
Wei et al. Advances in Difference Equations         (2021) 2021:27 
https://doi.org/10.1186/s13662-020-03189-5

R E S E A R C H Open Access

Stable weak solutions to weighted Kirchhoff
equations of Lane–Emden type
Yunfeng Wei1* , Hongwei Yang2 and Hongwang Yu1

*Correspondence:
weiyunfeng@nau.edu.cn
1School of Statistics and
Mathematics, Nanjing Audit
University, Nanjing, 211815, P.R.
China
Full list of author information is
available at the end of the article

Abstract
This paper is concerned with the Liouville type theorem for stable weak solutions to
the following weighted Kirchhoff equations:

–M
(∫

RN
ξ (z)|∇Gu|2 dz

)
divG(ξ (z)∇Gu)

= η(z)|u|p–1u, z = (x, y) ∈R
N =R

N1 ×R
N2 ,

whereM(t) = a + btk , t ≥ 0, with a,b, k ≥ 0, a + b > 0, k = 0 if and only if b = 0. Let
N = N1 + N2 ≥ 2, p > 1 + 2k and ξ (z),η(z) ∈ L1loc(R

N) \ {0} be nonnegative functions
such that ξ (z) ≤ C‖z‖θ

G and η(z)≥ C′‖z‖dG for large ‖z‖G with d > θ – 2. Here α ≥ 0

and ‖z‖G = (|x|2(1+α) + |y|2) 1
2(1+α) . divG (resp., ∇G) is Grushin divergence (resp., Grushin

gradient). Under some appropriate assumptions on k, θ , d, and Nα = N1 + (1 + α)N2,
the nonexistence of stable weak solutions to the problem is obtained. A distinguished
feature of this paper is that the Kirchhoff functionM could be zero, which implies that
the above problem is degenerate.
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1 Introduction and main result
In this work, we are interested in the nonexistence of stable weak solutions for the
weighted Kirchhoff equations

–M
(∫

RN
ξ (z)|∇Gu|2 dz

)
divG

(
ξ (z)∇Gu

)

= η(z)|u|p–1u, z ∈R
N = R

N1 ×R
N2 , (1.1)

where M is a nonnegative continuous function which will be given later. Here and there-
after, we assume that p > 1 and ξ (z),η(z) ∈ L1

loc(RN ) \ {0} are nonnegative functions. For
z = (x, y) ∈ R

N = R
N1 × R

N2 and α ≥ 0, we define the Grushin gradient ∇G and Grushin
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divergence divG as follows:

∇Gu =
(∇xu, (1 + α)|x|α∇yu

)
,

divG v = divx v + (1 + α)|x|α divy v.

The Grushin operator �G is denoted by

�Gu = divG(∇Gu) = �xu + (1 + α)2|x|2α�yu,

which is just the well-known Laplace operator when α = 0.
The anisotropic dilation attached to �G is defined by

τδ(z) =
(
δx, δ1+αy

)
, δ > 0, z = (x, y) ∈R

N1 ×R
N2 .

It is easy to check that

dτδ(z) = δNα dx dy = δNα dz,

where Nα = N1 + (1 + α)N2 is a homogeneous dimension with respect to the dilation τδ ,
and dx dy denotes the Lebesgue measure on R

N1 ×R
N2 . Finally, the norm of z (also known

as the Grushin distance) is defined by

‖z‖G =
(|x|2(1+α) + |y|2) 1

2(1+α) , z = (x, y) ∈R
N = R

N1 ×R
N2 .

In the case α = 0, ξ (z) ≡ 1 and M(t) = a + bt, t ≥ 0 with a, b > 0, (1.1) becomes the
following nonlocal Kirchhoff type problem:

–
(

a + b
∫

RN
|∇u|2 dz

)
�u = η(z)|u|p–1u, z ∈R

N . (1.2)

This problem is often referred to as being nonlocal because of the presence of the integral
over the entire domain R

N . This phenomenon provokes many mathematical difficulties,
which makes the research on the problem particularly interesting and necessary. Besides,
problem (1.2) is related to the stationary analogue of the Kirchhoff equation on a bounded
domain 	 ⊂R

N

utt –
(

a + b
∫

	

|∇u|2 dz
)

�u = f (z, u) (1.3)

proposed by Kirchhoff in 1883 (see [20]) as generalization of the classical D’Alembert’s
wave equation for free vibration of elastic strings. It is important to note that equation (1.3)
received great attention only after Lions [26] introduced a functional analysis approach.
For recent interesting results concerning the various solutions of Kirchhoff equations and
the stationary analogue of problem (1.3), please refer to [1, 4, 18, 19, 28, 29, 37] and the
references therein.

Recently, much attention has been paid to the Kirchhoff equations in the whole space
R

N . Most of recent results have been concerned with the existence and multiplicity of so-
lutions when the nonlinearity is in subcritical case and critical case. For instance, in the
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paper [35], Wu considered a class of Schrödinger Kirchhoff type equations in R
N with

subcritical case, by using the symmetric mountain pass theorem, four new existence re-
sults for nontrivial solutions and a sequence of high energy solutions have been obtained.
In [14], Fan studied the existence and multiplicity of positive ground state solutions for a
Kirchhoff type problem involving several potentials and critical nonlinearities in R

N . In
addition, in this article, the concentration phenomenon of positive solutions was also con-
sidered. For more similar works, we refer to [25, 27, 40]. However, compared with a vast
number of existence results for entire solutions of Kirchhoff type equations, the nonexis-
tence one is less investigated.

In this paper, the Kirchhoff function M is assumed to verify
(M) M(t) = a + btk , t ≥ 0, a, b, k ≥ 0, a + b > 0, and

k

⎧⎨
⎩

∈ (0,∞), if b > 0,

0, if b = 0,

in other words, k = 0 if and only if b = 0. Problem (1.2) is called non-degenerate if a > 0
and b ≥ 0, while it is said to be degenerate if a = 0 and b > 0. The degenerate case is ex-
tremely interesting and is treated in well-known papers on Kirchhoff’s theory, for example,
see [11]. For degenerate Kirchhoff type problems, we refer to [24, 27, 36, 39]. For non-
degenerate Kirchhoff type problems, we refer to [14, 25, 28, 29, 35, 40].

Set α = 0 and M(t) ≡ 1, problem (1.1) becomes the weighted Lane–Emden equation

– div
(
ξ (z)∇u

)
= η(z)|u|p–1u in R

N . (1.4)

In recent years, much attention has been focused on studying of the nonexistence and
stability of solutions to nonlinear elliptic equations like (1.4). For some physical motivation
and recent developments on the topic of stable solutions, we refer to [13].

Liouville type theorems for stable solutions deal with the nonexistence of this particular
type of solutions. The pioneering work in this direction is due to Farina [15], where the
author established thoroughly the Liouville type theorem for stable classical solutions of
problem (1.4) with ξ (z) ≡ 1 ≡ η(z). He proved that the problem does not admit a nontrivial
stable C2 solution if and only if 1 < p < pc(N), where

pc(N) =

⎧
⎨
⎩

+∞, if N ≤ 10,
(N–2)2–4N+8

√
N–1

(N–2)(N–10) , if N ≥ 11.
(1.5)

Moreover, this exponent is greater than the classical critical exponent N+2
N–2 [17] when

N > 2. After that, the above results have been generalized to the weighted case in [7, 10, 34].
In [10], under the restriction that the solutions are locally bounded, the authors presented
the nonexistence of nontrivial stable weak solutions of problem (1.4) with ξ (z) ≡ 1 and
η(z) = |z|d . In [34], this restriction was withdrawn.

Theorem 1.1 ([34]) Let u be a stable weak solution of (1.4) with ξ (z) ≡ 1 and η(z) = |z|d ,
where d > –2. Then u is a trivial solution provided 1 < p < p(N , d). Here

p(N , d) =

⎧⎨
⎩

+∞, if N ≤ 10 + 4d,
(N–2)(N–6–2d)–2(2+d)2+2(2+d)

√
(2+d)(2N–2+d)

(N–2)(N–10–4d) , if N > 10 + 4d.
(1.6)
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In [7], with the help of Farina’s approach, Cowan and Fazly established several Liouville
type theorems for stable positive classical solutions of problem (1.4) under different as-
sumptions on ξ and η. Later, several attempts have been made to extend Farina’s results to
the weighted quasilinear case – div(ξ (z)|∇u|p–2∇u) = η(z)|u|p–1u, in R

N , see [5, 6, 22, 23].
We now turn to the case α > 0. Then problem (1.1) is a nonlocal problem involving

Grushin operator. It is well known that the Grushin operator belongs to the wide class of
subelliptic operators studied by Franchi et al. in [16](see also [3]). Taking advantage of the
Kelvin transform combined with the method of moving planes, the Liouville type theorem
has been established by Monticelli [31] (resp., Yu [38]) for nonnegative classical (resp.,
weak) solutions of the problem –�Gu = up in R

N , the optimal exponent is 1 < p < Nα+2
Nα–2 .

Recently, Duong and Nguyen [12] studied elliptic equations involving Grushin operator
and advection

–�Gu + ∇Gw · ∇Gu = ‖z‖s
G|u|p–1u, in R

N , s ≥ 0.

Via Farina’s approach, the authors obtained several Liouville type theorems for a class of
stable sign-changing weak solutions.

Very recently, Le [21] considered the elliptic problems

– divG(w1∇Gu) = w2f (u), in 	,

with homogeneous Dirichlet boundary condition. By variable technique, under suitable
assumptions on 	, w1, w2, and f , nonexistence of stable weak solutions has been estab-
lished. When 	 = R

N and f has power or exponential growth, the author also constructed
some examples to show the sharpness of his results. For other results of Liouville type
theorems related to Grushin operators or more general subelliptic operators, we refer the
reader to [2, 9, 30, 32, 33] and the references therein.

A natural question is whether there are analogous Liouville results for Kirchhoff type
equation (1.1) with α > 0 and ξ ,η �≡ 1. The present paper is an attempt to answer this
interesting question.

Motivated by the aforementioned works, we prove the nonexistence of nontrivial stable
weak solution to equation (1.1). Since solutions to elliptic equations with Hardy potentials
may possess singularities, it is natural to study weak solutions of (1.1) in a suitable weighted
Sobolev space. Based on this reality, we define

‖ψ‖ξ =
(∫

RN
ξ (z)|∇Gψ |2 dz

)1/2

for ψ ∈ C∞
0 (RN ) and denote by H1,α(RN ; ξ ) the closure of C∞

0 (RN ) with respect to the
‖ · ‖ξ -norm. Note that, for ξ ∈ L1

loc(RN ), we have C1
0(RN ) ⊂ H1,α(RN ; ξ ). Denote also by

H1,α
loc (RN ; ξ ) the space of all functions u such that uψ ∈ H1,α(RN ; ξ ) for all ψ ∈ C1

0(RN ).

Definition 1.2 Let X = H1,α(RN ; ξ ) ∩ H1,α
loc (RN ; ξ ), we say that u ∈ X is a weak solution of

(1.1) if η(z)|u|p ∈ L1
loc(RN ), and for all ψ ∈ C1

0(RN ) we have

A
∫

RN
ξ (z)∇Gu · ∇Gψ dz =

∫

RN
η(z)|u|p–1uψ dz, (1.7)

where A = a + b‖u‖2k
ξ .
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Now, we give the stability definition. First, we consider that the energy functional I :
X →R associated with (1.1) is

I(u) =
a
2
‖u‖2

ξ +
b

2(k + 1)
‖u‖2(k+1)

ξ –
1

p + 1

∫

RN
η(z)|u|p+1 dz.

Set E(t) = I(u + tψ) for ψ ∈ C1
0(RN ). Then, by routine calculations, we show E′′(0) ≥ 0 is

equivalent to

p
∫

RN
η(z)|u|p–1ψ2 dz ≤ 2bk‖u‖2(k–1)

ξ

(∫

RN
ξ (z)∇Gu · ∇Gψ dz

)2

+ A
∫

RN
ξ (z)|∇Gψ |2 dz.

(1.8)

A weak solution u of (1.1) is called stable if (1.8) holds for all ψ ∈ C1
0(RN ). Therefore, if u

is a stable weak solution of (1.1), by Hölder’s inequality and (1.8), it follows that

p
∫

RN
η(z)|u|p–1ψ2 dz ≤ B

∫

RN
ξ (z)|∇Gψ |2 dz, ∀ψ ∈ C1

0
(
R

N)
, (1.9)

where B = a + b(1 + 2k)‖u‖2k
ξ . Remark that (1.7)–(1.9) hold for all ψ ∈ H1,α(RN ; ξ ) by den-

sity arguments.
Throughout this paper, we assume that the functions ξ (z), η(z) satisfy the following as-

sumption:
(H) ξ (z),η(z) ∈ L1

loc(RN )\{0} are nonnegative functions. In addition, there exist d > θ –2,
C, C′ > 0, and R0 > 0 such that

ξ (z) ≤ C‖z‖θ
G, η(z) ≥ C′‖z‖d

G, ∀‖z‖G ≥ R0.

To facilitate the writing, we denote

λ0 = λ0(k, θ , d) =

⎧⎨
⎩

+∞, k = 0,

2 – θ + 2–θ+d
k , k > 0,

λ1 = λ1(k, θ , d) = 2 – θ +
4(2 – θ + d)

1 + 2k
,

λ2 = λ2(k, θ , d) = 2 – θ +
(1 +

√
1 + 2k)(2 – θ + d)

2k
(k > 0).

(1.10)

Let us now state the main result of this work.

Theorem 1.3 Let u ∈ X be a stable weak solution of problem (1.1) with p > 1 + 2k. Assume
that (M) and (H) hold. We further suppose that one of the following conditions occurs:

(H1) k ≥ 0, Nα ≤ min{λ0,λ1}, and p > 1 + 2k;
(H2) 0 ≤ k < 1

2 , λ1 < Nα ≤ λ0, and 1 + 2k < p < pc;
(H3) 0 < k ≤ 1

2 , λ0 < Nα < λ2, and p̂c < p < pc;
(H4) k > 1

2 , λ0 < Nα < λ1, and p > p̂c;
(H5) 1

2 < k < 3
2 , Nα = λ1, and p > 4

3–2k ;
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(H6) 1
2 < k < 3

2 , λ1 < Nα < λ2, and p̂c < p < pc,
with critical exponents

p̂c = p̂c(k, θ , d, Nα)

= 1 +
2(2 – θ + d)(Nα – 4 + 2θ – d –

√
(Nα + d)2 – (1 + 2k)(Nα – 2 + θ )2)

(Nα – 2 + θ )(1 + 2k)(Nα – λ1)
;

pc = pc(k, θ , d, Nα)

= 1 +
2(2 – θ + d)(Nα – 4 + 2θ – d +

√
(Nα + d)2 – (1 + 2k)(Nα – 2 + θ )2)

(Nα – 2 + θ )(1 + 2k)(Nα – λ1)
.

(1.11)

Then u ≡ 0 in R
N .

Remark 1.4 Indeed, the assumption on p in Theorem 1.3 is equivalent to

Nα < 2 – θ +
2(2 – θ + d)(p +

√
p(p – 1 – 2k))

(1 + 2k)(p – 1)
.

Remark 1.5 If k = 0 (i.e., b = 0), then Theorem 1.3 recovers the known result for the
Grushin operator in Le [21, Proposition 3]. Furthermore, if α = k = 0, then our result
recovers the previous result for elliptic problems with weights in Cowan and Fazly [7,
Theorem 3]. If α = k = θ = 0, then we have

pc(0, 0, d, N) = 1 +
2(2 + d)(N – 4 – d +

√
(2 + d)(2N – 2 + d))

(N – 2)(N – 10 – 4d)
.

Note that the exponent pc(0, 0, d, N) equals p(N , d) of (1.6) when N > 10 + 4d and is the
critical exponent p̄(d) in [10]. When α = k = θ = d = 0, we obtain

pc(0, 0, 0, N) = 1 +
4(N – 4 + 2

√
N – 1)

(N – 2)(N – 10)
,

which is the critical exponent pc(N) in [15]. Finally, when α = θ = 0 and k = 1, it is not
difficult to verify that p̂c(1, 0, d, N) (resp., pc(1, 0, d, N)) equals q1(N , d) (resp., q2(N , d)) in
[24].

The rest of the paper is devoted to the proof of Theorem 1.3. In the following, C stands
for a generic positive constant which may vary even in the same line. If this constant de-
pends on an arbitrary small number ε, then we denote it by Cε .

2 Proof of Theorem 1.3
We first give the following proposition, which plays a crucial role in arriving at Theo-
rem 1.3.

Proposition 2.1 Let u ∈ X be a stable weak solution of (1.1) with p > 1 + 2k. Then, for every
s ∈ (1, h(p)), where

h(t) = –1 +
2(t +

√
t(t – 1 – 2k))
1 + 2k

, t > 1 + 2k, (2.1)
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and for any constant m ≥ p+s
p–1 , there exists a constant C > 0 depending only on p, s, m, and

k such that
∫

RN

(
η(z)|u|p+s + ξ (z)|∇Gu|2|u|s–1)ϕ2m dz

≤ CB
1+s
p–1 (1 + B)

∫

RN
ξ (z)

p+s
p–1 η(z)

1+s
1–p |∇Gϕ| 2(p+s)

p–1 dz
(2.2)

holds for all functions ϕ ∈ C1
0(RN ) verifying 0 ≤ ϕ ≤ 1 and ∇Gϕ = 0 in a neighborhood of

{z ∈R
N : η(z) = 0}. Here, B is given by (1.9).

Proof Some ideas in this proof are inspired by [8, 12, 15, 21]. Since the solution u is not
necessary locally bounded, to overcome this difficulty, we will construct a sequence of
suitable cut-off functions. Let n be a positive integer, we denote

δn(t) =

⎧⎨
⎩

|t| s–1
2 t, |t| ≤ n,

n s–1
2 t, |t| > n,

νn(t) =

⎧⎨
⎩

|t|s–1t, |t| ≤ n,

ns–1t, |t| > n.

By a direct computation, we obtain that, for any t ∈ R, there exists a positive constant C
depending only on s such that

δ2
n(t) = tνn(t), δ′

n(t)2 ≤ (s + 1)2

4s
ν ′

n(t), δ2
n(t) + ν2

n(t)
(
ν ′

n(t)
)–1 ≤ C|t|s+1. (2.3)

Moreover, since u ∈ H1,α
loc (RN , ξ ), we deduce that δn(u),νn(u) ∈ H1,α

loc (RN , ξ ) for any n ∈ Z
+.

For any nonnegative function, φ ∈ C1
0(RN ) satisfies 0 ≤ φ ≤ 1. Setting ψ = νn(u)φ2 as a

test function in (1.7), we have

A
∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz + 2A
∫

RN
ξ (z)φνn(u)∇Gu · ∇Gφ dz

=
∫

RN
η(z)|u|p–1uνn(u)φ2 dz.

Applying Young’s inequality, for any ε > 0,

A
∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz

≤ 2A
∫

RN
ξ (z)

∣∣νn(u)
∣∣|∇Gu||∇Gφ|φ dz +

∫

RN
η(z)|u|p–1uνn(u)φ2 dz

≤ εA
∫

RN

(
ξ (z)1/2|∇Gu|ν ′

n(u)1/2φ
)2 dz

+ CεA
∫

RN

(
ξ (z)1/2∣∣νn(u)

∣∣ν ′
n(u)–1/2|∇Gφ|)2 dz

+
∫

RN
η(z)|u|p–1uνn(u)φ2 dz

= εA
∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz + CεA
∫

RN
ξ (z)ν2

n(u)ν ′
n(u)–1|∇Gφ|2 dz

+
∫

RN
η(z)|u|p–1uνn(u)φ2 dz,
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which implies

(1 – ε)A
∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz

≤ CεA
∫

RN
ξ (z)ν2

n(u)ν ′
n(u)–1|∇Gφ|2 dz +

∫

RN
η(z)|u|p–1uνn(u)φ2 dz.

(2.4)

On the other hand, by virtue of the stability definition, we take ψ = δn(u)φ in (1.9) and
get

p
∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz

≤ B
∫

RN
ξ (z)|∇Gu|2δ′

n(u)2φ2 dz + 2B
∫

RN
ξ (z)δ′

n(u)
∣∣δn(u)

∣∣|∇Gu||∇Gφ|φ dz

+ B
∫

RN
ξ (z)δ2

n(u)|∇Gφ|2 dz.

(2.5)

We use Young’s inequality to estimate the middle term of the right-hand side of (2.5):

2B
∫

RN
ξ (z)δ′

n(u)
∣∣δn(u)

∣∣|∇Gu||∇Gφ|φ dz

≤ εB
∫

RN

(
ξ (z)1/2|∇Gu|δ′

n(u)φ
)2 dz + CεB

∫

RN

(
ξ (z)1/2∣∣δn(u)

∣∣|∇Gφ|)2 dz

= εB
∫

RN
ξ (z)|∇Gu|2δ′

n(u)2φ2 dz + CεB
∫

RN
ξ (z)δ2

n(u)|∇Gφ|2 dz.

Substituting this inequality into (2.5), one has

p
∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz

≤ (1 + ε)B
∫

RN
ξ (z)|∇Gu|2δ′

n(u)2φ2 dz + CεB
∫

RN
ξ (z)δ2

n(u)|∇Gφ|2 dz.
(2.6)

With the help of (2.3), it follows from (2.4) and (2.6) that

p
∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz ≤ (1 + ε)(1 + s)2B
4s

∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz

+ CεB
∫

RN
ξ (z)δ2

n(u)|∇Gφ|2 dz

≤ (1 + ε)(1 + s)2B
4s(1 – ε)A

∫

RN
η(z)|u|p–1uνn(u)φ2 dz

+ CεB
∫

RN
ξ (z)

(
δ2

n(u) + ν2
n(u)ν ′

n(u)–1)|∇Gφ|2 dz

≤ (1 + ε)(1 + s)2(1 + 2k)
4s(1 – ε)

∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz

+ CεB
∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz,
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that is,

qε

∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz ≤ CεB
∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz, (2.7)

where qε = p – (1+ε)(1+s)2(1+2k)
4s(1–ε) . Since limε→0+ qε = q0 = p – (1+s)2(1+2k)

4s , we have q0 > 0 under
assumption on s ∈ (1, h(p)). Thus, choose small ε > 0 such that qε > 0. Consequently,

∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz ≤ CB
∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz, (2.8)

where positive constant C depends only on p, k, and s.
From (2.8) and Fatou’s lemma, we derive, as n → +∞,

∫

RN
η(z)|u|p+sφ2 dz ≤ CB

∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz. (2.9)

On the other hand, choosing ε = 1/2 in (2.4) and combining (2.3) with (2.8), we can find

A
∫

RN
ξ (z)|∇Gu|2ν ′

n(u)φ2 dz

≤ CA
∫

RN
ξ (z)ν2

n(u)ν ′
n(u)–1|∇Gφ|2 dz + 2

∫

RN
η(z)|u|p–1uνn(u)φ2 dz

≤ CA
∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz + 2

∫

RN
η(z)|u|p–1δ2

n(u)φ2 dz

≤ C(A + B)
∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz.

Letting n → +∞ in the above inequality, we have from Fatou’s lemma that

A
∫

RN
ξ (z)|∇Gu|2|u|s–1φ2 dz ≤ C(A + B)

∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz.

Consequently,

∫

RN
ξ (z)|∇Gu|2|u|s–1φ2 dz ≤ C

∫

RN
ξ (z)|u|1+s|∇Gφ|2 dz. (2.10)

Now, we assert that (2.2) holds true. In fact, we can select some positive constant m � 1
such that

(m – 1)(p + s)
1 + s

≥ m, or m ≥ p + s
p – 1

.

Recalling 0 ≤ φ(z) ≤ 1 in R
N , we obtain

(
φ(z)

) 2(m–1)(p+s)
1+s ≤ (

φ(z)
)2m, ∀z ∈R

N .
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Then, by (2.9) with φ = ϕm and Hölder’s inequality, one sees

∫

RN
η(z)|u|p+sϕ2m dz

≤ CB
∫

RN
ξ (z)|u|1+sϕ2(m–1)|∇Gϕ|2 dz

≤ CB
(∫

RN

(
η(z)

1+s
p+s |u|1+sϕ2(m–1)) p+s

1+s dz
) 1+s

p+s

×
(∫

RN

(
ξ (z)η(z)– 1+s

p+s |∇Gϕ|2)
p+s
p–1 dz

) p–1
p+s

= CB
(∫

RN
η(z)|u|p+sϕ

2(m–1)(p+s)
1+s dz

) 1+s
p+s

×
(∫

RN
ξ (z)

p+s
p–1 η(z)

1+s
1–p |∇Gϕ| 2(p+s)

p–1 dz
) p–1

p+s

≤ CB
(∫

RN
η(z)|u|p+sϕ2m dz

) 1+s
p+s

(∫

RN
ξ (z)

p+s
p–1 η(z)

1+s
1–p |∇Gϕ| 2(p+s)

p–1 dz
) p–1

p+s
.

(2.11)

Hence,

∫

RN
η(z)|u|p+sϕ2m dz ≤ CB

p+s
p–1

∫

RN
ξ (z)

p+s
p–1 η(z)

1+s
1–p |∇Gϕ| 2(p+s)

p–1 dz. (2.12)

Analogously, take φ = ϕm in (2.10) and combining (2.11) with (2.12), one can achieve

∫

RN
ξ (z)|∇Gu|2|u|s–1ϕ2m dz

≤ C
∫

RN
ξ (z)|u|1+sϕ2(m–1)|∇Gϕ|2 dz

≤ CB
1+s
p–1

∫

RN
ξ (z)

p+s
p–1 η(z)

1+s
1–p |∇Gϕ| 2(p+s)

p–1 dz.

Therefore, combining this with (2.12), (2.2) is obtained immediately. This completes the
proof. �

Let R > 0, 	2R = B1(0, 2R) × B2(0, 2R1+α), where Bi ⊂ R
Ni , with i = 1, 2, are open balls

centered at 0, the radii are 2R and 2R1+α , respectively. We consider a cut-off function κ(t) ∈
C∞

0 ([0, +∞); [0, 1]) satisfying

κ(t) =

⎧
⎨
⎩

1, 0 ≤ t ≤ 1,

0, t ≥ 2.

Moreover, we define

ϕ1,R(x) = κ

( |x|
R

)
, x ∈R

N1 , ϕ2,R(y) = κ

( |y|
R1+α

)
, y ∈ R

N2 ,
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and

ϕR(x, y) = ϕ1,R(x)ϕ2,R(y), (x, y) ∈R
N = R

N1 ×R
N2 . (2.13)

The direct calculations yield

|∇xϕ1,R| ≤ CR–1, |∇yϕ2,R| ≤ CR–(1+α),

|�xϕ1,R| ≤ CR–2, |�yϕ2,R| ≤ CR–2(1+α),

|∇GϕR|2 + |�GϕR| ≤ CR–2, ∀x ∈ R
N1 , y ∈R

N2 ,

R ≤ ‖z‖G ≤ CR, ∀z = (x, y) ∈ 	2R \ 	R,

(2.14)

where positive constant C is independent of R.

Proof of Theorem 1.3 By contradiction, we assume that (1.1) admits a nontrivial sta-
ble weak solution u. Applying (2.2) for a test function ϕR(x, y), which is given by (2.13),
we derive that, for all R ≥ R0, there exists a constant C > 0 independent of R such
that

∫

	R

(
η(z)|u|p+s + ξ (z)|∇Gu|2|u|s–1)dz

≤ CB
1+s
p–1 (1 + B)R– 2(p+s)

p–1

∫

	2R\	R

‖z‖
(p+s)θ–(1+s)d

p–1
G dz

≤ CB
1+s
p–1 (1 + B)Rμ

(2.15)

with

μ = Nα –
(2 – θ )(p + s) + (1 + s)d

p – 1
.

Here, we have utilized assumption (H) and (2.14).
Evidently, if μ < 0 for some certain s ∈ (1, h(p)), it implies from (2.15) that

∫

RN

(
η(z)|u|p+s + ξ (z)|∇Gu|2|u|s–1)dz = 0

as R → +∞, i.e., u ≡ 0 in R
N , which contradicts the assumption of u. Therefore, we obtain

the desired conclusion.
Now, we consider the cases in which μ < 0. Set

g(t) =
(2 – θ )(t + h(t)) + (1 + h(t))d

t – 1
, t > 1 + 2k,

where h(t) is given by (2.1). Elementary calculations lead to

lim
t→(1+2k)+

h(t) = 1, lim
t→+∞ h(t) = +∞, h′(t) > 0, t > 1 + 2k
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and

lim
t→(1+2k)+

g(t) = λ0, lim
t→+∞ g(t) = λ1,

g ′(t) =
(2 – θ + d)(–2

√
t(t – 1 – 2k) + t(2k – 1) + 1 + 2k)

(1 + 2k)(t – 1)2
√

t(t – 1 – 2k)
, t > 1 + 2k,

where λ0, λ1 are given by (1.10). By routine computations we show that if k = 0, then
g(t) is strictly decreasing on (1, +∞). If 0 < k < 3

2 , then g(t) is strictly increasing on (1 +
2k, 1+2k+2

√
1+2k

3–2k ) and strictly decreasing on ( 1+2k+2
√

1+2k
3–2k , +∞), in this case, g(t) achieves its

maximum at t = 1+2k+2
√

1+2k
3–2k and g( 1+2k+2

√
1+2k

3–2k ) = λ2, where λ2 is given by (1.10). If k ≥ 3
2 ,

then g(t) is strictly increasing on (1 + 2k, +∞). Moreover, when 0 ≤ k < 1
2 , λ1 < λ0, when

k = 1
2 , λ1 = λ0, when k > 1

2 , λ1 > λ0. We also have g( 4
3–2k ) = λ1(k, θ , d).

When k ≥ 0 and Nα ≤ min{λ0,λ1}, we have Nα < g(t) for t > 1 + 2k. Thus, if we fix s ∈
(1, h(p)) sufficiently near to h(p), we see that

μ = Nα –
(2 – θ )(p + s) + (1 + s)d

p – 1
< 0, p > 1 + 2k.

It is a contradiction by letting R → +∞ in (2.15).
When 0 ≤ k < 1

2 and λ1 < Nα ≤ λ0. By the monotonicity of g(t), there exists a unique
critical value pc > 1 + 2k such that Nα < g(t) for 1 + 2k < t < pc. So if we choose s ∈ (1, h(p))
sufficiently near to h(p), we get

μ = Nα –
(2 – θ )(p + s) + (1 + s)d

p – 1
< 0, 1 + 2k < p < pc,

which is a contradiction by taking advantage of the previous similar argument.
Assume now 0 < k ≤ 1

2 and λ0 < Nα < λ2. Make use of the monotonicity of g(t), there
are critical exponents p̂c and pc such that Nα < g(t) for p̂c < t < pc. Similar to the above
argument, we get a contradiction.

Combining g( 4
3–2k ) = λ1(k, θ , d) ( 1

2 < k < 3
2 ) with the monotonicity of g(t), using the simi-

lar argument above, we can always deduce a contradiction provided that one of conditions
(H4), (H5), and (H6) is satisfied.

In the above statements, p̂c and pc can be derived from the equation Nα = h(p), which is
given by (1.11). The proof is finished. �
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