1 (Krasnoselskii fixed point theorem) Let X be a Banach space and D be a closed
and convex subset of X, then there exist two operators A, B for which the following hold:

1. The sum Ax + By belongs to D;
2. The operator A is a contraction, while the operator B is continuous and compact;
3. ∃ at least one solution z in a way that Az + Bz = z holds.

Let us assume

W (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

M
S
L
I
R

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, W (0)(t) = W0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

N1

N2

N3

N4

N5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, F =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f1

f2

f3

f4

f5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Therefore, system (8) reduces to

W (t) = W0 + GF(t, M, S, L, I, R) – GF0 + G
∫ t

0
F(ξ , M, S, L, I, R) dξ ,

W (t) = W0 + G
[
F(t, W ) – F0

]
+ G

∫ t

0
F(ξ , W ) dξ . (9)

For further analysis, we suppose that the following assumptions hold:
(H1) There exists KF > 0 for which

∣
∣F(t, W ) – F(t, W )

∣
∣ ≤KF |W – W |.

(H2) There exist CF > 0 and MF > 0 such that

∣
∣F(t, W )

∣
∣ ≤ CF |W | + MF .

Theorem 2 In the view of Theorem 1, problem (9) has at least one solution provided GKF

is less than unity.

Proof To prove the theorem, we define a compact and closed set D such that D =
W ∈ X : ‖W‖ ≤ r. Next, we define operators A and B as follows:

AW (t) = W0 + GF(t, M, S, L, I, R) – GF0,

BW (t) = G
∫ t

0
F(ξ , M, S, L, I, R) dξ .

(10)
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To verify that the operator A in (10) is a contraction, we assume W , W ∈ X, so that

‖AW – AW‖ = max
∣
∣AW (t) – AW (t)

∣
∣

= max
∣
∣G

[
F(t, W ) – F(t, W )

]∣
∣,

from which we have

‖AW – AW‖ ≤ GKF
[‖W – W‖],

which clearly indicates that the operator A is a contraction.
Now we show that the operator B is compact and continuous. Consider

∣
∣BW (t)

∣
∣ =

∣
∣
∣
∣G

∫ t

0
F(ξ , M, S, L, I, R) dξ

∣
∣
∣
∣

≤ G
∫ t

0

∣
∣F

(
ξ , W (ξ )

)∣
∣dξ . (11)

Taking max of (11), we have

‖BW‖ ≤ G max
t∈[0,T]

∫ t

0

∣
∣F

(
ξ , W (ξ )

)∣
∣dξ

≤ G max
t∈[0,T]

∫ t

0

[
CF‖W‖ + MF

]
dξ

≤ GT(CF r + MF ). (12)

This implies that B is bounded in (12). Let us assume that in the domain of t we have t1 < t2.
One may write

∣
∣BW (t2) – BW (t1)

∣
∣ =

∣
∣
∣
∣G

∫ t2

0
F(ξ , W ) dξ – G

∫ t1

0
F(ξ , W ) dξ

∣
∣
∣
∣

≤ G(CF r + MF )(t2 – t1). (13)

If t2 approaches t1, then the right-hand side of (13) goes to zero. Consequently, t2 → t1,
which leads to

∣
∣BW (t2) – BW (t1)

∣
∣ → 0.

It follows that B is equicontinuous and, consequently, B is compact continuous. This im-
plies that B is a completely continuous operator. Hence, all the conditions of Theorem 1
are satisfied. One may immediately conclude that model (2) has at least one solution. �

Theorem 3 There is a unique solution of the model under consideration (2) if the functions
f1, i = 1, 2, 3, 4, are continuous and GKF (1 + T) < 1.

Proof To prove the theorem, we define an operator P : X → X such that

PW (t) = W0 + GF(t, W ) – GF0 + G
∫ t1

0
F(ξ , W ) dξ .
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Let W , W ∈ X, we may write
∥
∥P(W ) – P(W )

∥
∥ = max

∣
∣P(W )(t) – P(W )(t)

∣
∣

≤ max
∣
∣G(F(t, W ) – F(t, W )

∣
∣ + G max |

∫ t

0

∣
∣(F(t, W ) – F(t, P(W )

∣
∣dξ

≤ GKF‖W – W‖ + GKF T‖W – W‖.

It follows that

‖W – W‖ ≤ GKF (1 + T)‖W – W‖. (14)

Consequently, model (2) under investigation has a unique solution. �

4 Construction of general algorithm for the required solution of the
considered model

To derive the series type solution for the considered problem, we take K(η) = 1 and apply
the Laplace transform on both sides of (2). We construct the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

sL [M(t)]–M(0)
s+η(1–s) = L [θρ – (α + μ)M],

sL [S(t)]–S(0)
s+η(1–s) = L [(1 – θ )ρ + αM – βSI – μS],

sL [L(t)]–L(0)
s+η(1–s) = L [βSI – (σ + τ + μ)L],

sL [I(t)]–I(0)
s+η(1–s) = L [τL – (γ + μ + δ)I],

sL [R(t)]–R(0)
s+η(1–s) = L [σL + γ I – μR].

(15)

After rearranging terms in (15), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L [M(t)] = M(0)
s + s+η(1–s)

s L [θρ – (α + μ)M],
L [S(t)] = S(0)

s + s+η(1–s)
s L [(1 – θ )ρ + αM – βSI – μS],

L [L(t)] = L(0)
s + s+η(1–s)

s L [βSI – (σ + τ + μ)L],
L [I(t)] = I(0)

s + s+η(1–s)
s L [τL – (γ + μ + δ)I],

L [R(t)] = R(0)
s + s+η(1–s)

s L [σL + γ I – μR].

(16)

Using the initial conditions of system (2), one has
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [M(t)] = N1
s + s+η(1–s)

s L [θρ – (α + μ)M],

L [S(t)] = N2
s + s+η(1–s)

s L [(1 – θ )ρ + αM – βSI – μS],

L [L(t)] = N3
s + s+η(1–s)

s L [βSI – (σ + τ + μ)L],

L [I(t)] = N4
s + s+η(1–s)

s L [τL – (γ + μ + δ)I],

L [R(t)] = N5
s + s+η(1–s)

s L [σL + γ I – μR].

(17)

Let the solution we compute be in the form of an infinite series as follows:

M(t) =
∞∑

n=0

Mn(t), S(t) =
∞∑

n=0

Sn(t), L(t) =
∞∑

n=0

Ln(t),

I(t) =
∞∑

n=0

In(t), R(t) =
∞∑

n=0

Rn(t),
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and decompose the nonlinear term SI in terms of Adomian polynomial as follows:

S(t)I(t) =
∞∑

n=0

An(t),

where An = 1

(n+1)

dn

dλn [(
∑n

k=0 λkSk)(
∑n

k=0 λkIk)]|λ=0

n = 0 : A0 = S0(t)I0(t),

n = 1 : A1 = S0(t)I1(t) + S1(t)I0(t),

n = 2 : A2 = S0(t)I2(t) + S1(t)I1(t) + S2(t)I0(t),

n = 3 : A3 = S0(t)I3(t) + S1(t)I2(t) + S2(t)I1(t) + S3(t)I0(t),

n = 4 : A4 = S0(t)I4(t) + S1(t)I3(t) + S2(t)I2(t) + S3(t)I1(t) + S4(t)I0(t),

· · ·
n = n : An = S0(t)In(t) + S1(t)I(n–1)(t) + · · · + S(n–1)(t)I1(t) + Sn(t)I0(t).

In view of these values, model (8) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [
∑∞

k=0 Mk(t)] = N1
s + s+η(1–s)

s L [θρ – (α + μ)
∑∞

k=0 Mk(t)],

L [
∑∞

k=0 Sk(t)]

= N2
s + s+η(1–s)

s L [(1 – θ )ρ + α
∑∞

k=0 Mk(t) – β
∑∞

k=0 Ak – μ
∑∞

k=0 Sk(t)],

L [
∑∞

k=0 Lk(t)] = N3
s + s+η(1–s)

s L [β
∑∞

k=0 Ak – (σ + τ + μ)
∑∞

k=0 Lk(t)],

xL [
∑∞

k=0 Ik(t)] = N4
s + s+η(1–s)

s L [τ
∑∞

k=0 Lk(t) – (γ + μ + δ)
∑∞

k=0 Ik(t)],

L [
∑∞

k=0 Rk(t)]

= N5
s + s+η(1–s)

s L [σ
∑∞

k=0 Lk(t) + γ
∑∞

k=0 Ik(t) – μ
∑∞

k=0 Rk(t)].

(18)

Now, comparing terms on both sides of (18), we get the following series of problems.
Case 1. When n = 0, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [M0(t)] = N1
s + s+η(1–s)

s L [θρ],

L [S0(t)] = N2
s + s+η(1–s)

s L [(1 – θ )ρ],

L [L0(t)] = N3
s ,

L [I0(t)] = N4
s ,

L [R0(t)] = N5
s .

(19)

Evaluating the inverse Laplace transform, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M0(t) = N1 + θρ[1 + η(t – 1)],

S0(t) = N2 + (1 – θ )ρ[1 + η(t – 1)],

L0(t) = N3,

I0(t) = N4,

R0(t) = N5.

(20)
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Case 2. When n = 1, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [M1(t)] = s+η(1–s)
s L [–(α + μ)M0(t)],

L [S1(t)] = s+η(1–s)
s L [(αM0(t) – βA0(t) – μS0(t)],

L [L1(t)] = s+η(1–s)
s L [βA0(t) – (σ + τ + μ)L0(t)],

L [I1(t)] = s+η(1–s)
s L [τL0(t) – (γ + μ + δ)I0(t)],

L [R1(t)] = s+η(1–s)
s L [σL0(t) + γ I0(t) – μR0(t)].

(21)

Evaluating the inverse Laplace transform, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M1(t) = [–(α + μ)M0(t)][1 + η(t – 1)],

S1(t) = (αM0(t) – βS0(t)I0(t) – μS0(t))[1 + η(t – 1)],

L1(t) = (βS0(t)I0(t) – (σ + τ + μ)L0(t))[1 + η(t – 1)],

I1(t) = (τL0(t) – (γ + μ + δ)I0(t))[1 + η(t – 1)],

R1(t) = (σL0(t) + γ I0(t)) – μR0(t))[1 + η(t – 1)].

(22)

Case 3. When n = 2, we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

L [M2(t)] = s+η(1–s)
s L [–(α + μ)M1(t)],

L [S2(t)] = s+η(1–s)
s L [(αM1(t) – βS1(t) – μS1(t)],

L [L2(t)] = s+η(1–s)
s L [βS1(t) – (σ + τ + μ)L1(t)],

L [I2(t)] = s+η(1–s)
s L [τL1(t) – (γ + μ + δ)I1(t)],

L [R2(t)] = s+η(1–s)
s L [σL1(t) + γ I1(t) – μR1(t)].

(23)

Evaluating the inverse Laplace transform, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2(t) = (α + μ)2M0[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)],

S2(t) = [–α(α + μ)M0 – β{S0(τL0 – (γ + μ + δ)I0)

+ I0(αM0 – βS0I0 – μS0)} – μ(αM0 – βS0I0 – μS0)]

× [1 + 2η(t – 1) + η2( t2

2! – 2t + 1)],

L2(t) = [β{S0(τL0 – (γ + μ + δ)I0) + I0(αM0 – βS0I0 – μS0)}
– {(σ + τ + μ)({βS0I0 – (σ + τ + μ)L0}}]
× [1 + 2η(t – 1) + η2( t2

2! – 2t + 1)],

I2(t) = [τ {βS0I0 – (σ + τ + μ)L0} – {(γ + μ + δ)(τL0 – (γ + μ + δ)I0}]
× [1 + 2η(t – 1) + η2( t2

2! – 2t + 1)],

R2(t) = [τ {βS0I0 – (σ + τ + μ)L0}
– {(γ + μ + δ)(τL0 – μ(σL0 + γ I0 – μR0)}]
× [1 + 2η(t – 1) + η2( t2

2! – 2t + 1)].

(24)
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Case 4. When n = 3, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

L [M3(t)] = s+η(1–s)
s L [–(α + μ)M2],

L [S3(t)] = s+η(1–s)
s L [(αM2 – βP2 – μS2],

L [L3(t)] = s+η(1–s)
s L [βP2 – (σ + τ + μ)L2],

L [I3(t)] = s+η(1–s)
s L [τL2 – (γ + μ + δ)I2],

L [R3(t)] = s+η(1–s)
s L [σL2 + γ I1 – μR2]

(25)

and so on. The other terms may similarly be computed.
Evaluating the inverse Laplace transform, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M3(t) = –(α + μ)3M0[1 + 3η(t – 1) + η2( t2

2! – 2t + 1)
+ η3( t3

3! – 3 t2

2! + 3t – 1)]
S3(t) = [α(α + μ)2M0 – β[{S0τ {βS0I0 – (σ + τ + μ)L0}

– {(γ + μ + δ)(τL0 – (γ + μ + δ)I0)}]
– [α(α + μ)M0 – β{S0(τL0 – (γ + μ + δ)I0)
+ I0(αM0 – βS0I0 – μS0)} – μ(αM0 – βS0I0 – μS0)]I0

– μ[–α(α + μ)M0 – β{S0(τL0 – (γ + μ + δ)I0)
+ I0(αM0 – βS0I0 – μS0)} – μ(αM0 – βS0I0 – μS0)]
× [1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)]
+ [(αM0 – βS0I0 – μS0)(τL0 – (γ + μ + δ)I0)]
× [1 + 3η(t – 1) + η2(2t2 – 2t + 1) + η3( t3

3 – 2t2 + 3t – 1)],
L3(t) = β[{S0τ {βS0I0 – (σ + τ + μ)L0} – {(γ + μ + δ)(τL0 – (γ + μ + δ)I0)}]

+ [–α(α + μ)M0 – β{S0(τL0 – (γ + μ + δ)I0)
+ I0(αM0 – βS0I0 – μS0)}
– μ(αM0 – βS0I0 – μS0)I0] – [(σ + τ + μ)[β{S0(τL0 – (γ + μ + δ)I0)
+ (αM0 – βS0I0 – μS0)I0] – (σ + τ + μ){βS0I0 – (σ + τ + μ)L0}]
× [1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)]
+ [(αM0 – βS0I0 – μS0)(τL0 – (γ + μ + δ)I0)
× [1 + 3η(t – 1) + η2(2t2 – 2t + 1) + η3( t3

3 – 2t2 + 3t – 1)],
I3(t) = [τ {βS0(τL0 – (γ + μ + δ)I0) + I0(αM0 – βS0I0 – μS0)}

– {(σ + τ + μ){βS0I0 – (σ + τ + μ)L0}
– [(γ + μ + δ){τ (βS0I0 – (σ + τ + μ)L0} – (γ + μ + δ)
× (τL0 – (γ + μ + δ)I0)]
× [1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)],
R3(t) = σ {βS0(τL0 – (γ + μ + δ)I0) + I0(αM0 – βS0I0 – μS0)}

– (σ + τ + μ){βS0I0 – (σ + τ + μ)L0}
– [(γ + μ + δ){τ (βS0I0 – (σ + τ + μ)L0}
+ γ [τ {βS0I0 – (σ + τ + μ)L0} – {(γ + μ + δ)(τL0 – (γ + μ + δ)I0}
– μ[τ {βS0I0 – (σ + τ + μ)L0}
– {(γ + μ + δ)(τL0 – μ(σL0 + γ I0 – μR0)}]
× [1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)],

(26)
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and so on. In this way, next terms of the series solution may be computed. Therefore, we
get the required solution as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(t) = M0(t) + M1(t) + M2(t) + M3(t) + · · · ,

S(t) = S0(t) + S1(t) + S2(t) + S3(t) + · · · ,

L(t) = L0(t) + L1(t) + L2(t) + L3(t) + · · · ,

I(t) = I0(t) + I1(t) + I2(t) + I3(t) + · · · ,

R(t) = R0(t) + R1(t) + R2(t) + R3(t) + · · · .

(27)

Theorem 4 Let X be the Banach space and T : X → X be a contractive nonlinear op-
erator such that, for all W , W̄ ∈ X , ‖T(W ) – T(W̄ )‖X ≤ κ‖W – w̄‖X , 0 < κ < 1. Us-
ing the Banach contraction principle, T has a unique point W such that TW = W , where
W = (x, y, z). By applying LADM, the series given in (26) can be written as

Wn = TWn–1, Wn–1 =
n–1∑

j=1

Wj, j = 1, 2, 3, . . . ,

and let W0 = W0 ∈ Bε(W ), where Bε(W ) = w̄ ∈ X : ‖w̄ – W‖X < ε, then one has
(i) Wn ∈ Br(W );

(ii) limn→∞ Wn = W .

Proof The proof of the above theorem can be derived in a way similar to that in [39]. �

5 Numerical results and discussion
In this part of the paper, we present numerical results along with illustration regarding the
approximate solution of the model under discussion. We take the approximate values for
the parameters as given in Table 1. In light of these values, we get the series solution as

Table 1 Table of parametric values used for simulations of the problem under consideration

Population/parameter Description

N = 500 Total population
N1 = 90 Immunized population
N2 = 400 Susceptible population
N3 = 100 Latently infected population
N4 = 50 Infected population
N5 = 10 Recovered population
ρ = 1 Recruitment constant
θ = 0.065 Proportion immunized at birth
α = 0.0256 Rate of weaning off the vaccine
μ = 0.021 Natural death rate
β = 0.09091 Tuberculosis contraction rate
σ = 0.0342 Successful cure of infectious latent
τ = 0.0124 Rate of latent TB into infectious TB
γ = 0.016709 Successful cure of infectious TB patients
δ = 0.030 Death resulting from TB infection
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follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M(t) = 90 – 4.194[1 + η(t – 1)] + 0.192411[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)]

– 0.008966[1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)],

S(t) = 400 – 1823.361[1 + η(t – 1)] + 8408.2894[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)]

– 39200.2682[1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)]

– 355.6365[1 + 3η(t – 1) + η2(2t2 – 6t + 3) + η3( t3

3 – 2t2 + 3t – 1)],

L(t) = 100 + 1811.44[1 + η(t – 1)] – 8488.5579[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)]

+ 39597.60959[1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)]

+ 355.6365[1 + 3η(t – 1) + η2(2t2 – 6t + 3) + η3( t3

3 – 2t2 + 3t – 1)],

I(t) = 50 – 2.14545[1 + η(t – 1)] + 22.6071[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)]

– 106.7888[1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)],

R(t) = 10 + 4.0454[1 + η(t – 1)] + 61.8304[1 + 2η(t – 1) + η2( t2

2! – 2t + 1)]

+ 289.93398[1 + 3η(t – 1) + η2( t2

2! – 2t + 1) + η3( t3

3! – 3 t2

2! + 3t – 1)].

(28)

Now we plot the solution up to five terms as given in (28) in Figures 1–5, corresponding
to different fractional orders.

It can be observed from Fig. 1 that the immunized population decreases with different
fractional orders at different ratio. In the same way the susceptible population is increas-
ing as shown in Fig. 2. The infected and the latently infected population is also increasing
as shown in Figs. 3 and 4, respectively. Because the susceptible population is converted
to infected or latently infected. Proper cure is applied, then the recovered population will
increase as shown in Fig. 5. The process of increase or decrease is initially fastest at lower
fractional order and some time after the process is reversed, and the greater is the frac-
tional order the faster is the increasing or decreasing process of population of the respec-
tive compartments. It means that fractional order derivatives can express the behavior
more globally. The recovered population gradually increases and converges to equilibrium
state as time progresses, as shown in Fig. 6.

Figure 2 Graphical representation of approximate solutions up to five terms of immunized populationM(t) at
different fractional order of the considered model (2)
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Figure 3 Graphical representation of approximate solutions up to five terms of susceptible population S(t) at
different fractional order of the considered model (2)

Figure 4 Graphical representation of approximate solutions up to five terms of latently infected population
L(t) at different fractional order of the considered model (2)

Figure 5 Graphical representation of approximate solutions up to five terms of infected population I(t) at
different fractional order of the considered model (2)
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Figure 6 Graphical representation of approximate solutions up to five terms of recovered population R(t) at
different fractional order of the considered model (2)

6 Conclusion
We have investigated a biological model of TB under Caputo–Fabrizio fractional deriva-
tive. We have also established some sufficient results regarding the existence as well
as the uniqueness of solution for the considered problem with the help of fixed point
theorems. Further we have used a hybrid type method to compute series type so-
lutions for the proposed model. To the best of our knowledge, the said techniques
were very rarely used to handle the analytical solutions of FODEs involving nonsin-
gular derivative of Caputo–Fabrizio type in the past. Further the numerical results
have been displayed via graphs indicating that the established technique can be used
to handle solution of those FODEs involving CFFD efficiently. Further, the mentioned
method can be utilized to investigate more nonlinear problems of FODEs involving
CFFD.
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