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Abstract
The complex PDEs are a very important and interesting task in nonlinear quantum
science. Although there have been extensive studies on the classical complex
models, solving the fractional complex models still has a lot of shortcomings,
especially for the non-homogenous ones. Therefore, the present study focuses on
solving the two-component non-homogenous time-fractional NLS system, our
method is to solve a prolonged fractional system derived from the governed model.
We first establish non-classical symmetries of this new enlarged system by using the
fractional Lie group method. Then, with the help of fractional Erdélyi–Kober operator,
we reduce this new system into fractional ODEs, the self-similar solutions are
obtained via the power series expansion. The convergence of these solutions are
proven as all the variable coefficients are analytic. Finally, we generalize our methods
to handle the multi-component case. We conclude that this way may also bring some
convenience for solving other complex systems.

Keywords: Non-classical symmetry; Vector NLS system; Erdélyi–Kober operator;
Self-similar solutions

1 Introduction
The vector complex systems have attracted more and more attention in many different
fields of nonlinear science during the past few years. To well describe the spins and kinet-
ics of micro-particles, the partial differential equations for these complex systems were set
up and widely used in the related ranges of particle physics, quantum mechanics, the con-
densed matter physics [1–3], and many other subjects. One of the most famous models is
the nonlinear Schrödinger equations whose general version is governed as

iuj
t + rj(t, x)uj

xx + f j(t, x,
∣
∣u1∣∣, . . . ,

∣
∣um∣

∣)uj = 0 (j = 1, . . . , m). (1.1)

Here, t, x are temporal and spatial independent variables, uj represents the wave func-
tion which describes velocity envelope for multi-particles, the subscripts show the deriva-
tives of corresponding variables, all coefficients rj(t, x) and f j(t, x, |u1|, . . . , |um|) are real an-
alytic mean the ratios of non-homogenous diffusion and the intensity of nonlinear interac-

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03179-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03179-7&domain=pdf
mailto:rrc8512@163.com


Ren and Zhang Advances in Difference Equations         (2021) 2021:78 Page 2 of 21

tions. There has been abundant research on model (1.1) which explained the kinetics and
diffusions of particles in the multi-body quantum regimes. To the best of our knowledge,
a lot of soliton waves, breather waves, rogue waves, and periodic waves of Eq. (1.1) were
studied by taking advantage of Darboux transformation [4–9], inverse scattering method
[10, 11], Hirota’s bilinear transformation [12–14], nonlocal symmetry method [15], and
many other ways [1–3, 16, 17] in both mathematical and physical points of view. Some
mixed type solutions, especially breather-soliton-rogue wave solutions [4, 7, 9, 17], were
obtained and used to understand how the quantum waves interact in local excitation pat-
terns.

Recently, models governed by the time-fractional PDEs have been considered in many
fields of mechanics and physics [18, 19, 29–31]. Indeed, the fractional models are more
precise than the integer-order ones. For many physical phenomena, different time mem-
ories are often represented by different integral kernels of several definitions [20, 21], two
of the most influence and popularity are Riemann–Liouville type and Caputo type [18–
21, 29–31] which include the singular kernel, and other definitions may contain the non-
singular kernel. The singular kernel (general kernel), for instant power kernel which was
derived by Cauchy integral, describes how the quantity process obeys a singular law by
empirical observation in many real problems. The power memory has many good math-
ematical properties such as self-similarity, semi-group property, Laplace transformation,
but the disadvantage is the lack of elaborate statistical tests and empirical support. Thus
it should be natural to consider the nonsingular kernel which can show the fading mem-
ories with relaxation. The typical type for nonsingular kernel is Caputo–Fabrizio defini-
tion [20, 21] of exponential memory that may be applied to well understand the stochas-
tic process of empirical distribution, but this expression is more difficult to compute. In
short, the singular kernel can more generally characterize the real nonlocal nonlinear phe-
nomenon and is more convenient for calculating, thus it should take precedence to use for
solving fractional differential equations. In physical point of view, some micro-structures
may often lead to the short time memories effect, the smaller α decides the faster time
memory. In addition, the Riemann–Liouville derivative has stronger singularity than Ca-
puto derivative, thus the Riemann–Liouville definition can be often used without initial-
boundary conditions. Therefore, in the present work we mainly investigate the following
non-homogenous fractional NLS system with Riemann–Liouville time derivatives:

i
∂αu
∂tα

+ r(t, x)uxx + f
(
t, x, |u|, |v|)u = 0,

i
∂αv
∂tα

+ s(t, x)vxx + g
(
t, x, |u|, |v|)v = 0 (0 < α ≤ 1),

(1.2)

where Riemann–Liouville derivative is defined as

RL
0 ∂α

t u(x, y, t) =

⎧
⎨

⎩

1
�(n–α)

∂n

∂tn
∫ t

0 (t – τ )n–α–1u(x, y, τ ) dτ (n = [α] + 1),
∂nu(x,y,t)

∂tn (α = n).

This fractional system more precisely characterizes the Bose–Einstein concentration and
phase transition behaviors of critical states than the integer one in the two-body quantum
regimes, where the fractional derivatives ∂αu

∂tα , ∂αv
∂tα describe two wave functions with non-

local time memories, and r(t, x), s(t, x), f (t, x, |u|, |v|), g(t, x, |u|, |v|) are variable coefficients
as (1.1).
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However, solving fractional system (1.2) is really a new and difficult work. On one hand,
since integrability of the fractional models is much poorer than that of the classical ones,
the compound function solutions of (1.2), for typical traveling wave solutions, were hardly
obtained by adopting some direct methods. On the other hand, there have been abundant
studies on Lie symmetries, conservation laws, and exact explicit solutions for many integer
and fractional real PDEs [22–28, 32–43]. However, few symmetries of the time-fractional
complex system have been discussed until now, even non-homogenous ones. For the clas-
sical n-component complex PDE systems, the common method is to split the real and
imaginary parts of two complex variables u, v and compute the symmetries of 2n equa-
tions with 2n variable coefficients r, s, f , g , this may cause some difficulties. To solve this
problem in a concise way, we introduce the complex conjugations u∗, v∗ and regard func-
tions f , g as two new functions. Here, in order to close the system, we also need to relate f ,
g to u, v, u∗, v∗. Noting that the expression f = f (t, x, |u|, |v|), g = g(t, x, |u|, |v|) is equivalent
to the differential system ufu – u∗fu∗ = 0, vfv – v∗fv∗ = 0, ugu – u∗gu∗ = 0, vgv – v∗gv∗ = 0, we
can enlarge the vector fNLS model to a new closed fPDE system and only consider solv-
ing the new prolonged system. It is novel to construct the symmetries of the prolonged
fractional equations since the non-classical symmetries of prolonged system always con-
tain the classical symmetries of the governed model. We also verify that our results can
be extended to the more general N-component case by introducing f i = f i(t, x, |u1|, |um|),
(i = 1, . . . , N )) and differential system ujf j

uj – uj∗fuj∗ = 0, (j = 1, . . . , N).
The rest of the paper is organized as follows. The non-classical symmetries of prolonged

complex system are discussed in Sect. 2. Then, in Sect. 3, this system is reduced by virtue of
the Eydélyi–Kober fractional differential operator, and self-similar solutions are acquired
by the power expanding method in the de-focused case. We also verify the convergence
of solutions in Sect. 4 by using induction as all the coefficients are analytic. Finally, our
results are extended to the multi-component case. The concluding remark of our work is
put in the last section.

2 Non-classical symmetry for two-component fractional NLS system
This section considers the non-classical symmetry of system (1.2). By introducing two new
conjugate variables u∗, v∗, we consider the following enlarged complex system:

iDα
t u + ruxx + fu = 0,

iDα
t v + svxx + gv = 0,

ufu – u∗fu∗ = 0,

vfv – v∗fv∗ = 0,

ugu – u∗gu∗ = 0,

vgv – v∗gv∗ = 0.

(2.1)

Here, we regard f , g as two new functions. Under the continuous transformation group

t̄ = t + ετ
(
t, x, u, v, u∗, v∗) + o

(
ε2),

x̄ = x + εξ
(
t, x, u, v, u∗, v∗) + o

(
ε2),
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ū = u + ε�
(
t, x, u, v, u∗, v∗) + o

(
ε2),

v̄ = v + ε	
(
t, x, u, v, u∗, v∗) + o

(
ε2),

ū∗ = u∗ + ε�∗(t, x, u, v, u∗, v∗) + o
(
ε2),

(2.2)

v̄∗ = v∗ + ε	∗(t, x, u, v, u∗, v∗) + o
(
ε2),

f̄ = f + εF
(
t, x, u, v, u∗, v∗, f , g

)
+ o

(
ε2),

ḡ = g + εG
(
t, x, u, v, u∗, v∗, f , g

)
+ o

(
ε2),

with infinitesimal generators ξ , τ , �, �∗, 	 , 	∗, F , G, the vector field of the generators of
Lie group is given by

V = ξ
∂

∂x
+ τ

∂

∂t
+ �

∂

∂u
+ 	

∂

∂v
+ �∗ ∂

∂u∗ + 	∗ ∂

∂v∗ + F
∂

∂f
+ G

∂

∂g
, (2.3)

and the α, 2-order prolonged vector field is shown as

prα,2V = V + �α ∂

∂Dα
t u

+ 	α ∂

∂Dα
t v

+ �xx ∂

∂uxx
+ 	xx ∂

∂vxx
+ Fu ∂

∂fu
+ Fu∗ ∂

∂fu∗

+ Fv ∂

∂fv
+ Fv∗ ∂

∂fv∗
+ Gu ∂

∂gu
+ Gu∗ ∂

∂gu∗
+ Gv ∂

∂gv
+ Gv∗ ∂

∂gv∗
, (2.4)

where τ , ξ , F , G are real functions and �, 	 are complex ones.
Applying the Lie symmetry method to system (1.2) yields the following results.

Theorem 1 Under the continuous group transformation (2.2), invariance of system (2.1)
admits the following infinitesimal generators:

ξ = ξ (x),

τ = τ (t), τ ′′′(t) = 0,

� =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + c3

)
u,

	 =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + c4

)
v,

�∗ =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + c3

)
u∗,

	∗ =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + c4

)
v∗,

F = –ατ ′(t)f –
r
2
ξ ′′′(x),

G = –ατ ′(t)g –
s
2
ξ ′′′(x),

where the diffusion coefficients solve the linear equations

τ rt + ξrx + (ατt – 2ξx)r = 0,

τ st + ξ sx + (ατt – 2ξx)s = 0.
(2.5)
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Notation In the following proof, we denote by Cn
α a combination number where Cn

α =
α!

n!(α–n)! .

Proof By adopting the fractional Lie group method, the invariance of system (2.1) is de-
termined by the following linear equations:

i�α,t + r�xx + (τ rt + ξrx)uxx + Fu + f � = 0,

i	α,t + s	xx + (τ st + ξ sx)vxx + Gv + g	 = 0,

�fu + uFu – �∗fu∗ – u∗Fu∗
= 0,

	fv + vFv – 	∗fv∗ – v∗Fv∗
= 0,

�gu + uGu – �∗gu∗ – u∗Gu∗
= 0,

	gv + vGv – 	∗gv∗ – v∗Gv∗
= 0,

(2.6)

with the prolonged generators

�xx = D2
x(� – ξux – τut) + ξuxxx + τuxxt ,

	xx = D2
x(	 – ξvx – τvt) + ξvxxx + τvxxt ,

Fu = Du
(
F – ξ fx – τ ft – �fu – 	fv – �∗fu∗ – 	∗fv∗

)
+ ξ fxu + τ ftu

+ �fuu + 	fvu + �∗fu∗u + 	fv∗u,

Gu = Du
(
G – ξgx – τgt – �gu – 	gv – �∗gu∗ – 	∗gv∗

)
+ ξgxu + τgtu

+ �guu + 	gvu + �∗gu∗u + 	gv∗u,

Fv = Dv
(
F – ξ fx – τ ft – �fu – 	fv – �∗fu∗ – 	∗fv∗

)
+ ξ fxv + τ ftv

+ �fuv + 	fvv + �∗fu∗v + 	fv∗v,

Gv = Dv
(
G – ξgx – τgt – �gu – 	gv – �∗gu∗ – 	∗gv∗

)
+ ξgxv + τgtv

+ �guv + 	gvv + �∗gu∗v + 	gv∗v,

Fu∗ = Du∗
(
F – ξ fx – τ ft – �fu – 	fv – �∗fu∗ – 	∗fv∗

)
+ ξ fxu∗ + τ ftu∗

+ �fuu∗ + 	fvu∗ + �∗fu∗u∗ + 	fv∗u∗ ,

Gu∗
= Du∗

(
G – ξgx – τgt – �gu – 	gv – �∗gu∗ – 	∗gv∗

)
+ ξgxu∗ + τgtu∗

+ �guu∗ + 	gvu∗ + �∗gu∗u∗ + 	gv∗u∗ ,
(2.7)

Fv∗
= Dv∗

(
F – ξ fx – τ ft – �fu – 	fv – �∗fu∗ – 	∗fv∗

)
+ ξ fxv∗ + τ ftv∗

+ �fuv∗ + 	fvv∗ + �∗fu∗v∗ + 	fv∗v∗ ,

Gv∗
= Dv∗

(
G – ξgx – τgt – �gu – 	gv – �∗gu∗ – 	∗gv∗

)
+ ξgxv∗ + τgtv∗

+ �guv∗ + 	gvv∗ + �∗gu∗v∗ + 	gv∗v∗ ,
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�α,t =
∂α�

∂tα
+ (�u – αDtτ )

∂αu
∂tα

– u
∂α�u

∂tα
–

∞∑

n=1

Cn
αDn

t ξDα–n
t ux

+
∞∑

n=1

[
Cn

α

∂n�u

∂tn – Cn+1
α Dn+1

t τ

]
Dα–n

t u +
(

�v
∂αv
∂tα

– v
∂α�v

∂tα

)

+
∞∑

n=1

Cn
α

∂n�v

∂tn Dα–n
t v +

(
�∗

u
∂αu∗

∂tα
– u∗ ∂α�∗

u
∂tα

)
+

∞∑

n=1

Cn
α

∂n�∗
u

∂tn Dα–n
t u∗

+
(

�∗
v
∂αv∗

∂tα
– v∗ ∂α�∗

v
∂tα

)
+

∞∑

n=1

Cn
α

∂n�∗
v

∂tn Dα–n
t v∗ + μ�1 + μ�2 + μ�3 + μ�4 ,

	α,t =
∂α	

∂tα
+ (	v – αDtτ )

∂αv
∂tα

– v
∂α	v

∂tα
–

∞∑

n=1

Cn
αDn

t ξDα–n
t vx

+
∞∑

n=1

[
Cn

α

∂n	v

∂tn – Cn+1
α Dn+1

t τ

]
Dα–n

t v +
(

	u
∂αu
∂tα

– u
∂α	u

∂tα

)

+
∞∑

n=1

Cn
α

∂n	u

∂tn Dα–n
t u +

(
	∗

u
∂αu∗

∂tα
– u∗ ∂α	∗

u
∂tα

)
+

∞∑

n=1

Cn
α

∂n	∗
u

∂tn Dα–n
t u∗

+
(

	∗
v
∂αv∗

∂tα
– v∗ ∂α	∗

v
∂tα

)
+

∞∑

n=1

Cn
α

∂n	∗
v

∂tn Dα–n
t v∗ + μ	1 + μ	2 + μ	3 + μ	4 ,

where

μ�1 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(–u)l ∂

muk–l

∂tm
∂n–m+k�

∂tn–m∂uk ,

μ�2 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(–v)l ∂

mvk–l

∂tm
∂n–m+k�

∂tn–m∂vk ,

μ�3 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(
–u∗)l ∂

mu∗k–l

∂tm
∂n–m+k�

∂tn–m∂u∗k ,

μ�4 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(
–v∗)l ∂

mv∗k–l

∂tm
∂n–m+k�

∂tn–m∂v∗k ,

μ	1 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(–u)l ∂

muk–l

∂tm
∂n–m+k	

∂tn–m∂uk ,

μ	2 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(–v)l ∂

mvk–l

∂tm
∂n–m+k	

∂tn–m∂vk ,

μ	3 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(
–u∗)l ∂

mu∗k–l

∂tm
∂n–m+k	

∂tn–m∂u∗k ,

μ	4 =
∞∑

n=2

n∑

m=2

m∑

k=2

k–1∑

l=0

Cn
αCm

n Cl
k

1
k!

tn–α

�(n – α + 1)
(
–v∗)l ∂

mv∗k–l

∂tm
∂n–m+k	

∂tn–m∂v∗k .
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Substituting (2.7) into (2.6) with the help of prolonged system (2.1), after equaling the
coefficients of all derivatives of u, v, we have admitted conditions as follows:

�uu = �vv = �u∗ = �v∗v∗ = �uv = �uv∗ = �vv∗ = �xv = �xv∗ = �vt = �v∗t = 0,

	uu = 	vv = 	u∗u∗ = 	v∗ = 	uv = 	uu∗ = 	vu∗ = 	xu = 	xu∗ = 	ut = 	u∗t = 0,

ξt = ξu = ξv = ξu∗ = ξv∗ = 0, τx = τu = τv = τu∗ = τv∗ = 0, τ |t=0 = 0,

∂n�u

∂tn =
∂n	v

∂tn =
α – n
n + 1

Dn+1
t τ (n = 1, 2, . . .),

�xu = 	xv =
1
2
ξxx, τ ′′′(t) = 0,

(r – s)�v = 0, (r + s)�v∗ = 0, (s – r)	u = 0, (r + s)	u∗ = 0,

τ rt + ξrx + (ατt – 2ξx)r = 0, (2.8)

τ st + ξ sx + (ατt – 2ξx)s = 0,

F = F
(
t, x, |u|, |v|, f , g

)
, G = G

(
t, x, |u|, |v|, f , g

)
,

i
[

∂α�

∂tα
– u

∂α�u

∂tα
– v

∂α�v

∂tα
– v∗ ∂α�v∗

∂tα

]

–
(
�u – ατ ′(t)

)
fu – �vgv + �v∗gv∗ + f � + Fu + r�xx = 0,

i
[

∂α	

∂tα
– u

∂α	u

∂tα
– v

∂α	v

∂tα
– u∗ ∂α	u∗

∂tα

]

–
(
	v – ατ ′(t)

)
gv – 	ufu + 	u∗ fu∗ + g	 + Gv + s	xx = 0.

Solving the linear PDEs (2.8) one by one leads to the desired results. �

The next result shows the self-similar reduction.

Lemma 1 If ατ ′(t) – 2ξ ′(x) = c2, then we get the infinitesimal generators as follows:

ξ =
c1 – c2

2
x,

τ =
c1

α
t,

� =
(

c1(α – 1)
2α

+
c1 – c2

4
+ c3

)
u,

	 =
(

c1(α – 1)
2α

+
c1 – c2

4
+ c4

)
v,

�∗ =
(

c1(α – 1)
2α

+
c1 – c2

4
+ c3

)
u∗,

	∗ =
(

c1(α – 1)
2α

+
c1 – c2

4
+ c4

)
v∗,

F = –c1f ,

G = –c1g,
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with the coefficients

r = t– αc2
c1 R

(
xt– α(c1–c2)

2c1
)
,

s = t– αc2
c1 S

(
xt– α(c1–c2)

2c1
)
,

and four-dimensional Lie algebra V = σ1V1 + σ2V2 + σ3V3 + σ4V4 generated from the vector
fields

V1 =
x
2

∂

∂x
+

t
α

∂

∂t
+

3α – 2
4α

u
∂

∂u
+

3α – 2
4α

v
∂

∂v
+

3α – 2
4α

u∗ ∂

∂u∗

+
3α – 2

4α
v∗ ∂

∂v∗ – f
∂

∂f
– g

∂

∂g
,

V2 =
x
2

∂

∂x
+

u
4

∂

∂u
+

v
4

∂

∂v
+

u∗

4
∂

∂u∗ +
v∗

4
∂

∂v∗ ,

V3 = u
∂

∂u
+ u∗ ∂

∂u∗ ,

V4 = v
∂

∂v
+ v∗ ∂

∂v∗ .

(2.9)

Proof We obtain (2.9) by directly calculating. �

3 Self-similar solution for two-component fractional NLS system
Let us consider the scaling action V = V1 +σV2, where the parameter is chosen as σ = – c2

c1
.

In this section, we search for the self-similar solutions of system (1.2).

Theorem 2 When we take ξ = x 2
1+σ t–α , under the scaling action V , system (2.1) can be

reduced to the following fractional ODEs:

iP
(σ–1)α–2

4 ,α
1
α

U(ξ ) +
(

2
1 + σ

)2

ξR
(
ξ

1+σ
2

)(1 – σ

2
U ′(ξ ) + ξU ′′(ξ )

)

+ �1
(
ξ ,

∣
∣U(ξ )

∣
∣,

∣
∣V (ξ )

∣
∣)U(ξ ) = 0,

iP
(σ–1)α–2

4 ,α
1
α

V (ξ ) +
(

2
1 + σ

)2

ξS
(
ξ

1+σ
2

)(1 – σ

2
V ′(ξ ) + ξV ′′(ξ )

)

+ �2
(
ξ ,

∣
∣U(ξ )

∣
∣,

∣
∣V (ξ )

∣
∣)V (ξ ) = 0.

(3.1)

Here, the Erdélyi–Kober fractional differential operator is defined as

Pϑ ,α

 f (y) =

a–1∏

k

(
ϑ + k –

1



y
d
dy

)(
Kϑ+α,a–α


 f
)
(y) (y > 0,α > 0,
 > 0),

and

Kϑ ,α

 f (y) =

⎧
⎨

⎩

1
�(α)

∫ ∞
1 (ρ – 1)α–1ρ–(ϑ+α)f (yρ

1

 ) dρ (α > 0),

f (y) (α = 0).
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Proof Herein we use the invariance to construct self-similar solutions. First, solving the
following characteristic

2dx
(1 + σ )x

=
α dt

t
=

4α du
((σ + 3)α – 2)u

=
4α dv

((σ + 3)α – 2)v

=
4α du∗

((σ + 3)α – 2)u∗ =
4α dv∗

((σ + 3)α – 2)v∗ =
df
–f

=
dg
–g

gives rise to

u = t
(σ+3)α–2

4 U
(
x

2
1+σ t–α

)
,

v = t
(σ+3)α–2

4 V
(
x

2
1+σ t–α

)
,

u∗ = t
(σ+3)α–2

4 U∗(x
2

1+σ t–α
)
,

v∗ = t
(σ+3)α–2

4 V ∗(x
2

1+σ t–α
)
,

f = t–α�1
(
x

2
1+σ t–α , t

(σ+3)α–2
4 |U|, t

(σ+3)α–2
4 |V |),

g = t–α�2
(
x

2
1+σ t–α , t

(σ+3)α–2
4 |U|, t

(σ+3)α–2
4 |V |),

(3.2)

with

r = tσαR
(
xt– (1+σ )α

2
)
,

s = tσαS
(
xt– (1+σ )α

2
)
.

(3.3)

Then, by using the chain rule, the prolonged parts of system (2.1) become

U�1U = U∗�1U∗ , V�1V = V ∗�1V∗ ,

U�2U = U∗�2U∗ , V�2V = V ∗�2V∗ ,

solving these four linear PDEs yields

�1 = �1
(
ξ , |U|, |V |), �2 = �2

(
ξ , |U|, |V |). (3.4)

On the other hand, from the definition of fractional Erdélyi–Kober differential operator,
we obtain the fractional derivatives as follows:

∂αu
∂tα

=
1

�(n – α)
dn

dtn

∫ t

0
(t – τ )n–α–1τ

(σ+3)α–2
4 U

(
x

2
1+σ τ–α )

dτ

=
1

�(n – α)
dn

dtn

[
tn+ (σ–1)α–2

4

∫ ∞

1
(s – 1)n–α–1s– (σ–1)α+2

4 –nU
(
ξ sα

)
ds

]

=
dn

dtn

[
tn+ (σ–1)α–2

4 K
(σ+3)α+2

4 ,n–α

1
α

U(ξ )
]

=
dn–1

dtn–1

[
tn–1+ (σ–1)α–2

4

(
n +

(σ – 1)α – 2
4

– αξ
d

dξ

)
K

(σ+3)α+2
4 ,n–α

1
α

U(ξ )
]

= · · ·
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= t
(σ–1)α–2

4

n–1∏

k=0

(
(σ – 1)α – 2

4
+ k – αξ

d
dξ

)
K

(σ+3)α+2
4 ,n–α

1
α

U(ξ )

= t
(σ–1)α–2

4 P
(σ–1)α–2

4 ,α
1
α

U(ξ ). (3.5)

In the same way we have

∂αv
∂tα

= t
(σ–1)α–2

4 P
(σ–1)α–2

4 ,α
1
α

V (ξ ), (3.6)

where

P
(σ–1)α–2

4 ,α
1
α

=
n–1∏

k=0

(
(σ – 1)α – 2

4
+ k – αξ

d
dξ

)
K

(σ+3)α+2
4 ,n–α

1
α

.

In addition, other terms of system (2.1) become

r(t, x)uxx = t
(σ–1)α–2

4

(
2

1 + σ

)2

ξR
(
ξ

1+σ
2

)(1 – σ

2
U ′(ξ ) + ξU ′′(ξ )

)
,

fu = t
(σ–1)α–2

4 �1
(
ξ ,

∣
∣U(ξ )

∣
∣,

∣
∣V (ξ )

∣
∣)U(ξ ),

(3.7)

and

s(t, x)vxx = t
(σ–1)α–2

4

(
2

1 + σ

)2

ξS
(
ξ

1+σ
2

)
(

1 – σ

2
V ′(ξ ) + ξV ′′(ξ )

)
,

gv = t
(σ–1)α–2

4 �2
(
ξ ,

∣∣U(ξ )
∣∣,

∣∣V (ξ )
∣∣)V (ξ ).

(3.8)

Injecting (3.2)–(3.8) into system (2.1) leads to the desired result. �

Theorem 3 Under the assumption of Theorem 2, when the de-focusing coefficients are cho-
sen as f (t, x, |u|, |v|) = t–αA(x 2

1+σ t–α)(|u|2 – |v|2), g(t, x, |u|, |v|) = t–αB(x 2
1+σ t–α)(|u|2 – |v|2)

and the real function R(ξ ), S(ξ ), A(ξ ), B(ξ ) are all analytic in ξ �= 0, then the nontrivial
analytic self-similar solutions of Eqs. (1.2) are given by

u(t, x)

= u0t
(σ+3)α–2

4 +
u0(a0(|v0|2 – |u0|2) – i� (σ–1)α+6

4 )
( 2

1+σ
)2( 1–σ

2 )r0
x

2
1+σ t

(σ–1)α–2
4

+
[i�α + a0(|v0|2 – |u0|2) + 2(σ–1)

(1+σ )2 r1]u1 + [a0(v0v∗
1 + v1v∗

0 – u0u∗
1 – u1u∗

0) + a1(|v0|2 – |u0|2)]u0

r0(3 – σ )( 2
1+σ

)2

× x
4

1+σ t
(σ–5)α–2

4

+
∞∑

n=2

{ i�(αnun–1 – (σ–1)α+6
4 un) – ( 2

1+σ
)2[ 1–σ

2 rnu1 +
∑n–1

k=1( 1–σ
2 + k)(k + 1)rn–kuk+1]

( 2
1+σ

)2( 1–σ
2 + n)(n + 1)r0

+
∑n–1

m=1 am
∑m–1

l=0 ul
∑m–l

k=0 (vkv∗
m–l–k – uku∗

m–l–k) + (a0un + anu0)(|v0|2 – |u0|2)
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)r0

}

× x
2(n+1)

1+σ t
(σ–4n–1)α–2

4 ,
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and

v(t, x)

= v0t
(σ+3)α–2

4 +
v0(b0(|v0|2 – |u0|2) – i� (σ–1)α+6

4 )
( 2

1+σ
)2( 1–σ

2 )s0
x

2
1+σ t

(σ–1)α–2
4

+
[i�α + b0(|v0|2 – |u0|2) + 2(σ–1)

(1+σ )2 s1]v1 + [b0(v0v∗
1 + v1v∗

0 – u0u∗
1 – u1u∗

0) + b1(|v0|2 – |u0|2)]v0

s0(3 – σ )( 2
1+σ

)2

× x
4

1+σ t
(σ–5)α–2

4

+
∞∑

n=2

{ i�(αnvn–1 – (σ–1)α+6
4 vn) – ( 2

1+σ
)2[ 1–σ

2 snv1 +
∑n–1

k=1( 1–σ
2 + k)(k + 1)sn–kvk+1]

( 2
1+σ

)2( 1–σ
2 + n)(n + 1)s0

+
∑n–1

m=1 bm
∑m–1

l=0 vl
∑m–l

k=0 (vkv∗
m–l–k – uku∗

m–l–k) + (b0un + bnu0)(|v0|2 – |u0|2)
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)s0

}

× x
2(n+1)

1+σ t
(σ–4n–1)α–2

4 , (3.9)

where an, bn, rn, sn are expanding coefficients of A, B, R = ξR, S = ξS, and �n = �( 1
2 +( σ+3

4 –n)α)
�( 3

2 +( σ–1
4 –n)α)

are the parameters.

Proof Under the analytic assumptions, according to (3.2) and (3.3), (3.1) can be rewritten
as

iP
(σ–1)α–2

4 ,α
1
α

U(ξ ) +
(

2
1 + σ

)2

R(ξ )
(

1 – σ

2
U ′(ξ ) + ξU ′′(ξ )

)

+ A(ξ )
(∣∣U(ξ )

∣∣2 –
∣∣V (ξ )

∣∣2)U(ξ ) = 0,

iP
(σ–1)α–2

4 ,α
1
α

V (ξ ) +
(

2
1 + σ

)2

S(ξ )
(

1 – σ

2
V ′(ξ ) + ξV ′′(ξ )

)

+ B(ξ )
(∣∣U(ξ )

∣
∣2 –

∣
∣V (ξ )

∣
∣2)V (ξ ) = 0.

(3.10)

We suppose that the solutions of (3.10) are formed as follows:

U(ξ ) =
∞∑

n=0

unξ
n, V (ξ ) =

∞∑

n=0

vnξ
n,

and

U∗(ξ ) =
∞∑

n=0

u∗
nξ

n, V ∗(ξ ) =
∞∑

n=0

v∗
nξ

n, (3.11)

where un, vn are unknown expanding coefficients.
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Substituting (3.11) into the first term of (3.10)to simplify the fractional terms of (3.1),
we have

P
(σ–1)α–2

4 ,α
1
α

U(ξ )

=
[

1 +
(σ – 1)α – 2

4
– αξ

d
dξ

]
K

(σ+3)α+2
4 ,1–α

1
α

=
[

1 +
(σ – 1)α – 2

4
– αξ

d
dξ

] ∞∑

n=0

(∫ ∞

1
(s – 1)–αs– (σ–1)α–2

4 –1snα ds
)

unξ
n

=
[

(σ – 1)α + 6
4

– αξ
d

dξ

] ∞∑

n=0

�( 1
2 + ( σ+3

4 – n)α)
�( 3

2 + ( σ–1
4 – n)α)

unξ
n, (3.12)

and

P
(σ–1)α–2

4 ,α
1
α

V (ξ ) =
[

(σ – 1)α + 6
4

– αξ
d

dξ

] ∞∑

n=0

�( 1
2 + ( σ+3

4 – n)α)
�( 3

2 + ( σ–1
4 – n)α)

vnξ
n, (3.13)

where we use the integral

∫ ∞

1
(s – 1)–αs– (σ–1)α–2

4 –1snα ds =
�( 1

2 + ( σ+3
4 – n)α)

�( 3
2 + ( σ–1

4 – n)α)
.

The following expressions show the derivatives of U , V :

U ′(ξ ) =
∞∑

n=1

nunξ
n–1, V ′(ξ ) =

∞∑

n=1

nvnξ
n–1,

U ′′(ξ ) =
∞∑

n=2

n(n – 1)unξ
n–2, V ′′(ξ ) =

∞∑

n=2

n(n – 1)vnξ
n–2,

(3.14)

Equaling the coefficients of ξ -power by plugging (3.11)–(3.14) into (3.10) and R =
∑∞

n=0 rnξ
n, S =

∑∞
n=0 snξ

n, A(ξ ) =
∑∞

n=0 anξ
n, B(ξ ) =

∑∞
n=0 bnξ

n, we obtain the following
inductions:

for 0-power:

i�
(σ – 1)α + 6

4
u0 +

(
2

1 + σ

)2 1 – σ

2
r0u1 + a0

(|u0|2 – |v0|2
)
u0 = 0,

i�
(σ – 1)α + 6

4
v0 +

(
2

1 + σ

)2 1 – σ

2
s0v1 + b0

(|u0|2 – |v0|2
)
v0 = 0,

(3.15)

for ξ -power:

–i�αu1 +
(

2
1 + σ

)2(
r0u2(3 – σ ) +

1 – σ

2
r1u1

)

+ a0
[(

u0u∗
1 + u1u∗

0 – v0v∗
1 – v1v∗

0
)
u0 +

(|u0|2 – |v0|2
)
u1

]

+ a1
(|u0|2 – |v0|2

)
u0 = 0, (3.16)
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–i�αv1 +
(

2
1 + σ

)2(
s0v2(3 – σ ) +

1 – σ

2
s1v1

)

+ b0
[(

u0u∗
1 + u1u∗

0 – v0v∗
1 – v1v∗

0
)
v0 +

(|u0|2 – |v0|2
)
v1

]

+ b1
(|u0|2 – |v0|2

)
v0 = 0,

· · · ,

for ξn-power:

i�
(

(σ – 1)α + 6
4

un – αnun–1

)

+
(

2
1 + σ

)2
[

1 – σ

2
rnu1 +

n∑

k=1

(
1 – σ

2
+ k

)
(k + 1)rn–kuk+1

]

+
n–1∑

m=1

am

m–1∑

l=0

ul

m–l∑

k=0

(
uku∗

m–l–k – vkv∗
m–l–k

)

+ (a0un + anu0)
(|u0|2 – |v0|2

)
= 0,

i�
(

(σ – 1)α + 6
4

bn – αnvn–1

)

+
(

2
1 + σ

)2
[

1 – σ

2
snv1 +

n∑

k=1

(
1 – σ

2
+ k

)
(k + 1)sn–kvk+1

]

+
n–1∑

m=1

bm

m–1∑

l=0

vl

m–l∑

k=0

(
uku∗

m–l–k – vkv∗
m–l–k

)

+ (b0un + bnu0)
(|u0|2 – |v0|2

)
= 0,

(3.17)

From (3.15)–(3.17) we know that

u1 =
u0(a0(|v0|2 – |u0|2) – i� (σ–1)α+6

4 )
( 2

1+σ
)2( 1–σ

2 )r0
,

v1 =
v0(b0(|v0|2 – |u0|2) – i� (σ–1)α+6

4 )
( 2

1+σ
)2( 1–σ

2 )s0
,

u2 =
[i�α + a0(|v0|2 – |u0|2) + 2(σ–1)

(1+σ )2 r1]u1 + [a0(v0v∗
1 + v1v∗

0 – u0u∗
1 – u1u∗

0) + a1(|v0|2 – |u0|2)]u0

r0(3 – σ )( 2
1+σ

)2
,

v2 =
[i�α + b0(|v0|2 – |u0|2) + 2(σ–1)

(1+σ )2 s1]v1 + [b0(v0v∗
1 + v1v∗

0 – u0u∗
1 – u1u∗

0) + b1(|v0|2 – |u0|2)]v0

s0(3 – σ )( 2
1+σ

)2
,

· · · ,

un+1 =
i�(αnun–1 – (σ–1)α+6

4 un) – ( 2
1+σ

)2[ 1–σ
2 rnu1 +

∑n–1
k=1( 1–σ

2 + k)(k + 1)rn–kuk+1]
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)r0

+
∑n–1

m=1 am
∑m–1

l=0 ul
∑m–l

k=0 (vkv∗
m–l–k – uku∗

m–l–k) + (a0un + anu0)(|v0|2 – |u0|2)
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)r0
,
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vn+1 =
i�(αnvn–1 – (σ–1)α+6

4 vn) – ( 2
1+σ

)2[ 1–σ
2 snv1 +

∑n–1
k=1( 1–σ

2 + k)(k + 1)sn–kvk+1]
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)s0

+
∑n–1

m=1 bm
∑m–1

l=0 vl
∑m–l

k=0 (vkv∗
m–l–k – uku∗

m–l–k) + (b0un + bnu0)(|v0|2 – |u0|2)
( 2

1+σ
)2( 1–σ

2 + n)(n + 1)s0
.

These give the nontrivial self-similar solutions (3.9). �

4 Convergence analysis for self-similar solution
We prove the convergence of solutions (3.9) in this section.

Theorem 4 Solutions (3.9) converge on the region 0 < |ξ | < 1 as the functions R(ξ ), S(ξ ),
A(ξ ), B(ξ ) are all analytic.

Proof The key scheme of the proof is to construct the majorant series by using the induc-
tion.

We divide the function (un, vn) into real part (unR, vnR) and imaginary part (unI , vnI).
Assume two new analytic functions as follows:

P(ξ ) =
∞∑

n=0

pnξ
n =

∞∑

n=0

(pnR + ipnI)ξn, Q(ξ ) =
∞∑

n=0

qnξ
n =

∞∑

n=0

(qnR + iqnI)ξn (4.1)

with positive real part pnR, qnR and imaginary part pnI , qnI satisfying |unR| ≤ pnR, |unI | ≤
pnI , |vnR| ≤ qnR, |vnI | ≤ qnI .

We choose

|u0R| = p0R, |u0I | = p0I , |v0R| = q0R, |v0I | = q0I . (4.2)

For n = 1, 2, it is shown that

|u1R| ≤ 1
2| r0(1–σ )

(1+σ 2) |
(

|u0R||a0|||v0|2 – |u0|2| + |u0I ||�0|
∣∣
∣∣
(σ – 1)α + 6

4

∣∣
∣∣

)

≤ M1
(|u0R| + |u0I |

) ≤ √
2M1|u0| = M̃1

(
�0, |u0|, |v0|, |a0|, |r0|

)
= p1R,

|u1I | ≤ 1
2| r0(1–σ )

(1+σ 2) |
(

|u0I ||a0|||v0|2 – |u0|2| + |u0R||�0|
∣∣
∣∣
(σ – 1)α + 6

4

∣∣
∣∣

)

≤ M1
(|u0R| + |u0I |

) ≤ M̃1
(
�0, |u0|, |v0|, |a0|, |r0|

)
= p1I ,

(4.3)

(M1 = max
||v0|2–|u0|2|(| (σ–1)α+2

4 |�0)

2| (1–σ )r0
(1+σ )2

| , ||v0|2–|u0|2||a0|
2| (1–σ )r0

(1+σ )2
| ),

|v1R| ≤ 1
2| s0(1–σ )

(1+σ 2) |
(

|v0R||b0|||v0|2 – |u0|2| + |v0I ||�0|
∣
∣∣
∣
(σ – 1)α + 6

4

∣
∣∣
∣

)

≤ N1
(|v0R| + |v0I |

) ≤ √
2N1|v0| = M̃1

(
�0, |u0|, |v0|, |b0|, |s0|

)
= q1R,

|v1I | ≤ 1
2| s0(1–σ )

(1+σ 2) |
(

|v0I ||b0|||v0|2 – |u0|2| + |v0R||�0|
∣
∣∣∣
(σ – 1)α + 6

4

∣
∣∣∣

)

≤ N1
(|v0R| + |v0I |

) ≤ Ñ1
(
�0, |u0|, |v0|, |b0|, |s0|

)
= q1I ,

(4.4)
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(N1 = max
||v0|2–|u0|2|(| (σ–1)α+2

4 |�0)

2| (1–σ )s0
(1+σ )2

| , ||v0|2–|u0|2||b0|
2| (1–σ )s0

(1+σ )2
| ), and

|u2R| ≤
|u1R|(|a0|||v0|2 – |u0|2|| + 2| σ–1

(1+σ )2 ||r1|) + α�1|u1I |
|r0||3 – σ |( 2

1+σ
)2

+
|u0R|[|a1|||v0|2 – |u0|2| + 2|a0|(|v0R||v1R| + |v0I ||v1I | + |u0R||u1R| + |u0I ||u1I |)]

|r0||3 – σ |( 2
1+σ

)2

≤
(|a0|||v0|2 – |u0|2|| + 2| σ–1

(1+σ )2 ||r1| + α�1)M1(|u1R| + |u0I |)
|r0||3 – σ |( 2

1+σ
)2

+
|u0R|[|a1|||v0|2 – |u0|2| + 2|a0|(M1(|u0R| + |u0I |)2 + N1(|v0R| + |v0I |)2)]

|r0||3 – σ |( 2
1+σ

)2

≤ M2
[((|u0R| + |u0I |

)2 +
(|v0R| + |v0I |

)2 + 1
)|u0R| + |u0I |

]

≤ M2
[(

2
(|u0|2 + |v0|2

)
+

√
2
)|u0|

]

= M̃2
(
�0,�1, |u0|, |v0|, |a0|, |r0|, |a1|, |r1|

)
= p2R, (4.5)

|u2I | ≤
|u1I |(|a0|||v0|2 – |u0|2|| + 2| σ–1

(1+σ )2 ||r1|) + α�1|u1R|
|r0||3 – σ |( 2

1+σ
)2

+
|u0I |[|a1|||v0|2 – |u0|2| + 2|a0|(|v0R||v1R| + |v0I ||v1I | + |u0R||u1R| + |u0I ||u1I |)]

|r0||3 – σ |( 2
1+σ

)2

≤
(|a0|||v0|2 – |u0|2|| + 2| σ–1

(1+σ )2 ||r1| + α�1)M1(|u1R| + |u0I |)
|r0||3 – σ |( 2

1+σ
)2

+
|u0I |[|a1|||v0|2 – |u0|2| + 2|a0|(M1(|u0R| + |u0I |)2 + N1(|v0R| + |v0I |)2)]

|r0||3 – σ |( 2
1+σ

)2

≤ M2
[((|u0R| + |u0I |

)2 +
(|v0R| + |v0I |

)2 + 1
)|u0R| + |u0I |

]

≤ M2
[(

2
(|u0|2 + |v0|2

)
+

√
2
)|u0|

]

= M̃2
(
�0,�1, |u0|, |v0|, |a0|, |r0|, |a1|, |r1|

)
= p2I , (4.6)

(M2 = max{M1(|a0|||v0|2–|u0|2|+2 (σ–1)r1
(1+σ )2

+α�1)

( 2
1+σ )2|(3–σ )r0| , M1α�1

( 2
1+σ )2|(3–σ )r0| ,

2|a0|M1
( 2

1+σ )2|(3–σ )r0| ,
2|a0|N1

( 2
1+σ )2|(3–σ )r0| ,

|a1|||v0|2–|u0|2|
( 2

1+σ )2|(3–σ )r0| }).
Similarly, for v, we arrive at

|v2R| ≤ N2
[((|u0R| + |u0I |

)2 +
(|v0R| + |v0I |

)2 + 1
)|v0R| + |v0I |

]

≤ N2
[(

2
(|u0|2 + |v0|2

)
+

√
2
)|v0|

]

= Ñ2
(
�0,�1, |u0|, |v0|, |b0|, |s0|, |b1|, |s1|

)
= q2R, (4.7)

|v2I | ≤ N2
[((|u0R| + |u0I |

)2 +
(|v0R| + |v0I |

)2 + 1
)|v0R| + |v0I |

]

≤ N2
[(

2
(|u0|2 + |v0|2

)
+

√
2
)|v0|

]

= Ñ2
(
�0,�1, |u0|, |v0|, |b0|, |s0|, |b1|, |s1|

)
= q2I , (4.8)
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(N2 = max{N1(|b0|||v0|2–|u0|2|+2 (σ–1)s1
(1+σ )2

+α�1)

( 2
1+σ )2|(3–σ )s0| , N1α�1

( 2
1+σ )2|(3–σ )s0| ,

2|b0|N1
( 2

1+σ )2|(3–σ )s0| ,
2|b0|M1

( 2
1+σ )2|(3–σ )s0| ,

|b1|||v0|2–|u0|2|
( 2

1+σ )2|(3–σ )s0| }).
If n + 1 = 3, it is not hard to verify that

|u3R| ≤ M̃3
(
�0,�1,�2, |u0|, |v0|, |a0|, |r0|, |a1|, |r1|, |a2|, |r2|

)
= p3R,

|u3I | ≤ M̃3
(
�0,�1,�2, |u0|, |v0|, |a0|, |r0|, |a1|, |r1|, |a2|, |r2|

)
= p3I ,

|v3R| ≤ Ñ3
(
�0,�1,�2, |u0|, |v0|, |b0|, |s0|, |b1|, |s1|, |b2|, |s2|

)
= q3R,

|v3I | ≤ Ñ3
(
�0,�1,�2, |u0|, |v0|, |b0|, |s0|, |b1|, |s1|, |b2|, |s2|

)
= q3I .

(4.9)

Then, for n + 1 > 3, we assume

|un+1,R| ≤ ˜Mn+1
(
�0,�1, . . . ,�n, |u0|, |v0|, |a0|, |r0|, . . . , |an|, |rn|

)
= pn+1,R,

|un+1,I | ≤ ˜Mn+1
(
�0,�1, . . . ,�n, |u0|, |v0|, |a0|, |r0|, . . . , |an|, |rn|

)
= pn+1,I ,

|vn+1,R| ≤ Ñn+1
(
�0,�1, . . . ,�n, |u0|, |v0|, |b0|, |s0|, . . . , |bn|, |sn|

)
= qn+1,R,

|vn+1,I | ≤ Ñn+1
(
�0,�1, . . . ,�n, |u0|, |v0|, |b0|, |s0|, . . . , |bn|, |sn|

)
= qn+1,I .

(4.10)

It is suffice to prove that the case n + 2 also satisfies (4.10).
Since

|un+2,R|
≤ |�n+1|(| (σ–1)α+6

4 ||un,I | + α(n + 1)|un,I |) + ( 2
1+σ

)2(| 1–σ

2 ||rn+1||u1R| +
∑n

k=1 | 1–σ

2 + k|(k + 1)|rn+1–k ||uk+1,R|)
( 2

1+σ
)2||r0| 1–σ

2 + n + 1|(n + 2)

×
∑n

m=1 |am|∑m–1
l=0 |ulR|∑m–l

k=0 (|vkR||vm–l–k,R| + |vkI ||vm–l–k,I | + |ukR||um–l–k,R| + |ukI ||um–l–k,I |)
( 2

1+σ
)2|r0|| 1–σ

2 + n|(n + 1)

×
∑n

m=1 |am|∑m–1
l=0 |ulI |∑m–l

k=0 (|vkR||vm–l–k,R| + |vkI ||vm–l–k,I | + |ukR||um–l–k,R| + |ukI ||um–l–k,I |)
( 2

1+σ
)2|r0|| 1–σ

2 + n|(n + 1)

+
||v0|2 – |u0|2|(|a0||un+1,R| + |an+1||u0R|)

|( 2
1+σ

)2( 1–σ
2 + n + 1)(n + 2)r0| , (4.11)

substituting (4.2)–(4.10) into (4.11), it is not hard to obtain that |un+2,R| satisfies (4.10) by
using induction.

In the same manner, we can also get the uniform bound of |un+2,I |, |vn+2,R|, |vn+2,I | as well
as |un+2,R|.

By virtue of the analytic assumption of R, S, A, B, now we select pn+1,R, pn+1,I , qn+1,R, qn+1,I

as the right-hand side of (4.10) and notice that all M̃1, M̃2, . . . , M̃n+1, . . . , Ñ1, Ñ2, . . . , Ñn+1, . . .
are bounded. Thus we can assume the uniform bound as M̃ = max{M̃2, . . . , M̃n+1} = M̃(|u0|,
|v0|, |a0|, |r0|, . . . |an|, |rn|), Ñ = max{Ñ2, . . . , Ñn+1} = Ñ(|u0|, |v0|, |b0|, |s0|, . . . |bn|, |sn|).
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Finally, we can set up four majorant functions as follows:

PR = p0R + p1Rξ + p2Rξ 2 +
∞∑

n=2

pn+1,Rξn+1 ≤ p0R + M̃1ξ + M̃
∞∑

n=1

ξn+1,

PI = p0I + p1Iξ + p2Iξ
2 +

∞∑

n=2

pn+1,Iξ
n+1 ≤ p0I + M̃1ξ + M̃

∞∑

n=1

ξn+1,

QR = q0R + q1Rξ + q2Rξ 2 +
∞∑

n=2

qn+1,Rξn+1 ≤ q0R + Ñ1ξ + Ñ
∞∑

n=1

ξn+1,

QI = q0I + q1Iξ + q2Iξ
2 +

∞∑

n=2

qn+1,Iξ
n+1 ≤ q0I + Ñ1ξ + Ñ

∞∑

n=1

ξn+1.

(4.12)

From (4.2)–(4.8) we have bounded all the first three terms of (4.12). On the interval
0 < |ξ | < 1, the series

∑∞
n=1 ξn+1 converges to ξ2

1–ξ
, this ends the proof. �

5 Extension to m-component case
In this section, we verify that the above results of system (1.2) can also be extended to the
m-component fractional NLS model

i
∂αuj

∂tα
+ rj(t, x)uj

xx + f j(t, x,
∣∣u1∣∣, . . . ,

∣∣um∣∣)uj = 0 (j = 1, . . . , m), (5.1)

which describes the kinetics of multi-body quantums with time-memories and nonlinear
interactions.

By introducing |uj| =
√

ujuj∗, we discuss the following prolonged system:

iDα
t uj + rj(t, x)uj

xx + f j(t, x,
∣∣u1∣∣, . . . ,

∣∣um∣∣)uj = 0,

ujf j
uj – uj∗f j

uj∗ = 0 (j = 1, . . . , m),
(5.2)

where f , g are also regarded as two new functions.
Under the continuous group transformation

t̄ = t + ετ
(
t, x, u1, . . . , um, u1∗, . . . , um∗) + o

(
ε2),

x̄ = x + εξ
(
t, x, u1, . . . , um, u1∗, . . . , um∗) + o

(
ε2),

ūj = uj + ε�j(t, x, u1, . . . , um, u1∗, . . . , um∗) + o
(
ε2),

ūj∗ = uj∗ + ε�j∗(t, x, u1, . . . , um, u1∗, . . . , um∗) + o
(
ε2),

f̄ j = f j + εFj(t, x, u1, . . . , um, u1∗, . . . , um∗, f 1, . . . , f m)
+ o

(
ε2) (j = 1, . . . m)

(5.3)

the vector field of infinitesimal generators of Lie group is given by

V = ξ
∂

∂x
+ τ

∂

∂t
+

m∑

j=1

�j ∂

∂uj +
m∑

j=1

�j∗ ∂

∂uj∗ +
m∑

j=1

Fj ∂

∂f j , (5.4)
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and the prolonged vector field is shown as

prα,2V = V +
m∑

j=1

�j,α ∂

∂Dα
t uj +

m∑

j=1

�jxx ∂

∂uj
xx

+
m∑

j=1

Fj,uj ∂

∂f j
uj

+
m∑

j=1

Fj,uj∗ ∂

∂f j
uj∗

(j = 1, . . . , m), (5.5)

where τ , ξ , Fj, Gj are real functions and �j are complex ones.
Similar to the two-component case, we have the following results for m-component frac-

tional NLS system.

Theorem 5 Under the continuous group transformation (5.3), the invariance of system
(5.2) admits the following infinitesimal generators:

ξ = ξ (x),

τ = τ (t), τ ′′′(t) = 0,

�j =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + cj+2

)
uj,

�j∗ =
(

α – 1
2

τ ′(t) +
1
2
ξ ′(x) + cj+2

)
uj∗,

Fj = –ατ ′(t)f j –
rj

2
ξ ′′′(x),

where the diffusion coefficients solve

τ rj
t + ξrj

x + (ατt – 2ξx)rj = 0 (j = 1, . . . , m). (5.6)

Theorem 6 If ατ ′(t) – 2ξ ′(x) = c2, then we obtain the following infinitesimal generators:

ξ =
c1 – c2

2
x,

τ =
c1

α
t,

�j =
(

c1(α – 1)
2α

+
c1 – c2

4
+ cj+2

)
uj,

�j∗ =
(

c1(α – 1)
2α

+
c1 – c2

4
+ cj+2

)
uj∗,

Fj = –c1f j,

(5.7)

with the coefficients

rj = t– αc2
c1 Rj(xt– α(c1–c2)

2c1
)
, (5.8)
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and m + 2-dimensional Lie algebra V = σ1V1 + σ2V2 +
∑m

j=1 σj+2Vj+2 generated from the
following vector fields:

V1 =
x
2

∂

∂x
+

t
α

∂

∂t
+

m∑

j=1

3α – 2
4α

uj ∂

∂uj +
m∑

j=1

3α – 2
4α

uj∗ ∂

∂uj∗ –
m∑

j=1

f j ∂

∂f j ,

V2 =
x
2

∂

∂x
+

m∑

j–1

uj

4
∂

∂uj +
m∑

j–1

uj∗

4
∂

∂uj∗ ,

Vj+2 = uj ∂

∂uj + uj∗ ∂

∂uj∗ (j = 1, . . . , m).

(5.9)

Theorem 7 When taking ξ = x 2
1+σ t–α , under the scaling group V = V1 + σV2(σ = – c2

c1
),

we have that nontrivial self-similar solutions uj = t
(σ+3)α–2

4 Uj(x 2
1+σ t–α) solve the following

fractional ODEs:

iP
(σ–1)α–2

4 ,α
1
α

Uj(ξ ) +
(

2
1 + σ

)2

ξRj(ξ
1+σ

2
)
(

1 – σ

2
dUj(ξ )

dξ
+ ξ

d2Uj(ξ )
dξ 2

)

+ �j(ξ ,
∣∣U1(ξ )

∣∣, . . . ,
∣∣Um(ξ )

∣∣)Uj(ξ ) = 0, (j = 1, . . . , m). (5.10)

Remark The proof of Theorems 5–7 can be achieved in a similar manner, we omit it here.

6 Concluding remarks
A new method of solving two-component non-homogenous fractional NLS system is pro-
posed in the present work. We first consider non-classical Lie symmetry for an enlarged
PDE system by introducing new complex conjugate functions u∗, v∗ and regard f , g as
new functions related to u, v, u∗, v∗. Next, by reducing this new system in terms of scaling
transformation and fractional Erdélyi–Kober operator, we acquire self-similar solutions.
Meanwhile, we have proved the convergence of solutions as all the coefficients are ana-
lytic. Finally, we can extend these results to the multi-component fractional NLS model.
It is more novel and convenient to apply this new method to solve fractional complex PDE
problems rather than the classical symmetry method. The corresponding results are re-
markably different from the previous work. Due to analyticity of the variant coefficients,
the solutions of this fractional model are more general.

In addition, it is interesting to develop our improved method to study some other non-
linear complex fPDEs in mathematical physics. To obtain more new type solutions, we will
explore more effective way in the future.
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